Prediction of Mature Body Weight of Indigenous Camel (Camelus dromedarius) Breeds of Pakistan Using Data Mining Methods
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location, Management and Data Collection
2.2. Quantitative and Qualitative Traits
2.3. Statistical Analysis
- 1.
- Pearson correlation coefficient (r) between the observed and predicted values;
- 2.
- Coefficient of determination (R2):
- 3.
- Akaike information criterion (AIC):
- 4.
- Root-mean-square error (RMSE):
- 5.
- Mean error (ME):
- 6.
- Mean absolute deviation (MAD):
- 7.
- Standard deviation ratio (SDratio):
- 8.
- Global relative approximation error (RAE):
- 9.
- Mean absolute percentage error (MAPE):
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MLR | Multiple linear regression |
CART | Classification and regression tree |
CHAID | Chi-square automatic interaction detection |
EXCHAID | Exhaustive chi-square automatic interaction detection |
MARS | Multivariate adaptive regression spline |
MLP | Multilayer perceptron |
RBF | Radial basis function network |
HAIR | Hair production |
MILK | Milk yield per lactation |
LACT | Lactation length |
AGEP | Age at puberty |
AGEB | Age at first breeding |
GEST | Gestation period |
CI | Calving interval |
ABW | Adult body weight |
DP | Dry period |
References
- Ihuthia, P.M.; Wahome, R.G.; Wanyoike, M.M. Correlation of Actual Live Weight and Estimates of Live Weights of Camel Calves (Camelus dromedarius) in Samburu District of Northern Kenya. J. Camelid Sci. 2010, 3, 26–32. [Google Scholar]
- Faraz, A. Food Security and Socio-economic Uplift of Camel Herders in Southern Punjab, Pakistan. Land Sci. 2020, 2, 8–11. [Google Scholar] [CrossRef]
- Fazal, M.A.; Howlader, M.M.R.; Zaman, M.A. Productive and Reproductive Performances of Camel (Camelus dromedarius) in Bangladesh. J. Vet. Med. Surg. 2017, 1, 1–5. [Google Scholar]
- Faraz, A.; Waheed, A.; Mirza, R.H.; Ishaq, H.M. The Camel–A Short Communication on Classification and Attributes. J. Fish. Livest. Prod. 2019, 7, 289. [Google Scholar]
- Faraz, A.; Waheed, A.; Mirza, R.H.; Ishaq, H.M.; Tariq, M.M. Socio Economic Status and Associated Constraints of Camel Production in Desert Thal Punjab. J. Fish. Livest. Prod. 2019, 7, 288. [Google Scholar]
- Faraz, A.; Waheed, A.; Mirza, R.H.; Ishaq, H.M. Role of Camel in Food Security: A Perspective Aspect. J. Fish. Livest. Prod. 2019, 7, 290. [Google Scholar]
- Fatih, A.; Celik, S.; Eyduran, E.; Tirink, C.; Tariq, M.M.; Sheikh, I.S.; Faraz, A.; Waheed, A. Use of MARS Algorithm for Predicting Mature Weight of Different Camel (Camelus dromedarius) Breeds Reared in Pakistan and Morphological Characterization via Cluster Analysis. Trop. Anim. Health Prod. 2021, 53, 191. [Google Scholar] [CrossRef]
