Mare Milk and Foal Plasma Fatty Acid Composition in Foals Born to Mares Fed Either Flax or Fish Oil During Late Gestation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Study Design
2.2. Treatments and Diets for Feeding Trial
2.3. Blood and Milk Collection
2.4. Mare Body Condition Scores and Rump Fat Thickness
2.5. Foal Measurements and Time to Stand and Nurse
2.6. Serum IgG Analysis
2.7. Milk Fat Extraction and Methylation
2.8. Plasma Fat Extraction and Methylation
2.9. Feed Lipid Extraction and Methylation
2.10. Lipid Analysis
2.11. Statistical Analysis
3. Results
3.1. Nutrient Ingestion
3.2. Mare and Foal Morphometrics
3.3. Foal Time to Stand, Time to Nurse, Gestation Length, and Serum IgG Concentrations
3.4. Feeding Trial Foal Plasma Fatty Acids
3.5. Mare Plasma and Milk Fatty Acids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourre, J.-M.E.; Dumont, O.L.; Clement, M.E.; Durand, G.A. Endogenous synthesis cannot compensate for absence of dietary oleic acid in rats. J. Nutr. 1997, 127, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Stillwell, W.; Wassall, S.R. Docosahexaenoic acid: Membrane properties of a unique fatty acid. Chem. Phys. Lipids 2003, 126, 1–27. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, G.; Ricciotti, E. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Lorente-Cebrián, S.; Costa, A.G.; Navas-Carretero, S.; Zabala, M.; Laiglesia, L.M.; Martínez, J.A.; Moreno-Aliaga, M.J. An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases. J. Physiol. Biochem. 2015, 71, 341–349. [Google Scholar] [CrossRef]
- Farag, M.A.; Gad, M.Z. Omega-9 fatty acids: Potential roles in inflammation and cancer management. J. Genet. Eng. Biotechnol. 2022, 20, 48. [Google Scholar] [CrossRef]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef]
- Twining, C.W.; Lawrence, P.; Winkler, D.W.; Flecker, A.S.; Brenna, J.T. Conversion efficiency of α-linolenic acid to omega-3 highly unsaturated fatty acids in aerial insectivore chicks. J. Exp. Biol. 2018, 221, jeb165373. [Google Scholar] [CrossRef]
- Burdge, G. α-Linolenic acid metabolism in men and women: Nutritional and biological implications. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 137–144. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytotherap. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef]
- Smink, W.; Verstegen, M.; Gerrits, W. Effect of intake of linoleic acid and α-linolenic acid levels on conversion into long-chain polyunsaturated fatty acids in backfat and in intramuscular fat of growing pigs. J. Anim. Physiol. Anim. Nutr. 2013, 97, 558–565. [Google Scholar] [CrossRef]
