Genome-Wide Association Study for Individual Primal Cut Quality Traits in Canadian Commercial Crossbred Pigs
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Statement of Ethics
2.2. Animal Population and Phenotypes
2.3. Genomic Analyses
2.4. Statistical Analysis
2.5. Post-GWAS Analyses
3. Results and Discussion
3.1. Descriptive Statistics
3.2. GWAS and Gene Annotation
3.3. Backfat Depth
3.4. Picnic Fat%
3.5. Butt Fat%
3.6. Loin Fat%
3.7. Ham Fat%
3.8. Belly Fat%
3.9. Total Fat%
3.10. Intramuscular Fat
3.11. Ham Side Fat Thickness
3.12. Shoulder Dorsal Fat
3.13. Belly Side Fat
3.14. SNPs Significantly Associated with Multiple Traits
3.15. Implications for Breeding Programs
3.16. Functional Enrichment of Candidate Genes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Wu, J.; Jian, Y.; Zhuang, Z.; Qiu, Y.; Huang, R.; Lu, P.; Guan, X.; Huang, X.; Li, S.; et al. Genome-Wide Association Studies Revealed Significant QTLs and Candidate Genes Associated with Backfat and Loin Muscle Area in Pigs Using Imputation-Based Whole Genome Sequencing Data. Animals 2022, 12, 2911. [Google Scholar] [CrossRef] [PubMed]
- Udomkun, P.; Ilukor, J.; Mockshell, J.; Mujawamariya, G.; Okafor, C.; Bullock, R.; Nabahungu, N.L.; Vanlauwe, B. What Are the Key Factors Influencing Consumers’ Preference and Willingness to Pay for Meat Products in Eastern DRC? Food Sci. Nutr. 2018, 6, 2321–2336. [Google Scholar] [CrossRef]
- Miar, Y.; Plastow, G.S.; Moore, S.S.; Manafiazar, G.; Charagu, P.; Kemp, R.A.; van Haandel, B.; Huisman, A.E.; Zhang, C.Y.; Mckay, R.M.; et al. Genetic and Phenotypic Parameters for Carcass and Meat Quality Traits in Commercial Crossbred Pigs. J. Anim. Sci. 2014, 92, 2869–2884. [Google Scholar] [CrossRef]
- Ciobanu, D.C.; Lonergan, S.M.; Huff-Lonergan, E.J. Genetics of Meat Quality and Carcass Traits. In The Genetics of the Pig; CABI: Wallingford, UK, 2011; pp. 355–389. [Google Scholar]
- Davoli, R.; Catillo, G.; Serra, A.; Zappaterra, M.; Zambonelli, P.; Zilio, D.M.; Steri, R.; Mele, M.; Buttazzoni, L.; Russo, V. Genetic Parameters of Backfat Fatty Acids and Carcass Traits in Large White Pigs. Animal 2019, 13, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Poklukar, K.; Čandek-Potokar, M.; Lukač, N.B.; Tomažin, U.; Škrlep, M. Lipid Deposition and Metabolism in Local and Modern Pig Breeds: A Review. Animals 2020, 10, 424. [Google Scholar] [CrossRef] [PubMed]
- Soladoye, P.O.; Shand, P.J.; Aalhus, J.L.; Gariépy, C.; Juárez, M. Review: Pork Belly Quality, Bacon Properties and Recent Consumer Trends. Can. J. Anim. Sci. 2015, 95, 325–340. [Google Scholar] [CrossRef]
- Knecht, D.; Duziński, K.; Jankowska-Mąkosa, A. Variability of Fresh Pork Belly Quality Evaluation Results Depends on Measurement Locations. Food Anal. Methods 2018, 11, 2195–2205. [Google Scholar] [CrossRef]
- Arkfeld, E.K.; Wilson, K.B.; Overholt, M.F.; Harsh, B.N.; Lowell, J.E.; Hogan, E.K.; Klehm, B.J.; Bohrer, B.M.; Dilger, A.C.; Boler, D.D. Pork loin quality is not indicative of fresh belly or fresh and cured ham quality. J. Anim. Sci. 2016, 94, 5155–5167. [Google Scholar] [CrossRef]
- Bonfatti, V.; Boschi, E.; Gallo, L.; Carnier, P. On-Site Visible–near IR Prediction of Iodine Number and Fatty Acid Composition of Subcutaneous Fat of Raw Hams as Phenotypes for a Heavy Pig Breeding Program. Animal 2021, 15, 100073. [Google Scholar] [CrossRef]
- Willson, H.E.; de Oliveira, H.R.; Schinckel, A.P.; Grossi, D.; Brito, L.F. Estimation of Genetic Parameters for Pork Quality, Novel Carcass, Primal-Cut and Growth Traits in Duroc Pigs. Animals 2020, 10, 779. [Google Scholar] [CrossRef]
- Lowell, J.E.; Schunke, E.D.; Harsh, B.N.; Bryan, E.E.; Stahl, C.A.; Dilger, A.C.; Boler, D.D. Growth Performance, Carcass Characteristics, Fresh Belly Quality, and Commercial Bacon Slicing Yields of Growing-Finishing Pigs from Sire Lines Intended for Different Industry Applications. Meat Sci. 2019, 154, 96–108. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, Z.; Visscher, P.M.; Yang, J. Quantifying the Mapping Precision of Genome-Wide Association Studies Using Whole-Genome Sequencing Data. Genome Biol. 2017, 18, 86. [Google Scholar] [CrossRef]
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef]
- Ji, J.; Zhou, L.; Huang, Y.; Zheng, M.; Liu, X.; Zhang, Y.; Huang, C.; Peng, S.; Zeng, Q.; Zhong, L.; et al. A Whole-Genome Sequence Based Association Study on Pork Eating Quality Traits and Cooking Loss in a Specially Designed Heterogeneous F6 Pig Population. Meat Sci. 2018, 146, 160–167. [Google Scholar] [CrossRef]
- Gozalo-Marcilla, M.; Buntjer, J.; Johnsson, M.; Batista, L.; Diez, F.; Werner, C.R.; Chen, C.Y.; Gorjanc, G.; Mellanby, R.J.; Hickey, J.M.; et al. Genetic Architecture and Major Genes for Backfat Thickness in Pig Lines of Diverse Genetic Backgrounds. Genet. Sel. Evol. 2021, 53, 76. [Google Scholar] [CrossRef] [PubMed]
- Soladoye, O.P.; Campos, L.; Aalhus, J.L.; Gariépy, C.; Shand, P.; Juárez, M. Accuracy of Dual Energy X-Ray Absorptiometry (DXA) in Assessing Carcass Composition from Different Pig Populations. Meat Sci. 2016, 121, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Turner, T.D.; Mapiye, C.; Aalhus, J.L.; Beaulieu, A.D.; Patience, J.F.; Zijlstra, R.T.; Dugan, M.E.R. Flaxseed Fed Pork: N-3 Fatty Acid Enrichment and Contribution to Dietary Recommendations. Meat Sci. 2014, 96, 541–547. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Uttaro, B.; Zawadski, S.; Dugan, M.E.R.; Gariépy, C.; Aalhus, J.L.; Shand, P.; Juárez, M. Compositional and Dimensional Factors Influencing Pork Belly Firmness. Meat Sci. 2017, 129, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Uttaro, B.; Zawadski, S.; Larsen, I.; Juárez, M. An Image Analysis Approach to Identification and Measurement of Marbling in the Intact Pork Loin. Meat Sci. 2021, 179, 108549. [Google Scholar] [CrossRef]