- Kadim, I.T.; Mahgoub, O.; Purchas, R.W. A Review of the Growth, and of the Carcass and Meat Quality Characteristics of the One-Humped Camel (Camelus Dromedaries). Meat Sci. 2008, 80, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Asadzadeh, N.; Bitaraf Sani, M.; Shams Davodly, E.; Zare Harofte, J.; Khojestehkey, M.; Abbaasi, S.; Shafie Naderi, A. Body Weight Prediction of Dromedary Camels Using the Machine Learning Models. Iran. J. Appl. Anim. Sci. 2021, 11, 605–614. [Google Scholar]
- Boujenane, I. Comparison of Body Weight Estimation Equations for Camels (Camelus dromedarius). Trop. Anim. Health Prod. 2019, 51, 1003–1007. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Shaba, P.; Zubairu, U.Y. Live Body Weight Estimation in Small Ruminants-a Review. Glob. J. Anim. Sci. Res. 2014, 2, 102–108. [Google Scholar]
- Khojastehkey, M.; Yeganehparast, M.; Jafari Arvari, A.; Asadzadeh, N.; Khaki, M. Biometric Measurement of One-Humped Camels Using Machine Vision Technology. J. Rumin. Res. 2019, 7, 19–32. [Google Scholar] [CrossRef]
- Cannas, A.; Boe, F. Prediction of the Relationship between Body Weight and Body Condition Score in Sheep. Ital. J. Anim. Sci. 2003, 2, 527–529. [Google Scholar]
- Wangchuk, K.; Wangdi, J.; Mindu, M. Comparison and Reliability of Techniques to Estimate Live Cattle Body Weight. J. Appl. Anim. Res. 2018, 46, 349–352. [Google Scholar] [CrossRef]
- Francis, J.; Sibanda, S.; Kristensen, T. Estimating Body Weight of Cattle Using Linear Body Measurements. Zimbabwe Vet. J. 2002, 33, 15–21. [Google Scholar] [CrossRef]
- Atta, M. Use of Heart Girth, Wither Height and Scapuloischial Length for Prediction of Liveweight of Nilotic Sheep. Small Rumin. Res. 2004, 55, 233–237. [Google Scholar] [CrossRef]
- Afolayan, R.A.; Adeyinka, I.A.; Lakpini, C.A.M. The Estimation of Live Weight from Body Measurements in Yankasa Sheep. Czech J. Anim. Sci. 2006, 51, 343–348. [Google Scholar] [CrossRef]
- Durosaro, S.O.; Oyetade, M.S.; Ilori, B.M.; Adenaike, A.S.; Olowofeso, O.; Wheto, M.; Amusan, S.A.; Osho, S.O.; Ozoje, M.O. Estimation of Body Weight of Nigerian Local Turkeys from Zoometrical Measurements at 4, 8 and 12 Weeks of Age. Glob. J. Sci. Front. Res. 2013, 13, 1–4. [Google Scholar]
- Iqbal, Z.M.; Javed, K.; Abdullah, M.; Ahmad, N.; Ali, A.; Khalique, A.; Aslam, N.; Younas, U. Estimation of Body Weight from Different Morphometric Measurements in Kajli Lambs. J. Anim. Plant Sci. 2014, 24, 700–703. [Google Scholar]
- Bahashwan, S.; Alrawas, A.S.; Alfadli, S.; Johnson, E.S. Dhofari Cattle Growth Curve Prediction by Different Non-Linear Model Functions. Livest. Res. Rural Dev. 2015, 26, 236. [Google Scholar]
- Tırınk, C.; Eyduran, E.; Faraz, A.; Waheed, A.; Tauqir, N.A.; Nabeel, M.S.; Tariq, M.M.; Sheikh, I.S. Use of Multivariate Adaptive Regression Splines for Prediction of Body Weight from Body Measurements in Marecha (Camelus dromedaries) Camels in Pakistan. Trop. Anim. Health Prod. 2021, 53, 339. [Google Scholar] [CrossRef]
- Iqbal, F.; Raziq, A.; Zil-E-Huma; Tirink, C.; Fatih, A.; Yaqoob, M. Using the Artificial Bee Colony Technique to Optimize Machine Learning Algorithms in Estimating the Mature Weight of Camels. Trop. Anim. Health Prod. 2023, 55, 86. [Google Scholar] [CrossRef]