- Sinclair, A.J.; Attar-Bashi, N.M.; Li, D. What is the role of α-linolenic acid for mammals? Lipids 2002, 37, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Whetsell, M.; Rayburn, E.; Swartz, D.; Fultz, S. Variation of fatty acids in cool-season grasses. Agronomy 2022, 12, 1380. [Google Scholar] [CrossRef]
- Kouřimská, L.; Pokhrel, K.; Božik, M.; Tilami, S.K.; Horčička, P. Fat content and fatty acid profiles of recently registered varieties of naked and hulled oats with and without husks. J. Cereal Sci. 2021, 99, 103216. [Google Scholar] [CrossRef]
- Carlson, S.E.; Werkman, S.H.; Tolley, E.A. Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia. Am. J. Clin. Nutr. 1996, 63, 687–697. [Google Scholar] [CrossRef]
- Capper, J.L.; Wilkinson, R.G.; Mackenzie, A.M.; Sinclair, L.A. Polyunsaturated fatty acid supplementation during pregnancy alters neonatal behavior in sheep. J. Nutr. 2006, 136, 397–403. [Google Scholar] [CrossRef]
- Elzinga, S.E.; Betancourt, A.; Stewart, C.; Altman, M.H.; Barker, V.D.; Muholland, M.; Bailey, S.; Brennan, K.M.; Adams, A.A. Effects of docosahexaenoic acid (DHA)-rich microalgae supplementation on metabolic and inflammatory parameters in horses with equine metabolic syndrome. J. Equine Vet. Sci. 2019, 83, 102811. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Horses, 6th rev ed.; National Academies Press: Washington, DC, USA, 2007; p. 360. [Google Scholar] [CrossRef]
- Dinnet, J.M.; Furtney, S.R.; Pendergraft, J.S.; Davis, E.G.; Epp, T.S.; Minton, J.E. Omega-3 fatty acid supplementation reduces basal TNFα but not toll-like receptor-stimulated TNFα in full-sized and miniature mares. J. Equine Vet. Sci. 2013, 33, 523–529. [Google Scholar] [CrossRef]
- Hess, T.M.; Rexford, J.; Hansen, D.K.; Ahrens, N.S.; Harris, M.; Engle, T.; Ross, T.; Allen, K.G. Effects of Ω-3 (n-3) fatty acid supplementation on insulin sensitivity in horses. J. Equine Vet. Sci. 2013, 33, 446–453. [Google Scholar] [CrossRef]
- Henneke, D.R.; Potter, G.D.; Kreider, J.L.; Yeates, B.F. Relationship between condition score, physical measurements and body fat percentage in mares. Equine Vet. J. 1983, 15, 371–372. [Google Scholar] [CrossRef]
- Westervelt, R.G.; Stouffer, J.R.; Hintz, H.F.; Schryver, H.F. Estimating fatness in horses and ponies. J. Anim. Sci. 1976, 43, 781–785. [Google Scholar] [CrossRef]