- Wei, X.; Bohrer, B.; Uttaro, B.; Juárez, M. Evaluating the Effect of Temperature and Multiple Bends on an Automated Pork Belly Firmness Conveyor Belt Classification System. Meat Sci. 2023, 203, 109222. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A Tool for Genome-Wide Complex Trait Analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Gao, X.; Starmer, J.; Martin, E.R. A Multiple Testing Correction Method for Genetic Association Studies Using Correlated Single Nucleotide Polymorphisms. Genet. Epidemiol. 2008, 32, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Peñagaricano, F.; Weigel, K.A.; Khatib, H. Genome-Wide Association Study Identifies Candidate Markers for Bull Fertility in Holstein Dairy Cattle. Anim. Genet. 2012, 43, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.D. Qqman: An R Package for Visualizing GWAS Results Using Q-Q and Manhattan Plots. J. Open Source Softw. 2018, 3, 731. [Google Scholar] [CrossRef]
- Badke, Y.M.; Bates, R.O.; Ernst, C.W.; Schwab, C.; Steibel, J.P. Estimation of Linkage Disequilibrium in Four US Pig Breeds. BMC Genom. 2012, 13, 24. [Google Scholar] [CrossRef]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R Package for the Visualization of Intersecting Sets and Their Properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Fortin, A.; Robertson, W.M.; Tong, A.K.W. The Eating Quality of Canadian Pork and Its Relationship with Intramuscular Fat. Meat Sci. 2005, 69, 297–305. [Google Scholar] [CrossRef]
- Čandek-Potokar, M.; Škrlep, M. Factors in Pig Production That Impact the Quality of Dry-Cured Ham: A Review. Animal 2012, 6, 327–338. [Google Scholar] [CrossRef]
- Teye, G.A.; Sheard, P.R.; Whittington, F.M.; Nute, G.R.; Stewart, A.; Wood, J.D. Influence of Dietary Oils and Protein Level on Pork Quality. 1. Effects on Muscle Fatty Acid Composition, Carcass, Meat and Eating Quality. Meat Sci. 2006, 73, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Person, R.C.; McKenna, D.R.; Griffin, D.B.; McKeith, F.K.; Scanga, J.A.; Belk, K.E.; Smith, G.C.; Savell, J.W. Benchmarking Value in the Pork Supply Chain: Processing Characteristics and Consumer Evaluations of Pork Bellies of Different Thicknesses When Manufactured into Bacon. Meat Sci. 2005, 70, 121–131. [Google Scholar] [CrossRef]
- Marcoux, M.; Pomar, C.; Faucitano, L.; Brodeur, C. The Relationship between Different Pork Carcass Lean Yield Definitions and the Market Carcass Value. Meat Sci. 2007, 75, 94–102. [Google Scholar] [CrossRef]
- Fan, B.; Onteru, S.K.; Du, Z.Q.; Garrick, D.J.; Stalder, K.J.; Rothschild, M.F. Genome-Wide Association Study Identifies Loci for Body Composition and Structural Soundness Traits in Pigs. PLoS ONE 2011, 6, e14726. [Google Scholar] [CrossRef] [PubMed]
- Óvilo, C.; Fernández, A.; Rodríguez, M.C.; Nieto, M.; Silió, L. Association of MC4R Gene Variants with Growth, Fatness, Carcass Composition and Meat and Fat Quality Traits in Heavy Pigs. Meat Sci. 2006, 73, 42–47. [Google Scholar] [CrossRef]
- Kim, K.S.; Larsen, N.; Short, T.; Plastow, G.; Rothschild, M.F. A Missense Variant of the Porcine Melanocortin-4 Receptor (MC4R) Gene Is Associated with Fatness, Growth, and Feed Intake Traits. Mamm. Genome 2000, 11, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Park, J. Genome-Wide Association Study to Reveal New Candidate Genes Using Single-Step Approaches for Productive Traits of Yorkshire Pig in Korea. Anim. Biosci. 2024, 37, 451–460. [Google Scholar] [CrossRef]
- Balatsky, V.N.; Oliinychenko, Y.K.; Buslyk, T.V.; Bankovska, I.B.; Korinnyi, S.N.; Saienko, A.M.; Pochernyaev, K.F. Associations of QTL Region Genes of Chromosome 2 with Meat Quality Traits and Productivity of the Ukrainian Large White Pig Breed. Cytol. Genet. 2021, 55, 53–62. [Google Scholar] [CrossRef]
- Faggion, S.; Bonfatti, V.; Carnier, P. Genome-Wide Association Study for Weight Loss at the End of Dry-Curing of Hams Produced from Purebred Heavy Pigs. Animals 2024, 14, 1983. [Google Scholar] [CrossRef]
- Boshove, A.; Derks, M.F.L.; Sevillano, C.A.; Lopes, M.S.; van Son, M.; Knol, E.F.; Dibbits, B.; Harlizius, B. Large Scale Sequence-Based Screen for Recessive Variants Allows for Identification and Monitoring of Rare Deleterious Variants in Pigs. PLoS Genet. 2024, 20, e1011034. [Google Scholar] [CrossRef]
- Shah, B.P.; Liu, P.; Yu, T.; Hansen, D.R.; Gilbertson, T.A. TRPM5 Is Critical for Linoleic Acid-Induced CCK Secretion from the Enteroendocrine Cell Line, STC-1. Am. J. Physiol. Cell Physiol. 2012, 302, 210–219. [Google Scholar] [CrossRef]
- Ponsuksili, S.; Trakooljul, N.; Basavaraj, S.; Hadlich, F.; Murani, E.; Wimmers, K. Epigenome-Wide Skeletal Muscle DNA Methylation Profiles at the Background of Distinct Metabolic Types and Ryanodine Receptor Variation in Pigs. BMC Genomics 2019, 20, 492. [Google Scholar] [CrossRef]