- Rotimi, E.; Aruwayo, A.; Garba, M.; Lamido, M. Prediction of Live Body Weights in Dromedary Camels (Camelus dromedarius) from Morphometric Body Measurements. FUDMA J. Agric. Agric. Techol. 2023, 9, 63–69. [Google Scholar] [CrossRef]
- Knoess, K.H. The Camel as a Meat and Milk Animal. World Anim. Rev. 1977, 22, 39–44. [Google Scholar]
- Knoess, K.H. The Milch Dromedary. In The Proceedings of the Khartoum Workshop on Camels; Scandinavian Institute of African Studies: Uppsala, Sweden, 1979; Volume 1, pp. 176–195. [Google Scholar]
- Knoess, K.H.; Makhudum, A.J.; Rafiq, M.; Hafeez, M. Milk Production Potential of the Dromedary, with Special Reference to the Province of Punjab, Pakistan. World Anim. Rev. 1986, 57, 11–21. [Google Scholar]
- Ali, A.; Derar, D.; Alsharari, A.; Alsharari, A.; Khalil, R.; Almundarij, T.I.; Alboti, Y.; Al-Sobayil, F. Factors Affecting Reproductive Performance in Dromedary Camel Herds in Saudi Arabia. Trop. Anim. Health Prod. 2018, 50, 1155–1160. [Google Scholar] [CrossRef]
- Eyduran, E.; Zaborski, D.; Waheed, A.; Celik, S.; Karadas, K.; Grzesiak, W. Comparison of the Predictive Capabilities of Several Data Mining Algorithms and Multiple Linear Regression in the Prediction of Body Weight by Means of Body Measurements in the Indigenous Beetal Goat of Pakistan. Pak. J. Zool. 2017, 49, 257–265. [Google Scholar] [CrossRef]
- Zaborski, D.; Ali, M.; Eyduran, E.; Grzesiak, W.; Tariq, M.M.; Abbas, F.; Waheed, A.; Tirink, C. Prediction of Selected Reproductive Traits of Indigenous Harnai Sheep under the Farm Management System via Various Data Mining Algorithms. Pak. J. Zool. 2019, 51, 421–431. [Google Scholar] [CrossRef]
- Grzesiak, W.; Zaborski, D. Examples of the Use of Data Mining Methods in Animal Breeding. In Data Mining Applications in Engineering and Medicine; Karahoca, A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 303–324. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees; Chapman & Hall: Boca Raton, FL, USA, 1984; ISBN 978-0-412-04841-8. [Google Scholar]
- Migallón, V.; Penadés, H.; Penadés, J.; Tenza-Abril, A.J. A Machine Learning Approach to Prediction of the Compressive Strength of Segregated Lightweight Aggregate Concretes Using Ultrasonic Pulse Velocity. Appl. Sci. 2023, 13, 1953. [Google Scholar] [CrossRef]
- Kass, G.V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. J. R. Stat. Soc. Ser. C Appl. Stat. 1980, 29, 119–127. [Google Scholar] [CrossRef]
- Zhou, Y.; Leung, H. Predicting Object-Oriented Software Maintainability Using Multivariate Adaptive Regression Splines. J. Syst. Softw. 2007, 80, 1349–1361. [Google Scholar] [CrossRef]
- Koronacki, J.; Cwik, J. Statistical Learning Systems; WNT: Warsaw, Poland, 2005; ISBN 978-83-204-3157-5. [Google Scholar]
- StatSoft, Inc. Statistica Neural Networks User Guide; StatSoft, Inc.: Tulsa, OK, USA, 1998. [Google Scholar]