- Corl, B.A.; Baumgard, L.H.; Griinari, J.M.; Delmonte, P.; Morehouse, K.M.; Yurawecz, M.P.; Bauman, D.E. Trans-7,cis-9 CLA is synthesized endogenously by delta9-desaturase in dairy cows. Lipids 2002, 37, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Chouinard, P.; Girard, V.; Brisson, G. Performance and profiles of milk fatty acids of cows fed full fat, heat-treated soybeans using various processing methods. J. Dairy Sci. 1997, 80, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Perfield, J.W., 2nd; Delmonte, P.; Lock, A.L.; Yurawecz, M.P.; Bauman, D.E. Trans-10, trans-12 conjugated linoleic acid does not affect milk fat yield but reduces delta9-desaturase index in dairy cows. J. Dairy Sci. 2006, 89, 2559–2566. [Google Scholar] [CrossRef] [PubMed]
- Sukhija, P.S.; Palmquist, D. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Hess, T.M.; Rexford, J.K.; Hansen, D.K.; Harris, M.; Schauermann, N.; Ross, T.; Engle, T.E.; Allen, K.G.D.; Mulligan, C.M. Effects of two different dietary sources of long chain omega-3, highly unsaturated fatty acids on incorporation into the plasma, red blood cell, and skeletal muscle in horses. J. Anim. Sci. 2012, 90, 3023–3031. [Google Scholar] [CrossRef]
- Adkin, A.M.; Warren, L.K.; Mortensen, C.J.; Kivipelto, J. Maternal supplementation of docosahexaenoic acid and its effect on fatty acid transfer to the foal. J. Equine Vet. Sci. 2013, 33, 336. [Google Scholar] [CrossRef]
- Kouba, J.; Burns, T.; Webel, S. Effect of dietary supplementation with long-chain n-3 fatty acids during late gestation and early lactation on mare and foal plasma fatty acid composition, milk fatty acid composition, and mare reproductive variables. Anim. Reprod. Sci. 2019, 203, 33–44. [Google Scholar] [CrossRef]
- Ruyle, M.; Connor, W.E.; Anderson, G.J.; Lowensohn, R.I. Placental transfer of essential fatty acids in humans: Venous-arterial difference for docosahexaenoic acid in fetal umbilical erythrocytes. Proc. Nat. Acad. Sci. USA 1990, 87, 7902–7906. [Google Scholar] [CrossRef]
- Herrera, E.; Ortega-Senovilla, H. Implications of lipids in neonatal body weight and fat mass in gestational diabetic mothers and non-diabetic controls. Curr. Diabetes Rep. 2018, 18, 7. [Google Scholar] [CrossRef]
- Larqué, E.; Demmelmair, H.; Gil-Sánchez, A.; Prieto-Sánchez, M.T.; Blanco, J.E.; Pagán, A.; Faber, F.L.; Zamora, S.; Parrilla, J.J.; Koletzko, B. Placental transfer of fatty acids and fetal implications. Am. J. Clin. Nutr. 2011, 94, S1908–S1913. [Google Scholar] [CrossRef]