- Yu, W.; Chen, J.; Jin, S.; Fan, X.; Cai, X. Identification and Validation of Glycosylation-Related Genes in Obesity and MASH: Insights from Human Liver Samples and a High-Fat Diet Mouse Model. Pharmacogenom. Pers. Med. 2024, 17, 363–381. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.; Wu, Y.; Zhang, Y.; Zhang, B.; Zhang, H. Identification of Candidate Genes That Specifically Regulate Subcutaneous and Intramuscular Fat Deposition Using Transcriptomic and Proteomic Profiles in Dingyuan Pigs. Sci. Rep. 2022, 12, 2844. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Qiu, Y.; Zhuang, Z.; Wu, J.; Li, X.; Ruan, D.; Xu, C.; Zheng, E.; Yang, M.; Cai, G.; et al. Genome-Wide Association Study of Body Conformation Traits in a Three-Way Crossbred Commercial Pig Population. Animals 2023, 13, 2414. [Google Scholar] [CrossRef]
- Li, D.; Huang, M.; Zhuang, Z.; Ding, R.; Gu, T.; Hong, L.; Zheng, E.; Li, Z.; Cai, G.; Wu, Z.; et al. Genomic Analyses Revealed the Genetic Difference and Potential Selection Genes of Growth Traits in Two Duroc Lines. Front. Vet. Sci. 2021, 8, 725367. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Cui, J.; Ma, L.; Zeng, Y.; Chen, W. The Effect of MicroRNA-331-3p on Preadipocytes Proliferation and Differentiation and Fatty Acid Accumulation in Laiwu Pigs. Biomed Res. Int. 2019, 2019, 9287804. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, Z.Y.; Lei, M.G.; Li, F.E.; Deng, C.Y.; Xiong, Y.Z.; Zuo, B. Association of 3 polymorphisms in porcine troponin I genes (TNNI1 and TNNI2) with meat quality traits. J. Appl. Genet. 2010, 51, 51–57. [Google Scholar] [CrossRef]
- Wang, X.; Song, H.; Liang, J.; Jia, Y.; Zhang, Y. Abnormal Expression of HADH, an Enzyme of Fatty Acid Oxidation, Affects Tumor Development and Prognosis (Review). Mol. Med. Rep. 2022, 26, 355. [Google Scholar] [CrossRef]
- Liu, L.; Shang, X.; Ma, L.; Yan, D.; Adetula, A.A.; Bai, Y.; Dong, X. Transcriptomic Analyses Reveal the Effects of Walnut Kernel Cake on Adipose Deposition in Pigs. Genes 2024, 15, 667. [Google Scholar] [CrossRef]
- Desire, S.; Johnsson, M.; Ros-Freixedes, R.; Chen, C.Y.; Holl, J.W.; Herring, W.O.; Gorjanc, G.; Mellanby, R.J.; Hickey, J.M.; Jungnickel, M.K. A Genome-Wide Association Study for Loin Depth and Muscle PH in Pigs from Intensely Selected Purebred Lines. Genet. Sel. Evol. 2023, 55, 42. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hu, T.; Li, R.; Li, J.; Wang, Y.; Li, Y.; Lin, Y.; Wang, Y.; Jiani, X. Effect of DHCR7 on Adipocyte Differentiation in Goats. Anim. Biotechnol. 2024, 35, 2298399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, J.; Ma, C.; Wang, W.; Wang, H.; Jiang, Y. Comparative Transcriptomic Analysis of MRNAs, MiRNAs and LncRNAs in the Longissimus Dorsi Muscles between Fat-Type and Lean-Type Pigs. Biomolecules 2022, 12, 1294. [Google Scholar] [CrossRef]
- Howard, J.T.; Jiao, S.; Tiezzi, F.; Huang, Y.; Gray, K.A.; Maltecca, C. Genome-Wide Association Study on Legendre Random Regression Coefficients for the Growth and Feed Intake Trajectory on Duroc Boars. BMC Genet. 2015, 16, 59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, Z.T.; Diao, S.Q.; Ye, S.P.; Wang, J.Y.; Ning, G.; Yuan, X.L.; Chen, Z.M.; Zhang, H.; Li, J.Q. Identifying the Complex Genetic Architecture of Growth and Fatness Traits in a Duroc Pig Population. J. Integr. Agric. 2021, 20, 1607–1614. [Google Scholar] [CrossRef]
- Lin, J.; Wang, C.; Redies, C. Restricted Expression of Classic Cadherins in the Spinal Cord of the Chicken Embryo. Front. Neuroanat. 2014, 8, 18. [Google Scholar] [CrossRef]
- Sahadevan, S.; Gunawan, A.; Tholen, E.; Große-Brinkhaus, C.; Tesfaye, D.; Schellander, K.; Hofmann-Apitius, M.; Cinar, M.U.; Uddin, M.J. Pathway Based Analysis of Genes and Interactions Influencing Porcine Testis Samples from Boars with Divergent Androstenone Content in Back Fat. PLoS ONE 2014, 9, e91077. [Google Scholar] [CrossRef]
- Kappert, K.; Meyborg, H.; Fritzsche, J.; Urban, D.; Krüger, J.; Wellnhofer, E.; Kintscher, U.; Fleck, E.; Stawowy, P. Proprotein Convertase Subtilisin/Kexin Type 3 Promotes Adipose Tissue-Driven Macrophage Chemotaxis and Is Increased in Obesity. PLoS ONE 2013, 8, e70542. [Google Scholar] [CrossRef]
- Li, C.; Wei, B.; Zhao, J. Competing Endogenous RNA Network Analysis Explores the Key LncRNAs, MiRNAs, and MRNAs in Type 1 Diabetes. BMC Med. Genom. 2021, 14, 35. [Google Scholar] [CrossRef]
- Reyer, H.; Shirali, M.; Ponsuksili, S.; Murani, E.; Varley, P.F.; Jensen, J.; Wimmers, K. Exploring the Genetics of Feed Efficiency and Feeding Behaviour Traits in a Pig Line Highly Selected for Performance Characteristics. Mol. Genet. Genom. 2017, 292, 1001–1011. [Google Scholar] [CrossRef]
- Lantz, T. A Genetic Investigation of Pork Fat and Its Role in Meat Quality. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2020. [Google Scholar]
- Sobajima, T.; Yoshimura, S.; Maeda, T.; Miyata, H.; Miyoshi, E.; Harada, A. The Rab11-Binding Protein RELCH/KIAA1468 Controls Intracellular Cholesterol Distribution. J. Cell Biol. 2018, 217, 1777–1796. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Lopes, M.S.; Lopes, P.S.; Gasparino, E. A Genome-Wide Association Study for Feed Efficiency-Related Traits in a Crossbred Pig Population. Animal 2019, 13, 2447–2456. [Google Scholar] [CrossRef]
- Mozduri, Z.; Plastow, G.; Dekkers, J.; Houlahan, K.; Kemp, R.; Juárez, M. Genome-Wide Association Study for Belly Traits in Canadian Commercial Crossbred Pigs. Animals 2025, 15, 1254. [Google Scholar] [CrossRef]