- Nawi, N.M.; Ransing, M.R.; Ransing, R.S. An Improved Learning Algorithm Based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method for Back Propagation Neural Networks. In Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, Jian, China, 6–18 October 2006; IEEE: Piscataway, NJ, USA, 2006; Volume 1, pp. 152–157. [Google Scholar] [CrossRef]
- Meghelli, I.; Kaouadji, Z.; Yilmaz, O.; Cemal, I.; Karaca, O.; Gaouar, S.B.S. Morphometric Characterization and Estimating Body Weight of Two Algerian Camel Breeds Using Morphometric Measurements. Trop. Anim. Health Prod. 2020, 52, 2505–2512. [Google Scholar] [CrossRef] [PubMed]
- Fatih, A.; Kiani, M.T.M.; Sheikh, I.S.; Raza, Q.; Hameed, T.; Rafeeq, M.; Marghazani, I.B.; Ahmed, J.; Fraz, A.; Jehan, M. Performance and Specific Characteristics of Balochistan Camel Breeds. Pak-Euro J. Med. Life Sci. 2021, 4, 65–72. [Google Scholar]
- Khanna, N.D. Camel as a Milch Animal. Indian Farm. 1986, 36, 37, 39–40. [Google Scholar]
- Kamal El-Den, M.; Shehab El_Din, M.I.; Amer, A.M.; Othman, A.A.-K. Genetic Assessment of the Reproductive Aspects of Maghrebi Camels in the Western Desert of Egypt. Assiut Vet. Med. J. 2024, 70, 493–506. [Google Scholar] [CrossRef]
- Zaky, M.S.; Abdel-Khalek, A.E.; Mostafa, T.H.; Gabr, S.A.; Hammad, M.E. Productive and Reproductive Characterization, Breeding Season and Calving Season in Reference with the Effect of Parity Order on Milk Production of Camel in Egypt. J. Anim. Poult. Prod. 2020, 11, 573–581. [Google Scholar] [CrossRef]
- Wilson, R.T. Reproductive Performance in the Dromedary Camel. Base Empirique. Revue Elev. Med. Vet. Pays. Trop. 1989, 42, 117–125. [Google Scholar] [CrossRef]
- Se, A.-M. Influence of Camel Breeds and Ages on the Reproductive Performance of Dromedary Camels in Saudi Arabia. Assiut Vet. Med. J. 2012, 58, 17–26. [Google Scholar] [CrossRef]
- Marai, I.F.; Zeidan, A.E.B.; Abdel-Samee, A.M.; Abizaid, A.; Fadiel, A. Camels’ Reproductive and Physiological Performance Traits as Affected by Environmental Conditions. Trop. Subtrop. Agroecosyst. 2009, 10, 129–149. [Google Scholar]
- Faye, B.; Esenov, P. Factors Affecting Reproductive Performance of Camels at the Herd and Individual Level. In Desertification Combat and Food Safety: The Added Value of Camel Producers; Tibary, T., Anouassi, A., Sghiri, A., Eds.; NATO Science Series; IOS Press: Amsterdam, The Netherlands, 2005; Volume 362, pp. 97–114. [Google Scholar]
- Kamoun, M. Reproduction and Production of Maghrabi Dromedaries Kept on Pastures of the Mediterranean Type. Études et Synthèses de l’IEMVT 1993, 41, 117–130. [Google Scholar]
- Moslah, M. L’amélioration de La Productivité Du Dromadaire En Tunisie Par La Séparation Précoce Du Chamelon et l’allaitement Artificiel. In Proceedings of the Actes de L’atelier «Peut-on Améliorer les Performances de Reproduction des Camelins, Paris, France, 10–12 September 1990; Martin, S., Ed.; CIRAD—IEMVT: Paris, France, 1990; pp. 225–238. [Google Scholar]
