Analysis of ROH Characteristics Across Generations in Grassland-Thoroughbred Horses and Identification of Loci Associated with Athletic Traits
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Library Construction
2.3. Quality Control and Data Filtering
2.4. Variant Detection and Annotation
2.5. Population Structure Analysis
2.6. ROH Analysis
2.7. Functional Enrichment Analysis
3. Results
3.1. Sequencing Data and Genome-Wide Genetic Variation
3.2. Population Structure Analysis
3.3. ROH Patterns
3.4. ROH Islands
3.5. Functional Enrichment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, M. When Things Get Dark: A Mongolian Winter’s Tale; Macmillan: London, UK, 2010. [Google Scholar]
- Qi, B. Xilin Gol League Animal Husbandry Chronicle; Inner Mongolia People’s Publishing House: Hohhot, China, 2002. [Google Scholar]
- Cassidy, R. The Sport of Kings: Kinship, Class and Thoroughbred Breeding in Newmarket; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Kay, J.; Vamplew, W. Encyclopedia of British Horse Racing; Routledge: London, UK, 2012. [Google Scholar]
- Ding, W.; Gong, W.; Bou, T.; Shi, L.; Lin, Y.; Shi, X.; Li, Z.; Wu, H.; Dugarjaviin, M.; Bai, D. Preliminary Study on the Genetic Structure and Functional Candidate Genes of Grassland-Thoroughbreds Based on Whole-Genome Resequencing. Animals 2025, 15, 1462. [Google Scholar] [CrossRef]
- Li, J.; López Adán, E.; de la Rubia Riaza, A. The development of equestrian policies in China between 2015 and 2020. Animals 2022, 12, 1913. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-S.; Cole, J.B.; Huson, H.; Wiggans, G.R.; Van Tassell, C.P.; Crooker, B.A.; Liu, G.; Da, Y.; Sonstegard, T.S. Effect of artificial selection on runs of homozygosity in US Holstein cattle. PLoS ONE 2013, 8, e80813. [Google Scholar]
- Howard, J.T.; Pryce, J.E.; Baes, C.; Maltecca, C. Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. J. Dairy Sci. 2017, 100, 6009–6024. [Google Scholar] [CrossRef] [PubMed]
- Peripolli, E.; Munari, D.; Silva, M.; Lima, A.; Irgang, R.; Baldi, F. Runs of homozygosity: Current knowledge and applications in livestock. Anim. Genet. 2017, 48, 255–271. [Google Scholar] [CrossRef]
- McQuillan, R.; Leutenegger, A.-L.; Abdel-Rahman, R.; Franklin, C.S.; Pericic, M.; Barac-Lauc, L.; Smolej-Narancic, N.; Janicijevic, B.; Polasek, O.; Tenesa, A. Runs of homozygosity in European populations. Am. J. Hum. Genet. 2008, 83, 359–372. [Google Scholar] [CrossRef]
- Pemberton, T.J.; Absher, D.; Feldman, M.W.; Myers, R.M.; Rosenberg, N.A.; Li, J.Z. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 2012, 91, 275–292. [Google Scholar] [CrossRef]
- Bosse, M.; Megens, H.-J.; Madsen, O.; Paudel, Y.; Frantz, L.A.; Schook, L.B.; Crooijmans, R.P.; Groenen, M.A. Regions of homozygosity in the porcine genome: Consequence of demography and the recombination landscape. PLoS Genet. 2012, 8, e1003100. [Google Scholar] [CrossRef]
- Sievers, J.; Distl, O. Genomic Patterns of Homozygosity and Genetic Diversity in the Rhenish German Draught Horse. Genes 2025, 16, 327. [Google Scholar] [CrossRef]
- Azcona, F.; Molina, A.; Demyda-Peyrás, S. Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed. Int. J. Mol. Sci. 2024, 26, 26. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Wingett, S.W.; Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research 2018, 7, 1338. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, A.A.; Deniskova, T.E.; Yudin, N.S.; Dotsev, A.V.; Khamiruev, T.N.; Selionova, M.I.; Egorov, S.V.; Reyer, H.; Wimmers, K.; Brem, G.; et al. High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genom. 2019, 20 (Suppl. S3), 294. [Google Scholar] [CrossRef]