- Haggarty, P.; Page, K.; Abramovich, D.; Ashton, J.; Brown, D. Long-chain polyunsaturated fatty acid transport across the perfused human placenta. Placenta 1997, 18, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Stammers, J.; Hull, D.; Leadon, D.; Jeffcott, L.B.; Rossdale, P. Maternal and umbilical venous plasma lipid concentrations at delivery in the mare. Equine Vet. J. 1991, 23, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Sauerwald, T.U.; Hachey, D.L.; Jensen, C.L.; Chen, H.; Anderson, R.E.; Heird, W.C. Intermediates in endogenous synthesis of C22: 6ω3 and C20: 4ω6 by term and preterm infants. Pediatr. Res. 1997, 41, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Sauerwald, T.U.; Demmelmair, H.; Koletzko, B. Polyunsaturated fatty acid supply with human milk. Lipids 2001, 36, 991–996. [Google Scholar] [CrossRef]
- Cockburn, F. Neonatal brain and dietary lipids. Arch. Dis. Child. 1994, 70, F1–F2. [Google Scholar] [CrossRef]
- Manson, W.G.; Weaver, L.T. Fat digestion in the neonate. Arch. Dis. Child. 1997, 76, F206–F211. [Google Scholar] [CrossRef]
- Sanders, T.; Reddy, S. The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant. J. Pediatr. 1992, 120, S71–S77. [Google Scholar] [CrossRef]
- Rioux, F.M.; Innis, S.M. Oleic acid (18: 1) in plasma, liver and brain myelin lipid of piglets fed from birth with formulas differing in 18: 1 content. J. Nutr. 1992, 122, 1521–1528. [Google Scholar] [CrossRef]
- Strandvik, B.; Ntoumani, E.; Lundqvist-Persson, C.; Sabel, K.-G. Long-chain saturated and monounsaturated fatty acids associate with development of premature infants up to 18 months of age. Prostaglandins Leukot. Essent. Fat. Acids 2016, 107, 43–49. [Google Scholar] [CrossRef]
- Tomarelli, R.; Meyer, B.; Weaber, J.; Bernhart, F. Effect of positional distribution on the absorption of the fatty acids of human milk and infant formulas. J. Nutr. 1968, 95, 583–590. [Google Scholar] [CrossRef]
- Duvaux-Ponter, C.; Tournie, M.; Detrimont, L.; Clement, F.; Ficheux, C.; Ponter, A. Effect of a supplement rich in linolenic acid added to the diet of mares on fatty acid composition of mammary secretions and the acquisition of passive immunity in the foal. Anim. Sci. 2004, 78, 399–407. [Google Scholar] [CrossRef]
- Pikul, J.; Wójtowski, J. Fat and cholesterol content and fatty acid composition of mares’ colostrums and milk during five lactation months. Livest. Sci. 2008, 113, 285–290. [Google Scholar] [CrossRef]
- Francois, C.A.; Connor, S.L.; Bolewicz, L.C.; Connor, W.E. Supplementing lactating women with flaxseed oil does not increase docosahexaenoic acid in their milk. Am. J. Clin. Nutr. 2003, 77, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Crowell-Davis, S.L.; Houpt, K.A.; Carnevale, J. Feeding and drinking behavior of mares and foals with free access to pasture and water. J. Anim. Sci. 1985, 60, 883–889. [Google Scholar] [CrossRef]