- Benny, D.; Giacobini, M.; Costa, G.; Gnavi, R.; Ricceri, F. Multimorbidity in Middle-Aged Women and COVID-19: Binary Data Clustering for Unsupervised Binning of Rare Multimorbidity Features and Predictive Modeling. BMC Med. Res. Methodol. 2024, 24, 95. [Google Scholar] [CrossRef] [PubMed]
- Ranglani, H. Comparative Analysis of Clustering Algorithms on Synthetic Circular Patters Data. Mach. Learn. Appl. Int. J. (MLAIJ) 2024, 11. [Google Scholar] [CrossRef]
- Dowrick, J.M.; Roy, N.C.; Bayer, S.; Frampton, C.M.A.; Talley, N.J.; Gearry, R.B.; Angeli-Gordon, T.R. Unsupervised Machine Learning Highlights the Challenges of Subtyping Disorders of Gut-brain Interaction. Neurogastroenterol. Motil. 2024, 36, e14898. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.; Patra, K.J.; Jayasingh, S.K.; Mohanty, M.N.; Pattanayak, B.K. The Role of Ensemble Learning in Advancing Child Fetal Health: A Focus on Voting and Bagging Techniques. In Proceedings of the 2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU), Bhubaneswar, India, 1–2 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, R.-F.; Lee, S.-J. Dimensionality Reduction by Feature Clustering for Regression Problems. Inf. Sci. 2015, 299, 42–57. [Google Scholar] [CrossRef]
- Sanche, R.; Lonergan, K. Variable Reduction for Predictive Modeling with Clustering. In Proceedings of the Casualty Actuarial Society Forum; Casualty Actuarial Society: Arlington, VA, USA, 2006; pp. 89–100. [Google Scholar]
- Rahman, A.; Verma, B. Cluster-based Ensemble of Classifiers. Expert Syst. 2013, 30, 270–282. [Google Scholar] [CrossRef]
- Esquivelzeta, C.; Fina, M.; Bach, R.; Madruga, C.; Caja, G.; Casellas, J.; Piedrafita, J. Morphological Analysis and Subpopulation Characterization of Ripollesa Sheep Breed. Anim. Genet. Resour. 2011, 49, 9–17. [Google Scholar] [CrossRef]
- Burns, J.G.; Eory, V.; Butler, A.; Simm, G.; Wall, E. Review: Preference Elicitation Methods for Appropriate Breeding Objectives. Animal 2022, 16, 100535. [Google Scholar] [CrossRef]
Variable | Training + Validation Set (n = 100) | Testing Set (n = 35) | Whole Dataset (n = 135) | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
HAIR, kg | 2.21 | 0.34 | 2.34 | 0.42 | 2.24 | 0.37 |
MILK, L | 1744.21 | 210.68 | 1723.94 | 176.74 | 1738.96 | 201.99 |
LACT, days | 459.33 | 95.67 | 480.14 | 92.15 | 464.73 | 94.87 |
AGEP, days | 1216.69 | 101.08 | 1186.83 | 122.93 | 1208.95 | 107.49 |
AGEB, days | 1455.12 | 118.55 | 1443.14 | 157.97 | 1452.01 | 129.39 |
GEST, days | 391.11 | 19.4 | 385.26 | 14.12 | 389.59 | 18.31 |
DP, days | 342.76 | 34.58 | 332.4 | 36.08 | 340.07 | 35.14 |
CI, days | 757.95 | 38.51 | 765.6 | 32.46 | 759.93 | 37.07 |
ABW 1, kg | 655.69 | 42.82 | 669.06 | 38.48 | 659.16 | 42.01 |
Breed | Training + Validation Set (n = 100) | Testing Set (n = 35) | Whole Dataset (n = 135) | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
Bravhi | 13 | 13.00 | 4 | 11.43 | 17 | 12.59 |
Kachi | 14 | 14.00 | 3 | 8.57 | 17 | 12.59 |
Pishin | 12 | 12.00 | 5 | 14.29 | 17 | 12.59 |
Makrani | 13 | 13.00 | 4 | 11.43 | 17 | 12.59 |