- Muraoka, O.; Xu, B.; Tsurumaki, T.; Akira, S.; Yamaguchi, T.; Higuchi, H. Leptin-Induced Transactivation of NPY Gene Promoter Mediated by JAK1, JAK2 and STAT3 in the Neural Cell Lines. Neurochem. Int. 2003, 42, 591–601. [Google Scholar] [CrossRef]
- Jové-Juncà, T.; Crespo-Piazuelo, D.; González-Rodríguez, O.; Pascual, M.; Hernández-Banqué, C.; Reixach, J.; Quintanilla, R.; Ballester, M. Genomic Architecture of Carcass and Pork Traits and Their Association with Immune Capacity. Animal 2024, 18, 101043. [Google Scholar] [CrossRef]
- Cummings, N.; Shields, K.A.; Curran, J.E.; Bozaoglu, K.; Trevaskis, J.; Gluschenko, K.; Cai, G.; Comuzzie, A.G.; Dyer, T.D.; Walder, K.R.; et al. Genetic Variation in SH3-Domain GRB2-like (Endophilin)-Interacting Protein 1 Has a Major Impact on Fat Mass. Int. J. Obes. 2012, 36, 201–206. [Google Scholar] [CrossRef]
- Sebastià, C.; Gallopin, M.; Ramayo-Caldas, Y.; Estellé, J.; Valdés-Hernández, J.; Castelló, A.; Sánchez, A.; Crespo-Piazuelo, D.; Folch, J.M. Gene Co-Expression Network Analysis for Porcine Intramuscular Fatty Acid Composition. Animal 2024, 18, 101259. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Liang, Y.; Yang, X.; Pang, J.; Zhong, Z.; Chen, X.; Yang, Y.; Zeng, K.; Kang, R.; Lei, Y.; et al. Transcriptomic Profiling in Muscle and Adipose Tissue Identifies Genes Related to Growth and Lipid Deposition. PLoS ONE 2017, 12, e184120. [Google Scholar] [CrossRef] [PubMed]
- Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; et al. MiR-122 Regulation of Lipid Metabolism Revealed by in Vivo Antisense Targeting. Cell Metab. 2006, 3, 87–98. [Google Scholar] [CrossRef]
- Cirera, S.; Birck, M.; Busk, P.K.; Fredholm, M. Expression Profiles of MiRNA-122 and Its Target CAT1 in Minipigs (Sus Scrofa) Fed a High-Cholesterol Diet. Comp. Med. 2010, 60, 136–141. [Google Scholar]
- Song, F.; Li, J.Z.; Wu, Y.; Wu, W.Y.; Wang, Y.; Li, G. Ubiquitinated Ligation Protein NEDD4L Participates in MiR-30a-5p Attenuated Atherosclerosis by Regulating Macrophage Polarization and Lipid Metabolism. Mol. Ther. Nucleic Acids 2021, 26, 1303–1317. [Google Scholar] [CrossRef] [PubMed]
- Bohni, P.C.; Deshaies, R.J.; Schekman, R.W. SEC11 Is Required for Signal Peptide Processing and Yeast Cell Growth. J. Cell Biol. 1988, 106, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, D.; Schleifenbaum, J.; Wang, Y.; Kassmann, M.; Polovitskaya, M.M.; Ali, M.; Schütze, S.; Rothe, M.; Luft, F.C.; Jentsch, T.J.; et al. KCNQ5 Controls Perivascular Adipose Tissue-Mediated Vasodilation. Hypertension 2024, 81, 561–571. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Shin, D. Genome-Wide Association Studies Associated with Backfat Thickness in Landrace and Yorkshire Pigs. Genom. Inform. 2018, 16, 59–64. [Google Scholar] [CrossRef]
- Sailer, S.; Lackner, K.; Pras-Raves, M.L.; Wever, E.J.M.; van Klinken, J.B.; Dane, A.D.; Geley, S.; Koch, J.; Golderer, G.; Werner-Felmayer, G.; et al. Adaptations of the 3T3-L1 Adipocyte Lipidome to Defective Ether Lipid Catabolism upon Agmo Knockdown. J. Lipid Res. 2022, 63, 100222. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.B.; An, Y.R.; Kim, S.J.; Park, H.W.; Jung, J.W.; Kyung, J.S.; Hwang, S.Y.; Kim, Y.S. Lipid Metabolic Effect of Korean Red Ginseng Extract in Mice Fed on a High-Fat Diet. J. Sci. Food Agric. 2012, 92, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Timmons, J.A.; Wennmalm, K.; Larsson, O.; Walden, T.B.; Lassmann, T.; Petrovic, N.; Hamilton, D.L.; Gimeno, R.E.; Wahlestedt, C.; Baar, K.; et al. Myogenic Gene Expression Signature Establishes That Brown and White Adipocytes Originate from Distinct Cell Lineages. Proc. Natl. Acad. Sci. USA 2007, 104, 4401–4406. [Google Scholar] [CrossRef]
- Hou, R.; Chen, L.; Liu, X.; Liu, H.; Shi, G.; Hou, X.; Zhang, R.; Yang, M.; Niu, N.; Wang, L.; et al. Integrating Genome-Wide Association Study with RNA-Sequencing Reveals HDAC9 as a Candidate Gene Influencing Loin Muscle Area in Beijing Black Pigs. Biology 2022, 11, 1635. [Google Scholar] [CrossRef]
- Hu, T.; Li, Z.; Gong, C.; Xiong, Y.; Sun, S.; Xing, J.; Li, Y.; Li, R.; Wang, Y.; Wang, Y.; et al. FOS Inhibits the Differentiation of Intramuscular Adipocytes in Goats. Genes 2023, 14, 2088. [Google Scholar] [CrossRef]
- Guo, X.; Lan, G.; Jiang, Q.; Guo, Y.; Ouyang, Y.; Liang, J.; Zhang, M. Expression Mechanisms of Mir-486-5p and Its Host Gene SANK1 in Porcine Muscle. Mol. Biol. Rep. 2024, 51, 840. [Google Scholar] [CrossRef]
- Aslan, O.; Sweeney, T.; Mullen, A.M.; Hamill, R.M. Regulatory Polymorphisms in the Bovine Ankyrin 1 Gene Promoter Are Associated with Tenderness and Intramuscular Fat Content. BMC Genet. 2010, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yu, K.; Zhou, L.; Fang, L.; Su, Y.; Zhu, W. Metabolomic and Transcriptomic Responses Induced in the Livers of Pigs by the Long-Term Intake of Resistant Starch. J. Anim. Sci. 2016, 94, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Valsesia, A.; Wang, Q.P.; Gheldof, N.; Carayol, J.; Ruffieux, H.; Clark, T.; Shenton, V.; Oyston, L.J.; Lefebvre, G.; Metairon, S.; et al. Genome-Wide Gene-Based Analyses of Weight Loss Interventions Identify a Potential Role for NKX6.3 in Metabolism. Nat. Commun. 2019, 10, 540. [Google Scholar] [CrossRef]
- Piórkowska, K.; Żukowski, K.; Tyra, M.; Szyndler-Nędza, M.; Szulc, K.; Skrzypczak, E.; Ropka-Molik, K. The Pituitary Transcriptional Response Related to Feed Conversion in Pigs. Genes 2019, 10, 712. [Google Scholar] [CrossRef]
