Role of a Precision Biotic Fed to Dekalb White Laying Hens at Peak Production
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pre-Experimental Period
2.2. Experiment Design, Birds, and Feed
2.3. Egg Production and Performance Data
2.4. Apparent Total Tract Digestibility and Apparent Ileal Digestibility of CP
2.5. Blood Biomarkers
2.6. Economic Analysis
2.7. Statistical Analysis
- γijk = production data;
- μ = mean of the whole population;
- τi = effect of treatment;
- tk = effect of weekly measurement from 24 to 41 weeks;
- (τ ∗ t)ik = effect of interaction between treatment and week;
- δτ(i)j = random error of repeated measurements with mean 0 and covariance σij;
- ε’ijk = random error with mean 0 and variance σi2.
3. Results
3.1. Egg Production and Performance Data
3.2. Feed Intake, Feed Conversion Ratio, and Body Weight
3.3. Apparent Total Tract Digestibility and Apparent Ileal Digestibility of CP
3.4. Blood Biomarkers
Trt 1 | TP 2 (g/dL) | AST 3 (U/L) | CK 4 (U/L) | UA 5 (mg/dL) | Glu 6 (mg/dL) | P 7 (mg/dL) | Alb 8 (g/dL) | Glob 9 (g/dL) | K 10 (mmol/L) | Na 11 (mmol/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Reference | 3.9–7.0 13 | 118–298 13 | 107–1780 13 | 0.9–8.9 13 | 208–279 | 1.6–7.2 13 | 1.5–3.3 13 | 1.6–4.3 13 | 3.9–6.5 | 141–159 | |
PC | 5.414 | 185.9 | 1215 | 1.972 b | 235.2 | 3.971 b | 2.617 | 2.737 | 5.258 | 148.7 | |
NC | 5.355 | 161.3 | 804 | 1.644 b | 250.4 | 3.851 b | 2.795 | 2.547 | 5.003 | 147.7 | |
NC+PB1 | 5.319 | 179.0 | 1338 | 1.779 b | 236.9 | 3.420 b | 2.543 | 2.782 | 5.038 | 147.0 | |
NC+PB2 | 5.443 | 197.5 | 1816 | 2.900 a | 244.4 | 4.885 a | 2.631 | 2.823 | 5.243 | 148.3 | |
SEM 12 | 0.175 | 13.24 | 287.1 | 0.311 | 6.300 | 0.338 | 0.082 | 0.129 | 0.147 | 1.505 | |
p-value | 0.9550 | 0.2901 | 0.1262 | 0.0312 | 0.3699 | 0.0375 | 0.3416 | 0.5240 | 0.4605 | 0.8663 | |
Pairwise Comparisons (p-Values) | |||||||||||
PC vs. | NC | 0.8127 | 0.2054 | 0.3282 | 0.4659 | 0.1058 | 0.8044 | 0.1436 | 0.3128 | 0.2345 | 0.6276 |
NC+PB1 | 0.7173 | 0.7290 | 0.7719 | 0.6806 | 0.8553 | 0.2855 | 0.5495 | 0.8128 | 0.3257 | 0.4588 | |
NC+PB2 | 0.8986 | 0.4980 | 0.1119 | 0.0318 | 0.2669 | 0.0485 | 0.8917 | 0.5985 | 0.9394 | 0.8240 | |
NC vs. | NC+PB1 | 0.9074 | 0.4508 | 0.3045 | 0.8059 | 0.2343 | 0.4722 | 0.0964 | 0.3123 | 0.8897 | 0.8099 |
NC+PB2 | 0.7258 | 0.0706 | 0.0256 | 0.0117 | 0.5026 | 0.0458 | 0.1763 | 0.1512 | 0.2606 | 0.7740 | |
NC+PB1 vs. | NC+PB2 | 0.6382 | 0.3585 | 0.2681 | 0.0273 | 0.4356 | 0.0100 | 0.4761 | 0.8299 | 0.3572 | 0.5793 |
3.5. Economic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, S.A.; Xin, H.; Kerr, B.J.; Russell, J.R.; Bregendahl, K. Effects of dietary fiber and reduced crude protein on ammonia emission from laying-hen manure. Poult. Sci. 2007, 86, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.; Park, J.; Kim, Y.; Kwon, B.; Kim, D.; Song, J.; Lee, K. Effects of dietary protein levels on performance, nitrogen excretion, and odor emission of growing pullets and laying hens. Poult. Sci. 2023, 102, 102798. [Google Scholar] [CrossRef] [PubMed]
- Strock, J.S. Ammonification in Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 162–165. [Google Scholar] [CrossRef]