Kohi | 16 | 16.00 | 1 | 2.86 | 17 | 12.59 |
Lassi | 14 | 14.00 | 3 | 8.57 | 17 | 12.59 |
Rodbari | 10 | 10.00 | 7 | 20.00 | 17 | 12.59 |
Kharani | 8 | 8.00 | 8 | 22.86 | 16 | 11.85 |
Variable | HAIR | MILK | LACT | AGEP | AGEB | GEST | DP | CI | ABW |
---|---|---|---|---|---|---|---|---|---|
HAIR | 1.00 | ||||||||
MILK | −0.10 | 1.00 | |||||||
LACT | 0.20 * | 0.50 * | 1.00 | ||||||
AGEP | −0.44 * | 0.15 | −0.07 | 1.00 | |||||
AGEB | −0.18 * | 0.03 | 0.22 * | 0.66 * | 1.00 | ||||
GEST | −0.23 * | 0.08 | −0.08 | 0.20 * | 0.21 * | 1.00 | |||
DP | −0.24 * | −0.01 | 0.08 | 0.46 * | 0.54 * | 0.18 * | 1.00 | ||
CI | −0.10 | −0.30 * | −0.28 * | −0.44 * | −0.52 * | 0.09 | −0.24 * | 1.00 | |
ABW | −0.06 | 0.40 * | 0.25 * | −0.34 * | −0.48 * | −0.18 * | −0.23 * | 0.26 * | 1.00 |
Var. | Breed | Bravhi | Kachi | Pishin | Makrani | Kohi | Lassi | Rodbari | Kharani |
---|---|---|---|---|---|---|---|---|---|
n | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 16 | |
HAIR | Mean | 2.35 cd | 2.21 bc | 1.72 a | 2.00 ab | 2.29 cd | 2.20 bc | 2.78 d | 2.38 cd |
SD | 0.12 | 0.21 | 0.21 | 0.13 | 0.18 | 0.34 | 0.32 | 0.23 | |
MILK | Mean | 1658.35 ab | 2049.29 d | 1714.94 bc | 1929.00 d | 1837.82 cd | 1335.18 a | 1703.00 bc | 1680.63 ab |
SD | 32.42 | 17.39 | 33.84 | 37.23 | 15.92 | 17.03 | 10.95 | 23.73 | |
LACT | Mean | 579.18 d | 542.06 cd | 368.00 ab | 526.76 cd | 377.06 ab | 318.00 a | 461.94 bc | 549.81 d |
SD | 16.76 | 16.71 | 17.68 | 11.52 | 31.80 | 19.20 | 4.62 | 20.10 | |
AGEP | Mean | 1282.59 c | 1278.41 c | 1231.00 c | 1203.65 bc | 1297.53 c | 1232.35 c | 1024.65 a | 1115.94 ab |
SD | 28.84 | 83.78 | 67.49 | 62.59 | 92.80 | 54.10 | 55.74 | 27.46 | |
AGEB | Mean | 1557.71 d | 1529.65 cd | 1325.76 ab | 1453.88 bc | 1522.76 cd | 1513.76 cd | 1206.88 a | 1509.06 cd |
SD | 52.75 | 83.83 | 69.31 | 29.81 | 76.33 | 29.56 | 55.53 | 58.88 | |
GEST | Mean | 379.88 a | 394.24 abc | 388.12 abc | 405.53 c | 389.41 abc | 399.35 bc | 377.00 a | 382.81 ab |
SD | 3.89 | 26.17 | 13.46 | 15.84 | 15.08 | 23.06 | 9.23 | 11.36 | |
DP | Mean | 369.12 d | 313.65 ab | 326.76 abc | 354.59 cd | 384.88 d | 338.18 bc | 282.76 a | 351.31 cd |
SD | 12.83 | 24.57 | 19.56 | 17.71 | 23.63 | 16.36 | 9.40 | 12.92 | |
CI | Mean | 719.82 a | 727.00 ab | 795.18 d | 776.53 cd | 726.82 abc | 778.24 d | 787.65 d | 768.75 bcd |
SD | 19.48 | 20.57 | 13.74 | 15.91 | 48.23 | 17.27 | 6.84 | 27.44 | |
ABW | Mean | 641.12 ab | 648.12 ab | 703.65 c | 676.06 bc | 645.41 ab | 584.47 a | 687.24 c | 688.94 c |
SD | 15.65 | 25.49 | 18.11 | 28.06 | 15.33 | 32.31 | 15.29 | 23.60 |
Criterion | MLR | CART | CHAID | EXCHAID | MARS | MLP | RBF | Mean |
---|---|---|---|---|---|---|---|---|
r | 0.82 * | 0.76 * | 0.79 * | 0.79 * | 0.78 * | 0.84 * | 0.79 * | 0.81 * |
R2 | 0.67 | 0.56 | 0.61 | 0.61 | 0.59 | 0.70 | 0.60 | 0.65 |
RMSE | 21.71 | 25.23 | 23.74 | 23.74 | 24.42 | 20.86 | 24.51 | 22.57 |
SDratio | 0.57 | 0.66 | 0.63 | 0.63 | 0.64 | 0.54 | 0.65 | 0.60 |
ME | −1.09 | −2.02 | 0.61 | 0.61 | 1.32 | 4.28 | −1.54 | 0.55 |