- Wei, C.; Wang, H.; Liu, G.; Zhao, F.; Kijas, J.W.; Ma, Y.; Lu, J.; Zhang, L.; Cao, J.; Wu, M. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci. Rep. 2016, 6, 26770. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Criscione, A.; Mastrangelo, S.; D’Alessandro, E.; Tumino, S.; Di Gerlando, R.; Zumbo, A.; Marletta, D.; Bordonaro, S. Genome-wide survey on three local horse populations with a focus on runs of homozygosity pattern. J. Anim. Breed. Genet. 2022, 139, 540–555. [Google Scholar] [CrossRef]
- Sanchez, A.M.; Candau, R.B.; Bernardi, H. FoxO transcription factors: Their roles in the maintenance of skeletal muscle homeostasis. Cell. Mol. Life Sci. 2014, 71, 1657–1671. [Google Scholar] [CrossRef]
- Eivers, S.; McGivney, B.; Gu, J.; MacHugh, D.; Katz, L.; Hill, E. PGC-1α encoded by the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscle during exercise. Anim. Genet. 2012, 43, 153–162. [Google Scholar] [CrossRef]
- De Souza, C.T.; Frederico, M.J.; Da Luz, G.; Cintra, D.E.; Ropelle, E.R.; Pauli, J.R.; Velloso, L.A. Acute exercise reduces hepatic glucose production through inhibition of the Foxo1/HNF-4α pathway in insulin resistant mice. J. Physiol. 2010, 588, 2239–2253. [Google Scholar] [CrossRef]
- Araki, M.; Motojima, K. Identification of ERRalpha as a specific partner of PGC-1alpha for the activation of PDK4 gene expression in muscle. Febs J. 2006, 273, 1669–1680. [Google Scholar] [CrossRef] [PubMed]
- Kamei, Y.; Mizukami, J.; Miura, S.; Suzuki, M.; Takahashi, N.; Kawada, T.; Taniguchi, T.; Ezaki, O. A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Lett. 2003, 536, 232–236. [Google Scholar] [CrossRef]
- Deshmukh, A.; Steenberg, D.; Hostrup, M.; Birk, J.; Larsen, J.; Santos, A.; Kjøbsted, R.; Hingst, J.; Schéele, C.; Murgia, M. Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. Nat. Commun. 2021, 12, 304. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; McGivney, B.A.; Allen, L.; Bai, D.; Corduff, L.R.; Davaakhuu, G.; Davaasambuu, J.; Dorjgotov, D.; Hall, T.J.; Hemmings, A.J. Common protein-coding variants influence the racing phenotype in galloping racehorse breeds. Commun. Biol. 2022, 5, 1320. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Chang, N.W. PPARα modulates gene expression profiles of mitochondrial energy metabolism in oral tumorigenesis. Biomedicine 2016, 6, 3. [Google Scholar] [CrossRef]
- Petr, M.; Stastny, P.; Zajac, A.; Tufano, J.J.; Maciejewska-Skrendo, A. The role of peroxisome proliferator-activated receptors and their transcriptional coactivators gene variations in human trainability: A systematic review. Int. J. Mol. Sci. 2018, 19, 1472. [Google Scholar] [CrossRef]
- Olthoff, J.T.; Lindsay, A.; Abo-Zahrah, R.; Baltgalvis, K.A.; Patrinostro, X.; Belanto, J.J.; Yu, D.-Y.; Perrin, B.J.; Garry, D.J.; Rodney, G.G. Loss of peroxiredoxin-2 exacerbates eccentric contraction-induced force loss in dystrophin-deficient muscle. Nat. Commun. 2018, 9, 5104. [Google Scholar] [CrossRef]
- Turner, J.E.; Bennett, S.J.; Campbell, J.P.; Bosch, J.A.; Aldred, S.; Griffiths, H.R. The antioxidant enzyme peroxiredoxin-2 is depleted in lymphocytes seven days after ultra-endurance exercise. Free. Radic. Res. 2013, 47, 821–828. [Google Scholar] [CrossRef]
- Moghaddam, D.A.; Heber, A.; Capin, D.; Kreutz, T.; Opitz, D.; Lenzen, E.; Bloch, W.; Brixius, K.; Brinkmann, C. Training erhöht die Peroxiredoxin-2-Gehalte in den Erythrozyten übergewichtiger/adipöser Typ-2-Diabetiker. Wien. Med. Wochenschr. 2011, 161, 511–518. [Google Scholar] [CrossRef]