- Whelan, J.; Fritsche, K. Linoleic acid. Adv. Nutr. 2013, 4, 311–312. [Google Scholar] [CrossRef]
- Lampe, M.A.; Burlingame, A.; Whitney, J.; Williams, M.L.; Brown, B.E.; Roitman, E.; Elias, P.M. Human stratum corneum lipids: Characterization and regional variations. J. Lipid Res. 1983, 24, 120–130. [Google Scholar] [CrossRef]
- Grant, E.; Scaife, J.; Birnie, M. Characterization and comparison of the lipids of the epidermis of the equine hoof wall and sole. In Proceedings of British Society of Animal Science; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Caldwell, M.D.; Jonsson, H.T.; Othersen, H.B., Jr. Essential fatty acid deficiency in an infant receiving prolonged parenteral alimentation. J. Pediatr. 1972, 81, 894–898. [Google Scholar] [CrossRef]
- King, S.S.; AbuGhazaleh, A.A.; Webel, S.K.; Jones, K.L. Circulating fatty acid profiles in response to three levels of dietary omega-3 fatty acid supplementation in horses. J. Anim. Sci. 2008, 86, 1114–1123. [Google Scholar] [CrossRef]
- Mohrhauer, H.; Christiansen, K.; Gan, M.V.; Deubig, M.; Holman, R.T. Chain elongation of linoleic acid and its inhibition by other fatty acids in vitro. J. Biol. Chem. 1967, 242, 4507–4514. [Google Scholar] [CrossRef]
Nutrient (DM Basis) 1 | Hay 2 | Concentrate 3 | FO 4 | FLAX 5 |
---|---|---|---|---|
DE, MCal/kg | 0.82 | 1.43 | 2.85 | 2.16 |
Crude protein | 9.5 | 22.8 | 0.5 | 24.1 |
ADF | 39.1 | 11.0 | 20.6 | 17.1 |
NDF | 72.2 | 25.2 | 36.8 | 24.2 |
EE | 2.0 | 3.0 | 72.1 | 32.3 |
Ash | 7.35 | 6.54 | 7.73 | 4.12 |
Fatty acid percentage, % | ||||
14:0 | 0 | 0.14 | 1.76 | 0 |
14:1 n9 | 0 | 0 | 0 | 0 |
16:0 | 27.79 | 16.10 | 1.62 | 0.52 |
16:1 n9 | 19.36 | 0.18 | 22.48 | 5.34 |
18:0 | 0 | 1.81 | 1.13 | 0 |
18:1 n9 | 10.32 | 25.65 | 0 | 0 |
18:2 n6 | 7.66 | 48.70 | 38.19 | 29.06 |
18:3 n3 | 11.90 | 2.79 | 0 | 11.22 |
20:0 | 0 | 0.38 | 2.35 | 52.00 |
20:1 n9 | 2.44 | 0 | 0 | 0 |
20:2 n6 | 0 | 0.05 | 4.80 | 0.30 |
20:3 n6 | 0 | 0 | 0 | 0.05 |
20:4 n6 | 0 | 0 | 1.55 | 0.08 |
20:5 n3 | 0 | 0.08 | 0 | 0.05 |
22:0 | 4.31 | 0.27 | 13.17 | 0.05 |
22:1 n9 | 2.81 | 0 | 0 | 0.31 |
22:6 n3 | 0 | 0 | 7.64 | 0 |
Nutrient 3 | CON | FO 4 | FLAX 5 | p-Value |
---|---|---|---|---|
DM, kg | 12.6 ± 0.3 | 12.0 ± 0.3 | 12.0 ± 0.4 | 0.2 |
DM, % of body weight | 2.3 ± 0.01 | 2.3 ± 0.01 | 2.3 ± 0.02 | 0.4 |
Estimated DE, Mcal | 23.6 ± 0.6 | 22.2 ± 0.6 | 22.2 ± 0.8 | 0.2 |
Provided DE, Mcal | 26.6 ± 0.6 | 26.1 ± 0.6 | 25.8 ± 0.8 | 0.7 |
CP, g | 1577 ± 34 i | 1457 ± 34 j | 1523 ± 44 ij | 0.094 |