- Fontanesi, L.; Galimberti, G.; Calò, D.G.; Fronza, R.; Martelli, P.L.; Scotti, E.; Colombo, M.; Schiavo, G.; Casadio, R.; Buttazzoni, L.; et al. Identification and Association Analysis of Several Hundred Single Nucleotide Polymorphisms within Candidate Genes for Back Fat Thickness in Italian Large White Pigs Using a Selective Genotyping Approach. J. Anim. Sci. 2012, 90, 2450–2464. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Wu, J.; Qiao, M.; Xu, Z.; Peng, X.; Mei, S. Proteomic and Lipidomic Analyses Reveal Saturated Fatty Acids, Phosphatidylinositol, Phosphatidylserine, and Associated Proteins Contributing to Intramuscular Fat Deposition. J. Proteomics 2021, 241, 104235. [Google Scholar] [CrossRef]
- Escoubet, J.; Kenigsberg, M.; Derock, M.; Yaligara, V.; Bock, M.D.; Roche, S.; Massey, F.; De Foucauld, H.; Bettembourg, C.; Olivier, A.; et al. ABHD11, a New Diacylglycerol Lipase Involved in Weight Gain Regulation. PLoS ONE 2020, 15, e234780. [Google Scholar] [CrossRef] [PubMed]
- Faggion, S.; Boschi, E.; Veroneze, R.; Carnier, P.; Bonfatti, V. Genomic Prediction and Genome-Wide Association Study for Boar Taint Compounds. Animals 2023, 13, 2450. [Google Scholar] [CrossRef]
- Xue, W.; Wang, W.; Jin, B.; Zhang, X.; Xu, X. Association of the ADRB3, FABP3, LIPE, and LPL Gene Polymorphisms with Pig Intramuscular Fat Content and Fatty Acid Composition. Czech J. Anim. Sci. 2015, 60, 60–66. [Google Scholar] [CrossRef]
- Zambonelli, P.; Gaffo, E.; Zappaterra, M.; Bortoluzzi, S.; Davoli, R. Transcriptional Profiling of Subcutaneous Adipose Tissue in Italian Large White Pigs Divergent for Backfat Thickness. Anim. Genet. 2016, 47, 306–323. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, P.; Wang, K.; Chen, D.; Zhou, J.; Ma, J.; Li, M.; Xiao, W.; Jiang, A.; Jiang, Y.; et al. SNPs Associated with Body Weight and Backfat Thickness in Two Pig Breeds Identified by a Genome-Wide Association Study. Genomics 2019, 111, 1583–1589. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Wang, K.; Liu, X.; Zhou, H.; Xu, L.; Wang, Z.; Fang, M. Identification of Growth Trait Related Genes in a Yorkshire Purebred Pig Population by Genome-Wide Association Studies. Asian-Australas. J. Anim. Sci. 2017, 30, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhou, Q.; Lin, C.; He, L.; Wei, L. Integrative Analyses of Gene Expression and Alternative Splicing to Gain Insights into the Effects of Copper on Hepatic Lipid Metabolism in Swamp Eel (Monopterus Albus). Aquaculture 2022, 546, 737367. [Google Scholar] [CrossRef]
- Zappaterra, M.; Gioiosa, S.; Chillemi, G.; Zambonelli, P.; Davoli, R. Muscle Transcriptome Analysis Identifies Genes Involved in Ciliogenesis and the Molecular Cascade Associated with Intramuscular Fat Content in Large White Heavy Pigs. PLoS ONE 2020, 15, e233372. [Google Scholar] [CrossRef]
- Puig-Oliveras, A.; Revilla, M.; Castelló, A.; Fernández, A.I.; Folch, J.M.; Ballester, M. Expression-Based GWAS Identifies Variants, Gene Interactions and Key Regulators Affecting Intramuscular Fatty Acid Content and Composition in Porcine Meat. Sci. Rep. 2016, 6, 31803. [Google Scholar] [CrossRef]
- Nieto, R.; Lara, L.; Barea, R.; García-Valverde, R.; Conde-Aguilera, J.A.; Aguilera, J.F. Growth of Body Components and Carcass Composition of Iberian Pigs of 10 to 150 Kg Body Weight as Affected by the Level of Feeding and Dietary Protein Concentration. J. Anim. Sci. 2013, 91, 4197–4207. [Google Scholar] [CrossRef]
- Du, X.; Kumar, J.; Ferguson, C.; Schulz, T.A.; Ong, Y.S.; Hong, W.; Prinz, W.A.; Parton, R.G.; Brown, A.J.; Yang, H. A Role for Oxysterol-Binding Protein-Related Protein 5 in Endosomal Cholesterol Trafficking. J. Cell Biol. 2011, 192, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Torres-romero, I.; Légeret, B.; Huleux, M.; Sorigue, D.; Damm, A.; Kotapati, H.K.; Xin, Y.; Xu, J.; Bates, P.D.; Thiam, A.R. The α/β Hydrolase Domain-Containing Protein 1 (ABHD1) Acts as a Lysolipid Lipase and Is Involved in Lipid Droplet Formation. bioRxiv 2023. [Google Scholar] [CrossRef]
- Silva, E.F.P.; Gaia, R.C.; Mulim, H.A.; Pinto, L.F.B.; Iung, L.H.S.; Brito, L.F.; Pedrosa, V.B. Genome-Wide Association Study of Conformation Traits in Brazilian Holstein Cattle. Animals 2024, 14, 2472. [Google Scholar] [CrossRef]
- Bongiorni, S.; Gruber, C.E.M.; Bueno, S.; Chillemi, G.; Ferrè, F.; Failla, S.; Moioli, B.; Valentini, A. Transcriptomic Investigation of Meat Tenderness in Two Italian Cattle Breeds. Anim. Genet. 2016, 47, 273–287. [Google Scholar] [CrossRef]
- Yao, C.; Pang, D.; Lu, C.; Xu, A.; Huang, P.; Ouyang, H.; Yu, H. Investigation on the Effect of Two Fat Metabolism Related Pathways on Intramuscular Fat Content in Pigs. Pak. J. Zool. 2021, 53, 1–14. [Google Scholar] [CrossRef]
- Li, Z.; Schulze, R.J.; Weller, S.G.; Krueger, E.W.; Schott, M.B.; Zhang, X.; Casey, C.A.; Liu, J.; Stöckli, J.; James, D.E.; et al. A Novel Rab10-EHBP1-EHD2 Complex Essential for the Autophagic Engulfment of Lipid Droplets. Sci. Adv. 2016, 2, e1601470. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.; Machado, P.C.; Pinto, L.F.B.; Silva, M.R.; Schenkel, F.S.; Brito, L.F.; Pedrosa, V.B. Genome-Wide Association Study and Pathway Analysis for Fat Deposition Traits in Nellore Cattle Raised in Pasture–Based Systems. J. Anim. Breed. Genet. 2021, 138, 360–378. [Google Scholar] [CrossRef] [PubMed]
- Blaj, I.G. Potential of F2 Pig Crosses: Perspectives from Population and Quantitative Genomics. Ph.D. Thesis, Christian-Albrechts-Universität Kiel, Kiel, Germany, 2020. [Google Scholar]