- Dehghan, F.; Zamani, S.; Barreiro, C.; Jami, M.S. Irisin injection mimics exercise effects on the brain proteome. Eur. J. Neurosci. 2021, 54, 7422–7441. [Google Scholar] [CrossRef]
- Chen, S.; Gil, O.; Ren, Y.Q.; Zanazzi, G.; Salzer, J.L.; Hillman, D.E. Neurotrimin expression during cerebellar development suggests roles in axon fasciculation and synaptogenesis. J. Neurocytol. 2001, 30, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Mazitov, T.; Bregin, A.; Philips, M.-A.; Innos, J.; Vasar, E. Deficit in emotional learning in neurotrimin knockout mice. Behav. Brain Res. 2017, 317, 311–318. [Google Scholar] [CrossRef] [PubMed]
- McGivney, B.; Hernandez, B.; Katz, L.; MacHugh, D.; McGovern, S.; Parnell, A.; Wiencko, H.; Hill, E. A genomic prediction model for racecourse starts in the Thoroughbred horse. Anim. Genet. 2019, 50, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Jónsson, H.; Chang, D.; Der Sarkissian, C.; Ermini, L.; Ginolhac, A.; Albrechtsen, A.; Dupanloup, I.; Foucal, A.; Petersen, B. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc. Natl. Acad. Sci. USA 2014, 111, E5661–E5669. [Google Scholar] [CrossRef]
- Bryan, K.; McGivney, B.A.; Farries, G.; McGettigan, P.A.; McGivney, C.L.; Gough, K.F.; MacHugh, D.E.; Katz, L.M.; Hill, E.W. Equine skeletal muscle adaptations to exercise and training: Evidence of differential regulation of autophagosomal and mitochondrial components. BMC Genom. 2017, 18, 595. [Google Scholar] [CrossRef]
- Xiong, Z.-G.; Zhu, X.-M.; Chu, X.-P.; Minami, M.; Hey, J.; Wei, W.-L.; MacDonald, J.F.; Wemmie, J.A.; Price, M.P.; Welsh, M.J. Neuroprotection in ischemia: Blocking calcium-permeable acid-sensing ion channels. Cell 2004, 118, 687–698. [Google Scholar] [CrossRef]
- Tresguerres, M.; Buck, J.; Levin, L.R. Physiological carbon dioxide, bicarbonate, and pH sensing. Pflügers Arch.-Eur. J. Physiol. 2010, 460, 953–964. [Google Scholar] [CrossRef]
- Jacobs, S.; Ruusuvuori, E.; Sipilä, S.T.; Haapanen, A.; Damkier, H.H.; Kurth, I.; Hentschke, M.; Schweizer, M.; Rudhard, Y.; Laatikainen, L.M. Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc. Natl. Acad. Sci. 2008, 105, 311–316. [Google Scholar] [CrossRef]
- Lee, J.J.; Wedow, R.; Okbay, A.; Kong, E.; Maghzian, O.; Zacher, M.; Nguyen-Viet, T.A.; Bowers, P.; Sidorenko, J.; Karlsson Linnér, R. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 2018, 50, 1112–1121. [Google Scholar] [CrossRef]
- Orrù, S.; Imperlini, E.; Vitucci, D.; Caterino, M.; Mandola, A.; Randers, M.B.; Schmidt, J.F.; Hagman, M.; Andersen, T.R.; Krustrup, P. Insight into the molecular signature of skeletal muscle characterizing lifelong football players. Int. J. Environ. Res. Public Health 2022, 19, 15835. [Google Scholar] [CrossRef]
- Li, H.; Xu, S.; Gao, X.; Ren, H. Structure of the bovine ACAD8 gene and the association of its polymorphism with the production traits. J. Genet. Genom. 2007, 34, 315–320. [Google Scholar] [CrossRef]