ADF, kg | 4.1 ± 0.1 | 3.9 ± 0.1 | 3.9 ± 0.1 | 0.2 |
NDF, kg | 7.8 ± 0.2 | 7.4 ± 0.2 | 7.3 ± 0.2 | 0.2 |
EE, g | 281 ± 6 a | 428 ± 6 c | 321 ± 8 b | <0.001 |
14:0 | 0.1 ± 0.003 a | 3.1 ± 0.003 b | 0.1 ± 0.003 a | <0.001 |
16:0 | 68.0 ± 1.6 | 66.1 ± 1.6 | 64.7 ± 2.1 | 0.44 |
18:0 | 1.5 ± 0.03 a | 3.3 ± 0.03 b | 1.5 ± 0.04 a | <0.001 |
20:0 | 0.3 ± 0.01 a | 4.2 ± 0.01 b | 87.6 ± 0.01 c | <0.001 |
22:0 | 8.4 ± 0.2 a | 30.0 ± 0.2 b | 8.0 ± 0.3 a | <0.001 |
16:1 n-9 | 85.6 ± 1.8 a | 114.8 ± 1.8 b | 89.5 ± 2.4 a | <0.001 |
18:1 n-9 | 42.1 ± 0.9 i | 38.7 ± 0.9 j | 39.5 ± 1.2 ij | 0.058 |
20:1 n-9 | 4.8 ± 0.1 | 4.5 ± 0.2 | 4.5 ± 0.2 | 0.2 |
22:1 n-9 | 5.5 ± 0.1 | 5.2 ± 0.1 | 5.7 ± 0.2 | 0.11 |
18:3 n-3 | 25.6 ± 0.6 a | 24.0 ± 0.6 a | 30.4 ± 0.8 b | 0.001 |
20:5 n-3 | 0.07 ± 0.001 b | 0.06 ± 0.001 a | 0.09 ± 0.001 c | <0.001 |
22:6 n-3 | 0.0 | 12.8 | 0.0 | --- |
18:2 n-6 | 56.5 ± 1.2 a | 115.6 ± 1.2 c | 69.8 ± 1.5 b | <0.001 |
20:2 n-6 | 0.04 ± 0.001 a | 8.1 ± 0.001 c | 0.5 ± 0.001 b | <0.001 |
20:3 n-6 | 0.0 | 0.0 | 0.1 | --- |
20:4 n-6 | 0.0 | 2.6 | 0.05 | --- |
Others | 0.3 ± 0.01 | 7.4 ± 0.01 | 0.3 ± 0.01 | <0.001 |
Treatment (TRT) | TRT Mean | Day of Life 3 | SEM 4 | p-Value | |||
---|---|---|---|---|---|---|---|
NEOD1 | NEOD5 | TRT | Day | TRT × Day | |||
CON | 50.6 a * | 47.4 | 53.8 | 2.7 | |||
FO 1 | 44.0 b * | 41.5 | 46.5 | 2.7 | 0.005 | 0.013 | 0.884 |
FLAX 2 | 39.4 bc | 35.5 | 43.3 | 3.1 |
Treatment (TRT) | Day (D) Post-Parturition | p-Value | |||||
---|---|---|---|---|---|---|---|
Fatty Acid, % | NEOD0 | NEOD5 | NEOD30 | SEM | TRT | D | TRT × D |
16:0 | 0.9 | 0.01 | 0.3 | ||||
D mean 4 | 27.4 | 22.9 * | 19.2 ** | 1.9 | |||
CON | 30.8 | 22.0 | 15.6 | 3.0 | |||
FO | 26.1 | 23.0 | 21.4 | 2.8 | |||
FLAX | 25.3 | 23.8 | 20.7 | 3.7 | |||
16:1 n9 | 0.4 | 0.003 | 0.1 | ||||
D mean | 2.3 | 1.3 ** | 1.5 | 1.3 | |||
CON | 5.1 | 3.2 | 3.6 | 2.0 | |||
FO | 1.2 | 0.7 | 0.6 | 1.0 | |||
FLAX | 0.5 | 0.1 | 0.4 | 2.6 | |||
18:0 | 0.8 | 0.1 | 0.4 | ||||
D mean | 12.4 | 8.6 | 9.9 | 2.3 | |||
CON | 10.8 | 7.6 | 10.6 | 3.8 | |||
FO | 13.0 | 12.4 | 10.5 | 3.5 | |||
FLAX | 13.4 | 5.6 | 8.9 | 4.6 | |||
18:1 n9 | 0.3 | 0.002 | 0.3 | ||||
D mean | 23.4 | 11.2 ** | 8.7 ** | 2.8 | |||
CON | 20.8 | 16.7 | 15.7 | 4.7 | |||
FO | 25.7 | 7.1 | 3.6 | 4.2 | |||
FLAX | 23.6 | 9.8 | 6.8 | 5.4 | |||
18:2 n6 | 0.6 | <0.001 | 0.3 | ||||
D mean | 23.1 | 39.5 ** | 46.0 *** | 4.0 | |||
CON | 21.4 | 40.6 | 48.5 | 6.7 | |||
FO | 20.7 | 45.1 | 53.1 | 6.2 | |||
FLAX | 27.1 | 32.8 | 36.4 | 8.0 | |||
18:3 n3 | 0.1 | 0.006 | 0.09 | ||||
D mean | 0.4 | 6.8 ** | 7.9 ** | 2.2 | |||