Trait | n | Min | Max | Mean | CV | SD |
---|---|---|---|---|---|---|
Backfat depth (mm) | 1117 | 10.3 | 41.4 | 20.4 | 21.16 | 4.31 |
Picnic fat% | 803 | 17.4 | 37.4 | 26.4 | 12.61 | 3.33 |
Butt fat% | 803 | 23.9 | 55.0 | 37.5 | 11.80 | 4.42 |
Loin fat% | 802 | 18.6 | 51.7 | 33.6 | 14.47 | 4.87 |
Ham fat% | 803 | 18.2 | 38.8 | 27.2 | 10.91 | 2.97 |
Belly fat% | 804 | 18.3 | 46.3 | 32.6 | 12.15 | 3.96 |
Total fat% | 894 | 19.4 | 46.2 | 31.2 | 11.90 | 3.72 |
IMF (%) | 1112 | 1.49 | 9.96 | 3.87 | 31.00 | 1.20 |
Ham side fat thickness | 962 | 5.16 | 32.2 | 18.0 | 20.65 | 3.71 |
Shoulder dorsal fat (mm) | 964 | 7.2 | 58.6 | 21.4 | 27.33 | 5.85 |
Belly side fat (mm) | 1083 | 0.95 | 4.00 | 2.50 | 17.95 | 0.45 |
Trait | Chr | Start BP | End BP | SNP (Lowest p-Value) | MAF | p-Value | Percentage Values | Candidate Genes |
---|---|---|---|---|---|---|---|---|
Backfat depth | 1 | 160623588 | 161623588 | 1:161123588T:C | 0.268 | 1.38 × 10−7 | 0.06 | MC4R, PMAIP1, CCBE1, LMAN1, CPLX4, RAX, GRP, SEC11C, OACYL, ZNF532, MALT1 |
Backfat depth | 2 | 1593050 | 2593050 | 2:2093050A:G | 0.02 | 7.36 × 10−8 | 0.06 | CTSD, SYT8, TNNI2, LSP1, TNNT3, IGF2, ssc-mir-10383, INS, TH, ASCL2, TSPAN32, CD81, TSSC4, TRPM5, KCNQ1, CDKN1C, SLC22A18, PHLDA2, NAP1L4, CARS1, OSBPL5, NADSYN1, DHCR7, SHANK2, CTTN |
Backfat depth | 7 | 96819123 | 98121753 | 7:97619754G:A | 0.398 | 3.11 × 10−10 | 0.14 | ZFYVE1, RBM25, PSEN1, PAPLN, NUMB, RIOX1, ACOT6, DNAL1, PNMA1, MIDEAS, PTGR2, ZNF410, FAM161B, COQ6, ENTPD5, BBOF1, ALDH6A1, LIN52, VSX2, ABCD4, VRTN, SYNDIG1L, NPC2, ISCA2, LTBP2, AREL1, FCF1, YLPM1, PROX2, DLST, RPS6KL1, PGF, EIF2B2, MLH3, ZC2HC1C, NEK9, TMED10, FOS, JDP2 |
Picnic fat | 1 | 158326231 | 160999409 | 1:158826231G:C | 0.201 | 6.85 × 10−8 | 0.09 | SERPINB8, SERPINB10, SERPINB2, SERPINB7, SERPINB11, SERPINB13, SERPINB12, SERPINB5, VPS4B, KDSR, BCL2, PHLPP1, ZCCHC2, TNFRSF11A, RELCH, PIGN, RNF152, CDH20, MC4R, PMAIP1, CCBE1 |
Butt fat | 1 | 159131461 | 162741690 | 1:160021417C:T | 0.197 | 9.99 × 10−9 | 0.13 | PHLPP1, ZCCHC2, TNFRSF11A, RELCH, PIGN, RNF152, CDH20, MC4R, PMAIP1, CCBE1, LMAN1, CPLX4, RAX, GRP, SEC11C, OACYL, ZNF532 MALT1, ALPK2, ssc-mir-122, NEDD4L, ATP8B1, SLC51B, RASL12, KBTBD13, UBAP1L, PDCD7, CLPX, CILP |
Loin fat | 1 | 159676058 | 161038585 | 1:160277388A:C | 0.129 | 9.76 × 10−9 | 0.13 | CCBE1, CDH20, MC4R, PIGN, PMAIP1, RELCH, RNF152, TNFRSF11A |
Ham fat | 1 | 158326231 | 161371456 | 1:160021417C:T | 0.197 | 6.12 × 10−9 | 0.14 | SERPINB8, SERPINB10, SERPINB2, SERPINB7, SERPINB11, SERPINB13, SERPINB12, SERPINB5, VPS4B, KDSR, BCL2, PHLPP1, ZCCHC2, TNFRSF11A, RELCH, PIGN, RNF152, CDH20, MC4R, PMAIP1, CCBE1, LMAN1, CPLX4, RAX, GRPSEC11C, OACYL |
belly fat | 1 | 159521417 | 160730075 | 1:160021417C:T | 0.197 | 1.42 × 10−7 | 0.07 | CDH20, MC4R, PIGN, PMAIP1, RELCH, RNF152, TNFRSF11A, ZCCHC2 |
belly fat | 6 | 146226998 | 147226998 | 6:146726998T:C | 0.05 | 4.33 × 10−8 | 0.14 | AK4, DNAI4, DNAJC6, DYNLT5, JAK1, LEPR, LEPROT, PDE4B, RAVER2, SGIP1 |
Total fat | 1 | 51411474 | 52411474 | 1:51911474T:G | 0.062 | 1.22 × 10−7 | 0.06 | B3GAT2, KCNQ5, OGFRL1, RIMS1, SMAP1, SNORA70, ssc-mir-30a, ssc-mir-30c-2 |
Total fat | 1 | 159576052 | 162647279 | 1:160076052G:T | 0.064 | 8.32 × 10−8 | 0.06 | TNFRSF11A, RELCH, PIGN, RNF152, CDH20, MC4R, PMAIP1, CCBE1, LMAN1, CPLX4, RAX, GRP, SEC11C, OACYL, ZNF532, MALT1, ALPK2, ssc-mir-122, NEDD4L, ATP8B1, SLC51B, RASL12, KBTBD13, UBAP1L |
Trait | Chr | Start BP | End BP | SNP (Lowest p-Value) | MAF | p-Value | Percentage Values | Candidate Genes |
---|---|---|---|---|---|---|---|---|
IMF | 1 | 92861097 | 93861130 | 1:93361097T:C | 0.013 | 1.34E × 10−7 | 0.04 | LOC110256969, LOC110256971, |
IMF | 9 | 84800447 | 85800447 | 9:85300447T:C | 0.032 | 1.99 × 10−7 | 0.06 | AGMO, MEOX2, CRPPA, SOSTDC1 |
IMF | 9 | 137966591 | 138966591 | 9:138466591T:C | 0.047 | 1.78E × 10−7 | 0.08 | ENSSSCG00000043470, |
IMF | 15 | 44435007 | 45435011 | 15:44935011G:A | 0.022 | 1.93 × 10−8 | 0.05 | DCTD, WWC2, CLDN22, CDKN2AIP, ING2, RWDD4, TRAPPC11, STOX2, ENPP6 |
Ham Side fat thickness | 17 | 10434900 | 11434900 | 17:10934900G:C | 0.022 | 9.33 × 10−8 | 0.08 | SFRP1, GOLGA7, GINS4, GPAT4, NKX6-3, ssc-mir-486-2, ANK1, AP3M2, PLAT, IKBKB, POLB, DKK4, VDAC3 |
Shoulder Dorsal fat | 2 | 8208671 | 9208678 | 2:8708671A:G | 0.011 | 8.99 × 10−9 | 0.11 | MARK2, SPINDOC, PLAAT3, LGALS12, PLAAT5, SLC22A8, SLC22A6, SLC3A2, SNORD26, SNORD27, SNORD28, SNORD22, SNORD29, SNORD30, SNORD31, SNORD22, U2, WDR74, TEX54, STX5, NXF1, TMEM223, TMEM179B, TAF6L, POLR2G, TTC9C, HNRNPUL2, BSCL2, UBXN1, UQCC3, CSKMT, SNORA57, C11orf98, INTS5, GANAB, B3GAT3, ROM1, EML3, MTA2, TUT1, EEF1G |
Shoulder Dorsal fat | 2 | 53493480 | 56065282 | 2:55565282T:C | 0.017 | 1.56 × 10−7 | 0.07 | OR2W3, TRIM58, OR11L1, |
Shoulder Dorsal fat | 2 | 60239686 | 64803650 | 2:62503689T:C | 0.017 | 1.89 × 10−8 | 0.05 | NXNL1, TMEM221, MVB12A, BST2, CCDC194, PLVAP, GTPBP3, ANO8, DDA1, MRPL34, ABHD8, ANKLE1, BABAM1, USHBP1, NR2F6, OCEL1, MYO9B, HAUS8, CPAMD8, F2RL3, SIN3B, NWD1, TMEM38A, SMIM7, MED26, SLC35E1, CHERP, C19orf44, CALR3, EPS15L1, CYP4F55, CYP4F22, PGLYRP2, RASAL3, WIZ, AKAP8L AKAP8, BRD4, EPHX3, NOTCH3ILVBL, SYDE1, OR1I1, CASP14, TEKTL1, SLC1A6, ADGRE3, CLEC17A, NDUFB7, T ECR, DNAJB1, GIPC1, PTGER1, PKN1 |
Shoulder Dorsal fat | 2 | 129127496 | 130127497 | 2:129627496G:A | 0.010 | 2.23 × 10−7 | 0.02 | GRAMD2B, ALDH7A1, PHAX, SPMIP10, LMNB1, MARCHF3 |