- Many, G.M.; Sanford, J.A.; Sagendorf, T.J.; Hou, Z.; Nigro, P.; Whytock, K.L.; Amar, D.; Caputo, T.; Gay, N.R.; Gaul, D.A.; et al. Sexual dimorphism and the multi-omic response to exercise training in rat subcutaneous white adipose tissue. Nat. Metab. 2024, 6, 963–979. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Li, X.; Yin, Y.; Wu, Z.; Liu, C.; Tekwe, C.D.; Wu, G. Regulatory roles for L-arginine in reducing white adipose tissue. Front. Biosci. 2012, 17, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.M.; Zanatta, A.; Knebel, L.A.; Schuck, P.F.; Tonin, A.M.; Ferreira Gda, C.; Amaral, A.U.; Dutra Filho, C.S.; Wannmacher, C.M.; Wajner, M. Experimental evidence that ornithine and homocitrulline disrupt energy metabolism in brain of young rats. Brain Res. 2009, 1291, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Choi, D.H.; Cheon, M.W.; Kim, J.G.; Kim, J.S.; Shin, M.G.; Kim, H.R.; Youn, D. Changes in Mitochondria-Related Gene Expression upon Acupuncture at LR3 in the D-Galactosamine-Induced Liver Damage Rat Model. Evid. Based Complement. Altern. Med. 2022, 2022, 3294273. [Google Scholar] [CrossRef]
Chr | Start Position | End Position | SNPs | Genes | Gene Symbol |
---|---|---|---|---|---|
3 | 46675626 | 47346334 | 221 | 1 | GRID2 |
7 | 41513334 | 47138251 | 7254 | 83 | NTM, OPCML, SPATA19, IGSF9B, JAM3, NCAPD3, VPS26B, ACAD8, THYN1, LOC100072895, LOC100072910, B3GAT1, LOC100064396, LOC111774264, LOC102149984, LOC111774398, LOC100064454, LOC100064510, LOC100064538, ZNF333, ADGRE3, CLEC17A, NDUFB7, TECR, DNAJB1, GIPC1, PTGER1, PKN1, DDX39A, ADGRE5, ADGRL1, PRKACA, SAMD1, C7H19orf67, MISP3, PALM3, IL27RA, RLN3, RFX1, DCAF15, PODNL1, CC2D1A, C7H19orf57, NANOS3, ZSWIM4, C7H19orf53, MRI1, CCDC130, CACNA1A, IER2, STX10, NACC1, TRMT1, LYL1, NFIX, DAND5, GADD45GIP1, RAD23A, CALR, FARSA, SYCE2, GCDH, KLF1, DNASE2, MAST1, RTBDN, RNASEH2A, PRDX2, JUNB, HOOK2, BEST2, ASNA1, TRIR, TNPO2, FBXW9, GNG14, DHPS, WDR83, WDR83OS, MAN2B1, LOC100064480, LOC100064534, LOC100064626 |
7 | 48278064 | 48878342 | 508 | 8 | LOC102147654, LOC102149586, LOC102149528, LOC100629361, LOC100066109, LOC100629395, LOC100066251, LOC102147741 |
7 | 50444481 | 50450375 | 4 | 0 | |
11 | 31313080 | 31545459 | 256 | 2 | NOG, C11H17orf67 |
17 | 18312535 | 18944395 | 1180 | 3 | FOXO1, MRPS31, SLC25A15 |
18 | 41668278 | 42417738 | 526 | 6 | TANK, LOC111768910, PSMD14, TBR1, SLC4A10, DPP4 |
18 | 49354856 | 50138296 | 771 | 4 | SSB, METTL5, UBR3, MYO3B |
21 | 29890004 | 30513697 | 7 | 13 | LOC111769792, LOC111769791, LOC111769793, CAPSL, LOC111769795, LOC111769798, LOC111769796, LOC111769800, LOC111769799, LOC111769801, LOC111769804, LOC111769802, SPEF2 |
28 | 58964 | 685343 | 1237 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, W.; Gong, W.; Bou, T.; Shi, L.; Lin, Y.; Shi, X.; Li, Z.; Wu, H.; Dugarjaviin, M.; Bai, D. Analysis of ROH Characteristics Across Generations in Grassland-Thoroughbred Horses and Identification of Loci Associated with Athletic Traits. Animals 2025, 15, 2068. https://doi.org/10.3390/ani15142068
Ding W, Gong W, Bou T, Shi L, Lin Y, Shi X, Li Z, Wu H, Dugarjaviin M, Bai D. Analysis of ROH Characteristics Across Generations in Grassland-Thoroughbred Horses and Identification of Loci Associated with Athletic Traits. Animals. 2025; 15(14):2068. https://doi.org/10.3390/ani15142068
Chicago/Turabian StyleDing, Wenqi, Wendian Gong, Tugeqin Bou, Lin Shi, Yanan Lin, Xiaoyuan Shi, Zheng Li, Huize Wu, Manglai Dugarjaviin, and Dongyi Bai. 2025. "Analysis of ROH Characteristics Across Generations in Grassland-Thoroughbred Horses and Identification of Loci Associated with Athletic Traits" Animals 15, no. 14: 2068. https://doi.org/10.3390/ani15142068
APA StyleDing, W., Gong, W., Bou, T., Shi, L., Lin, Y., Shi, X., Li, Z., Wu, H., Dugarjaviin, M., & Bai, D. (2025). Analysis of ROH Characteristics Across Generations in Grassland-Thoroughbred Horses and Identification of Loci Associated with Athletic Traits. Animals, 15(14), 2068. https://doi.org/10.3390/ani15142068