CON | 0.4 | 1.8 | 2.6 | 3.6 | |||
FO | 0.2 | 3.2 | 4.2 | 3.4 | |||
FLAX | 0.2 | 1.0 | 1.0 | 0.2 | |||
20:4 n6 | 0.2 | 0.1 | 0.041 | ||||
D mean | 0.00 | 0.10 | 0.04 | 0.04 | |||
CON | 0.00 a | 0.00 a | 0.04 a | 0.06 | |||
FO | 0.00 a | 0.00 a | 0.07 b | 0.06 | |||
FLAX | 0.00 a | 0.30 b | 0.00 a | 0.07 | |||
20:5 n3 | 0.1 | 0.01 | 0.001 | ||||
D mean | 0.15 | 0.27 | 0.01 | 0.08 | |||
CON | 0.00 a | 0.02 a | 0.02 a | 0.13 | |||
FO | 0.26 a | 0.79 b | 0.00 a | 0.13 | |||
FLAX | 0.18 ab | 0.00 a | 0.00 a | 0.15 | |||
22:6 n3 | 0.045 | <0.001 | 0.097 | ||||
D mean | 1.2 | 0.3 *** | 0.03 *** | 0.1 | |||
CON a | 0.6 | 0.2 | 0.01 | 0.2 | |||
FO b | 1.9 | 0.6 | 0.1 | 0.2 | |||
FLAX ab | 1.1 | 0.2 | 0.0 | 0.3 |
Treatment (TRT) | Day (D) Post-Parturition | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Fatty Acid, % | GEST309 | PPD1 | PPD5 | PPD30 | SEM 3 | TRT | D | TRT × D |
14:0 | 0.9 | 0.082 | 0.3 | |||||
D mean | 0.9 | 0.7 | 0.1 | 0.3 | 0.3 | |||
CON | 1.6 | 0.5 | 0.0 | 0.3 | 0.4 | |||
FO | 0.5 | 0.8 | 0.4 | 0.3 | 0.4 | |||
FLAX | 0.6 | 0.8 | 0.3 | 0.3 | 0.5 | |||
16:0 | 0.3 | <0.001 | 0.4 | |||||
D mean | 17.1 a | 21.1 b | 19.5 bc | 18.4 ac | 1.3 | |||
CON | 15.9 | 18.1 | 15.5 | 14.6 | 1.9 | |||
FO | 16.5 | 20.2 | 18.9 | 19.2 | 1.9 | |||
FLAX | 18.8 | 25.1 | 24.2 | 21.5 | 2.5 | |||
16:1 n9 | 0.5 | 0.7 | 0.6 | |||||
D mean | 1.0 | 1.1 | 1.3 | 1.4 | 1.4 | |||
CON | 2.9 | 3.0 | 3.9 | 4.2 | 2.3 | |||
FO | 0.1 | 0.1 | 0.1 | 0 | 2.3 | |||
FLAX | 0 | 0.2 | 0 | 0 | 2.9 | |||
18:0 | 0.5 | 0.2 | 0.7 | |||||
D mean | 17.7 | 13.5 | 16.1 | 15.5 | 2.3 | |||
CON | 17.3 | 8.9 | 13.8 | 15.2 | 3.5 | |||
FO | 21.0 | 16.4 | 18.2 | 16.7 | 3.5 | |||
FLAX | 14.7 | 15.2 | 16.3 | 14.5 | 4.6 | |||
18:1 n9 | 0.3 | 0.2 | 0.8 | |||||
D mean | 4.6 | 6.0 | 5.0 | 5.0 | 1.9 | |||
CON | 6.8 | 9.80 | 9.3 | 9.7 | 3.0 | |||
FO | 4.7 | 4.9 | 3.6 | 3.5 | 3.0 | |||
FLAX | 2.2 | 3.9 | 1.9 | 1.9 | 3.9 | |||
18:2 n6 | 0.5 | 0.8 | 0.1 | |||||
D mean | 51.8 | 53.6 | 54.2 | 54.4 | 3.1 | |||
CON | 43.3 | 53.5 | 52.0 | 49.2 | 4.8 | |||
FO | 53.1 | 54.4 | 55.2 | 57.1 | 4.8 | |||
FLAX | 58.9 | 52.8 | 55.5 | 57.0 | 6.3 | |||
18:3 n3 | 0.4 | 0.5 | 0.8 | |||||
D mean | 2.9 | 2.0 | 1.0 | 1.7 | 0.9 | |||
CON | 5.2 | 2.8 | 0.7 | 2.4 | 1.4 | |||
FO | 1.7 | 1.2 | 0.8 | 1.8 | 1.4 | |||
FLAX | 1.7 | 1.9 | 1.6 | 0.9 | 1.8 | |||
20:2 n6 | 0.03 | 0.07 | 0.4 | |||||
D mean | 0.2 | 0.4 | 0.3 | 0.6 | 0.1 | |||
CON a | 0.1 | 0.4 | 0.1 | 0.2 | 0.2 | |||
FO a | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | |||
FLAX b | 0.3 | 0.7 | 0.6 | 1.3 | 0.3 | |||
20:3 n6 | 0.2 | 0.005 | 0.4 | |||||