Shoulder Dorsal fat | 3 | 10918189 | 12142089 | 3:11441193G:A | 0.017 | 2.51 × 10−8 | 0.13 | MLXIPL, VPS37D, DNAJC30, BUD23, ssc-mir-7137, STX1A, ABHD11, CLDN3, CLDN4, METTL27, TMEM270, ELN, LIMK1, EIF4H, LAT2, RFC2, CLIP2, GTF2IRD1, GTF2I, NCF1, RCC1L, |
Shoulder Dorsal fat | 6 | 7106710 | 8667211 | 6:8167211A:T | 0.029 | 2.06 × 10−7 | 0.02 | PKD1L2, GCSH, C16orf46, ATMIN, CENPN, CDYL2, DYNLRB2, MAF |
Shoulder Dorsal fat | 6 | 149424555 | 150424555 | 6:149924555A:T | 0.010 | 6.99 × 10−8 | 0.05 | ATG4C, DOCK7, ANGPTL3, USP1, KANK4, PATJ |
Shoulder Dorsal fat | 6 | 167528502 | 168528502 | 6:168028502T:A | 0.018 | 8.59 × 10−8 | 0.11 | ST3GAL3, KDM4A, PTPRF, HYI, SZT2, MED8, ELOVL1, CDC20, MPL, TIE1, C1orf210, TMEM125, CFAP57, EBNA1BP2, CFAP144, OR10AK7H |
Shoulder Dorsal fat | 8 | 120338590 | 121347226 | 8:120838590C:G | 0.012 | 1.08 × 10−9 | 0.06 | DDIT4L, H2AZ1, DNAJB14, LAMTOR3, DAPP1, C4orf54, MTTP, TRMT10A, C4orf17, ADH7, ADH4, ADH5, METAP1 |
Shoulder Dorsal fat | 14 | 4121916 | 5121916 | 14:4621916T:A | 0.033 | 1.59 × 10−7 | 0.02 | LPL, SLC18A1, ATP6V1B2, LZTS1 |
Shoulder Dorsal fat | 15 | 86368395 | 87368395 | 15:86868395G:C | 0.010 | 4.93 × 10−8 | 0.1 | UBE2E3, ITGA4, CERKL, NEUROD1, ITPRID2 |
Shoulder Dorsal fat | 15 | 127068134 | 128068134 | 15:127568134T:A | 0.011 | 7.99 × 10−9 | 0.09 | NYAP2, |
Belly side fat | 1 | 159498384 | 160730075 | 1:160230075A:C | 0.182 | 1.87 × 10−7 | 0.14 | RNF152, CDH20, |
Belly side fat | 2 | 1451972 | 2455805 | 2:1951972T:C | 0.034 | 3.19 × 10−8 | 0.14 | IGF2, INS, TH, ssc-mir-10383, ASCL2, TSPAN32, CD81, TSSC4, TRPM5, KCNQ1, CDKN1C, SLC22A18, PHLDA2, NAP1L4, CARS1, OSBPL5, NADSYN1, DHCR7 |
Belly side fat | 3 | 111960719 | 112960719 | 3:112460719T:C | 0.019 | 2.45 × 10−7 | 0.08 | TCF23, PREB, ABHD1, KHK, EMILIN1, OST4, AGBL5, TMEM214, MAPRE3, DPYSL5, CENPA, SLC35F6, KCNK3, CIB4, CIMIP2C, OTOF, DRC1, SELENOI, ADGRF3, HADHB, HADHA, GAREM2, RAB10, |
SNP ID | Chr | Position (bp) | Associated Traits | Associated Genes and Trait Associations | Mutation Type | MAF | Genotype Frequencies |
---|---|---|---|---|---|---|---|
1:160230075A:C | SSC1 | 160230075 | Belly fat, butt fat, ham fat, loin fat, picnic fat, and side fat | PIGN, RELCH, RNF152, CDH20, MC4R (Ham fat, Loin fat); PMAIP1 (Ham fat, Loin fat, belly fat); MC4R, PMAIP1, RELCH, PIGN, RNF152 (Picnic, Butt fat); CDH20 (Picnic, Butt fat, side fat) | C > A | 0.147 | 24:281:813 (C/C:C/A:A/A) |
1:160352707A:C | SSC1 | 160352707 | Butt fat, ham fat, loin fat, and picnic fat | PIGN, RNF152, CDH20, MC4R, PMAIP1, CCBE1 (shared across butt fat, ham fat, loin fat, picnic fat) | C > A | 0.180 | 36:330:752 (C/C:C/A:A/A) |
1:160021417C:T | SSC1 | 160021417 | Belly fat, butt fat, ham fat, and picnic fat | CDH20, MC4R, PIGN, RELCH, RNF152, TNFRSF11A, ZCCHC2 (shared across belly fat, butt fat, ham fat, and picnic fat) | T > C | 0.1973 | 43:354:721 (T/T:T/C:C/C) |
1:160526956C:T | SSC1 | 160526956 | Butt fat, loin fat, and total fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 (shared across butt fat, loin fat, and total fat) | T > C | 0.1333 | 20:259:839 (T/T:T/C:C/C) |
1:160400016G:T | SSC1 | 160400016 | Total fat, butt fat, and loin fat | CCBE1, CDH20, MC4R, PIGN, PMAIP1, RNF152 (shared across Total fat, butt fat and loin fat) | T > G | 0.1326 | 20:257:841 (T/T:T/G:G/G) |
1:160277388A:C | SSC1 | 160277388 | Loin fat, ham fat, and butt fat | CDH20, MC4R, PIGN, PMAIP1, RELCH, RNF152 (shared across loin fat, butt and ham fat) | C > A | 0.1294 | 19:252:847 (C/C:C/A:A/A) |
1:160413164A:T | SSC1 | 160413164 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PIGN, PMAIP1, RNF152 (shared across loin fat, butt and ham fat) | T > A | 0.1333 | 20:259:839 (T/T:T/A:A/A) |
1:160452236C:T | SSC1 | 160452236 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 (shared across loin fat, butt and ham fat) | T > C | 0.13026 | 19:253:846 (T/T:T/C:C/C ) |
1:160521384A:T | SSC1 | 160521384 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 (shared across loin fat, butt and ham fat) | T > A | 0.2067 | 48:367:704 (T/T:T/A:A/A ) |
1:160494546G:A | SSC1 | 160494546 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 (shared across loin fat, butt and ham fat) | A > G | 0.1326 | 20:257:841 (A/A:A/G:G/G ) |
1:160443956C:A | SSC1 | 160443956 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 | C > A | 0.1326 | 20:257:841 (C/C:C/A:A/A ) |
1:160448259T:G | SSC1 | 160448259 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 | G > T | 0.1326 | 20:257:841 (G/G:G/T:T/T ) |
1:160493051A:G | SSC1 | 160493051 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 | G > A | 0.1341 | 20:260:838 (G/G:G/A:A/A ) |
1:160457673C:G | SSC1 | 160457673 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 | C > G | 0.1326 | 20:257:841 (C/C:C/G:G/G ) |
1:160447734T:C | SSC1 | 160447734 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 | C > T | 0.1326 | 20:257:841 (C/C:C/T:T/T ) |
1:160426503T:C | SSC1 | 160426503 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 | C > T | 0.1349 | 20:261:837 (C/C:C/T:T/T ) |
1:160457667A:G | SSC1 | 160457667 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 | G > A | 0.1326 | 20:257:841 (G/G:G/A:A/A ) |
1:160538585A:G | SSC1 | 160538585 | Loin fat, ham fat, and butt fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 | G > A | 0.1365 | 21:264:834 (G/G:G/A:A/A ) |