RAE | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
MAPE | 2.47 | 2.95 | 2.71 | 2.71 | 2.85 | 2.44 | 2.82 | 2.58 |
MAD | 16.51 | 19.72 | 18.21 | 18.21 | 19.12 | 16.45 | 18.69 | 17.28 |
AIC | 219.45 | 229.96 | 225.70 | 225.70 | 227.68 | 216.65 | 227.93 | 222.16 |
AICc | 219.82 | 230.34 | 226.08 | 226.08 | 228.05 | 217.03 | 228.31 | 222.53 |
Predictor | MLR | CART | CHAID | EXCHAID | MARS | MLP | RBF | Mean | |
---|---|---|---|---|---|---|---|---|---|
BREED | rank | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 |
% | 100.00 | 100.00 | 100.00 | 100.00 | 50.00 | 100.00 | 100.00 | 91.67 | |
MILK | rank | 6 | 2 | 3 | 3 | 2 | 2 | 3 | 3 |
% | 77.94 | 79.40 | 39.54 | 39.54 | 50.00 | 30.99 | 22.84 | 50.12 | |
AGEB | rank | 3 | 3 | 5 | 5 | 1 | 4 | 9 | 4 |
% | 92.18 | 67.48 | 31.89 | 31.89 | 100.00 | 29.97 | 14.10 | 55.94 | |
DP | rank | 2 | 8 | 2 | 2 | 2 | 8 | 6 | 4 |
% | 90.41 | 26.46 | 40.78 | 40.78 | 50.00 | 28.75 | 14.85 | 41.88 | |
LACT | rank | 8 | 4 | 8 | 8 | 3 | 3 | 2 | 5 |
% | 58.16 | 62.86 | 17.14 | 17.14 | 0.00 | 30.71 | 23.72 | 32.10 | |
AGEP | rank | 5 | 7 | 4 | 4 | 2 | 9 | 5 | 5 |
% | 49.98 | 34.06 | 37.54 | 37.54 | 50.00 | 28.42 | 15.50 | 35.91 | |
CI | rank | 4 | 5 | 6 | 6 | 3 | 5 | 8 | 5 |
% | 84.00 | 42.38 | 30.63 | 30.63 | 0.00 | 29.27 | 14.22 | 33.42 | |
HAIR | rank | 9 | 6 | 7 | 7 | 3 | 7 | 7 | 7 |
% | 48.55 | 35.70 | 30.35 | 30.35 | 0.00 | 28.81 | 14.45 | 26.31 | |
GEST | rank | 7 | 9 | 9 | 9 | 3 | 6 | 4 | 7 |
% | 15.57 | 13.37 | 11.29 | 11.29 | 0.00 | 29.21 | 16.19 | 14.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaborski, D.; Grzesiak, W.; Fatih, A.; Faraz, A.; Tariq, M.M.; Sheikh, I.S.; Waheed, A.; Ullah, A.; Marghazani, I.B.; Mustafa, M.Z.; et al. Prediction of Mature Body Weight of Indigenous Camel (Camelus dromedarius) Breeds of Pakistan Using Data Mining Methods. Animals 2025, 15, 2051. https://doi.org/10.3390/ani15142051
Zaborski D, Grzesiak W, Fatih A, Faraz A, Tariq MM, Sheikh IS, Waheed A, Ullah A, Marghazani IB, Mustafa MZ, et al. Prediction of Mature Body Weight of Indigenous Camel (Camelus dromedarius) Breeds of Pakistan Using Data Mining Methods. Animals. 2025; 15(14):2051. https://doi.org/10.3390/ani15142051
Chicago/Turabian StyleZaborski, Daniel, Wilhelm Grzesiak, Abdul Fatih, Asim Faraz, Mohammad Masood Tariq, Irfan Shahzad Sheikh, Abdul Waheed, Asad Ullah, Illahi Bakhsh Marghazani, Muhammad Zahid Mustafa, and et al. 2025. "Prediction of Mature Body Weight of Indigenous Camel (Camelus dromedarius) Breeds of Pakistan Using Data Mining Methods" Animals 15, no. 14: 2051. https://doi.org/10.3390/ani15142051
APA StyleZaborski, D., Grzesiak, W., Fatih, A., Faraz, A., Tariq, M. M., Sheikh, I. S., Waheed, A., Ullah, A., Marghazani, I. B., Mustafa, M. Z., Tırınk, C., Celik, S., Stadnytska, O., & Klym, O. (2025). Prediction of Mature Body Weight of Indigenous Camel (Camelus dromedarius) Breeds of Pakistan Using Data Mining Methods. Animals, 15(14), 2051. https://doi.org/10.3390/ani15142051