D mean | 1.4 a | 1.2 a | 2.0 b | 1.1 a | 0.2 | |||
CON | 1.5 | 0.8 | 1.6 | 0.7 | 0.3 | |||
FO | 1.3 | 1.4 | 2.7 | 1.2 | 0.3 | |||
FLAX | 1.3 | 1.2 | 1.9 | 1.5 | 0.4 | |||
22:6 n3 | 0.2 | 0.5 | 0.2 | |||||
D mean | 0.4 | 0.1 | 0.5 | 0.9 | 0.4 | |||
CON | 1.3 | 0.3 | 1.5 | 0.3 | 0.7 | |||
FO | 0 | 0.04 | 0.2 | 0 | 0.7 | |||
FLAX | 0 | 0 | 0 | 2.5 | 0.8 |
Treatment (TRT) | ||||
---|---|---|---|---|
Fatty Acid, % | CON | FO | FLAX | p-Value |
14:0 | 5.8 ± 1.4 | 6.7 ± 1.2 | 5.5 ± 1.6 | 0.8 |
14:1 n9 | 1.8 ± 2.9 | 3.8 ± 2.6 | 0.2 ± 3.4 | 0.7 |
16:0 | 21.2 ± 2.8 | 22.3 ± 2.5 | 24.4 ± 3.3 | 0.7 |
16:1 n9 | 0.05 ± 0.03 | 0.05 ± 0.03 | 0.08 ± 0.04 | 0.7 |
18:1 n9 | 29.0 ± 4.7 | 23.9 ± 3.7 | 22.6 ± 4.7 | 0.5 |
18:2 n6 | 31.2 ± 3.5 | 32.0 ± 2.7 | 31.3 ± 3.5 | 0.9 |
18:3 n3 | 3.3 ± 2.1 | 2.3 ± 1.9 | 3.8 ± 2.4 | 0.8 |
20:0 | 0.3 ± 0.2 | 0.5 ± 0.2 | 0.7 ± 0.2 | 0.3 |
20:2 n6 | 1.1 ± 0.4 | 0.8 ± 0.3 | 0.9 ± 0.4 | 0.8 |
20:3 n6 | 0.00 ± 0.03 | 0.05 ± 0.02 | 0.03 ± 0.03 | 0.4 |
20:4 n6 | 0.7 ± 0.4 | 0.1 ± 0.3 | 0.4 ± 0.4 | 0.4 |
20:5 n3 | 0.04 ± 0.07 | 0.10 ± 0.06 | 0.00 ± 0.08 | 0.5 |
22:6 n3 | 0.5 ± 0.6 | 1.2 ± 0.5 | 0.5 ± 0.7 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snyder-Peterson, E.A.; Shost, N.; Thomson-Parker, T.; Mowry, K.C.; Fikes, K.K.; Smith, R.; Corl, B.; Wagner, A.; Girard, I.; Suagee-Bedore, J.K. Mare Milk and Foal Plasma Fatty Acid Composition in Foals Born to Mares Fed Either Flax or Fish Oil During Late Gestation. Animals 2025, 15, 1612. https://doi.org/10.3390/ani15111612
Snyder-Peterson EA, Shost N, Thomson-Parker T, Mowry KC, Fikes KK, Smith R, Corl B, Wagner A, Girard I, Suagee-Bedore JK. Mare Milk and Foal Plasma Fatty Acid Composition in Foals Born to Mares Fed Either Flax or Fish Oil During Late Gestation. Animals. 2025; 15(11):1612. https://doi.org/10.3390/ani15111612
Chicago/Turabian StyleSnyder-Peterson, Erica A., Nichola Shost, Timber Thomson-Parker, Kayla C. Mowry, Kalley K. Fikes, Rachelle Smith, Benjamin Corl, Ashley Wagner, Ivan Girard, and Jessica K. Suagee-Bedore. 2025. "Mare Milk and Foal Plasma Fatty Acid Composition in Foals Born to Mares Fed Either Flax or Fish Oil During Late Gestation" Animals 15, no. 11: 1612. https://doi.org/10.3390/ani15111612
APA StyleSnyder-Peterson, E. A., Shost, N., Thomson-Parker, T., Mowry, K. C., Fikes, K. K., Smith, R., Corl, B., Wagner, A., Girard, I., & Suagee-Bedore, J. K. (2025). Mare Milk and Foal Plasma Fatty Acid Composition in Foals Born to Mares Fed Either Flax or Fish Oil During Late Gestation. Animals, 15(11), 1612. https://doi.org/10.3390/ani15111612