1:160031812T:A | SSC1 | 160031812 | Picnic, butt fat, and ham fat | CDH20, MC4R, PIGN, RELCH, RNF152, TNFRSF11A (shared across Picnic, butt fat and ham fat) | A > T | 0.1926 | 41:348:729 (A/A:A/T:T/T) |
1:160171880A:G | SSC1 | 160171880 | Picnic, butt fat, and ham fat | CDH20, MC4R, PIGN, RELCH, RNF152, TNFRSF11A (shared across Picnic, butt fat and ham fat) | G > A | 0.2043 | 47:364:707 (G/G:G/A:A/A) |
1:160044355T:G | SSC1 | 160044355 | Picnic, butt fat, and ham fat | CDH20, MC4R, PIGN, RELCH, RNF152, TNFRSF11A (shared across Picnic, butt fat and ham fat) | G > T | 0.1926 | 41:348:729 (G/G:G/T:T/T) |
1:160174493T:A | SSC1 | 160174493 | Picnic, butt fat, and ham fat | CDH20, MC4R, PIGN, RELCH, RNF152, TNFRSF11A (shared across Picnic, butt fat and ham fat) | A > T | 0.2020 | 46:360:712 (A/A:A/T:T/T) |
1:160277320G:A | SSC1 | 160277320 | Picnic, butt fat, and ham fat | CDH20, MC4R, PIGN, PMAIP1, RELCH, RNF152 (shared across Picnic, butt fat and ham fat) | A > G | 0.2012 | 45:359:714 (A/A:A/G:G/G) |
1:160499409A:C | SSC1 | 160499409 | Picnic, butt fat, and ham fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 (shared across Picnic, butt fat and ham fat) | C > A | 0.2028 | 46:361:711 (C/C:C/A:A/A) |
1:160347188T:C | SSC1 | 160347188 | Butt fat and ham fat | CCBE1, CDH20, MC4R, PIGN, PMAIP1, RNF152 (shared across butt fat and ham fat) | C > T | 0.1996 | 45:357:716(C/C:C/T:T/T) |
1:159676238T:C | SSC1 | 159676238 | Butt fat and ham fat | CDH20, PHLPP1, PIGN, RELCH, RNF152, TNFRSF11A, ZCCHC2 (shared across butt fat and ham fat) | C > T | 0.1801 | 36:330:752(C/C:C/T:T/T) |
1:160539124C:T | SSC1 | 160539124 | Butt fat and ham fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 (shared across butt fat and ham fat) | T > C | 0.2082 | 49:369:700 (T/T:T/C:C/C) |
1:159997967T:A | SSC1 | 159997967 | Butt fat and ham fat | CDH20, MC4R, PIGN, RELCH, RNF152, TNFRSF11A, ZCCHC2 (shared across butt fat and ham fat) | A > T | 0.1950 | 42:351:725 (A/A:A/T:T/T) |
1:160443684A:C | SSC1 | 160443684 | Butt fat and ham fat | CCBE1, CDH20, MC4R, PMAIP1, RNF152 (shared across butt fat and ham fat) | C > A | 0.2028 | 46:361:711 (C/C:C/A:A/A) |
1:160246630T:C | SSC1 | 160246630 | Butt fat and ham fat | CDH20, MC4R, PIGN, PMAIP1, RELCH, RNF152 (shared across butt fat and ham fat) | C > T | 0.2004 | 45:358:715 (C/C:C/T:T/T) |
1:160871456A:T | SSC1 | 160871456 | Butt fat and ham fat | CCBE1, CDH20, CPLX4, GRP, LMAN1, MC4R, PMAIP1, RAX, SEC11C (shared across butt fat and ham fat) | T > A | 0.2184 | 53:382:683 (T/T:T/A:A/A) |
1:159675840C:T | SSC1 | 159675840 | Butt fat and ham fat | CDH20, PHLPP1, PIGN, RELCH, RNF152, TNFRSF11A, ZCCHC2 (shared across butt fat and ham fat) | T > C | 0.1801 | 36:330:752 (T/T:T/C:C/C) |
1:160382931T:C | SSC1 | 160382931 | Butt fat and ham fat | CCBE1, CDH20, MC4R, PIGN, PMAIP1, RNF152 (shared across butt fat and ham fat) | C > T | 0.2012 | 45:359:714 (C/C:C/T:T/T) |
1:161123588T:C | SSC1 | 161123588 | Butt fat and backfat thickness | CCBE1, CPLX4, GRP, LMAN1, MALT1, MC4R, PMAIP1, RAX, SEC11C, ZNF532 (shared across butt fat and backfat) | C > T | 0.2394 | 64:407:647 (C/C:C/T:T/T) |
1:158826231G:C | SSC1 | 158826231 | Ham fat and picnic fat | BCL2, CDH20, KDSR, PHLPP1, PIGN, RELCH, RNF152, SERPINB10, SERPINB11, SERPINB12, SERPINB13, SERPINB2, SERPINB5, SERPINB7, SERPINB8, TNFRSF11A, VPS4B, ZCCHC2 (shared across ham fat and picnic fat) | C > G | 0.2012 | 45:359:714 (C/C:C/G:G/G) |
1:160391873T:C | SSC1 | 160391873 | Ham fat and loin fat | CCBE1, CDH20, MC4R, PIGN, PMAIP1, RNF152 (shared across ham fat and loin fat) | C > T | 0.1349 | 20:261:837 (C/C:C/T:T/T) |
1:160386647T:C | SSC1 | 160386647 | Ham fat and loin fat | CCBE1, CDH20, MC4R, PIGN, PMAIP1, RNF152 (shared across ham fat and loin fat) | C > T | 0.1333 | 20:259:839 (C/C:C/T:T/T) |
1:160196758C:A | SSC1 | 160196758 | Butt fat and loin fat | CDH20, MC4R, PIGN, PMAIP1, RELCH, RNF152 (shared across butt fat and loin fat) | A > C | 0.1357 | 21:262:835 (A/A:A/C:C/C) |
1:160176058G:C | SSC1 | 60176058 | Butt fat and loin fat | CDH20, MC4R, PIGN, RELCH, RNF152, TNFRSF11A (shared across butt fat and loin fat) | C > G | 0.1528 | 26:290:802 (C/C:C/G:G/G) |
1:160235329T:C | SSC1 | 160235329 | Butt fat and loin fat | CDH20, MC4R, PIGN, PMAIP1, RELCH, RNF152 (shared across butt fat and loin fat) | C > T | 0.1482 | 25:282:811 (C/C:C/T:T/T) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozduri, Z.; Plastow, G.; Dekkers, J.; Houlahan, K.; Kemp, R.; Juárez, M. Genome-Wide Association Study for Individual Primal Cut Quality Traits in Canadian Commercial Crossbred Pigs. Animals 2025, 15, 1754. https://doi.org/10.3390/ani15121754
Mozduri Z, Plastow G, Dekkers J, Houlahan K, Kemp R, Juárez M. Genome-Wide Association Study for Individual Primal Cut Quality Traits in Canadian Commercial Crossbred Pigs. Animals. 2025; 15(12):1754. https://doi.org/10.3390/ani15121754
Chicago/Turabian StyleMozduri, Zohre, Graham Plastow, Jack Dekkers, Kerry Houlahan, Robert Kemp, and Manuel Juárez. 2025. "Genome-Wide Association Study for Individual Primal Cut Quality Traits in Canadian Commercial Crossbred Pigs" Animals 15, no. 12: 1754. https://doi.org/10.3390/ani15121754
APA StyleMozduri, Z., Plastow, G., Dekkers, J., Houlahan, K., Kemp, R., & Juárez, M. (2025). Genome-Wide Association Study for Individual Primal Cut Quality Traits in Canadian Commercial Crossbred Pigs. Animals, 15(12), 1754. https://doi.org/10.3390/ani15121754