- Burley, H.K.; Patterson, P.H.; Elliot, M.A. Effect of a reduced crude protein, amino acid-balanced diet on hen performance, production costs, and ammonia emissions in a commercial laying hen flock. J. Appl. Poult. Res. 2013, 22, 217–228. [Google Scholar] [CrossRef]
- Poudel, I.; Hodge, V.R.; Wamsley, K.G.S.; Roberson, K.D.; Adhikari, P.A. Effects of protease enzyme supplementation and varying levels of amino acid inclusion on productive performance, egg quality, and amino acid digestibility in laying hens from 30 to 50 weeks of age. Poult. Sci. 2023, 102, 102465. [Google Scholar] [CrossRef] [PubMed]
- Hernández, F.; López, M.; Martínez, S.; Megías, M.D.; Catalá, P.; Madrid, J. Effect of low-protein diets and single sex on production performance, plasma metabolites, digestibility, and nitrogen excretion in 1- to 48-day-old broilers. Poult. Sci. 2012, 91, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Awad, E.; Zulkifli, I.; Farjam, A.; Chwen, L.; Hossain, M.; Aljuobori, A. Effect of low-protein diet, gender and age on the apparent ileal amino acid digestibility in broiler chickens raised under hot-humid tropical condition. Indian J. Anim. Sci. 2015, 86, 696–701. [Google Scholar] [CrossRef]
- Parenteau, I.A.; Stevenson, M.; Kiarie, E.G. Egg production and quality responses to increasing isoleucine supplementation in Shaver White hens fed a low crude protein corn-soybean meal diet fortified with synthetic amino acids between 20 and 46 weeks of age. Poult. Sci. 2020, 99, 1444–1453. [Google Scholar] [CrossRef] [PubMed]
- Ducatelle, R.; Eeckhaut, V.; Haesebrouck, F.; van Immerseel, F. A review on prebiotics and probiotics for the control of dysbiosis: Present status and future perspectives. Animals 2014, 9, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, M.U.; Abd El-Hack, M.E.; Hassan, F.; El-Saadony, M.T.; Khafaga, A.F.; Batiha, G.E.; Yehia, N.; Elnesr, S.S.; Alagawany, M.; El-Tarabily, K.A.; et al. The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance, gut microbiome, and intestinal morphology. Poult. Sci. 2021, 100, 101143. [Google Scholar] [CrossRef] [PubMed]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.C.; Jacquier, V.; Schyns, G.; Claypool, J.; Tamburini, I.; Blokker, B.; Geremia, J.M. A novel microbiome metabolic modulator improves the growth performance of broiler chickens in multiple trials and modulates targeted energy and amino acid metabolic pathways in the cecal metagenome. Poult Sci. 2021, 100, 100800. [Google Scholar] [CrossRef] [PubMed]
- Conte, F.N.; van Buuringen, N.; Voermans, N.C.; Lefeber, D.J. Galactose in human metabolism, glycosylation and congenital metabolic diseases: Time for a closer look. Biochimica Biophysica Acta Gen Subj. 2021, 1865, 129898. [Google Scholar] [CrossRef] [PubMed]
- Jacquier, V.; Walsh, M.C.; Schyns, G.; Claypool, J.; Blokker, B.; Bortoluzzi, C.; Geremia, J. Evaluation of a Precision Biotic on the Growth Performance, Welfare Indicators, Ammonia Output, and Litter Quality of Broiler Chickens. Animals 2022, 12, 231. [Google Scholar] [CrossRef] [PubMed]
- Bortoluzzi, C.; Tamburini, I.; Geremia, J. Microbiome modulation, microbiome protein metabolism index, and growth performance of broilers supplemented with a precision biotic. Poult. Sci. 2023, 102, 102595. [Google Scholar] [CrossRef] [PubMed]
- Leone, F.; Ferrante, V. Effects of prebiotics and precision biotics on performance, animal welfare and environmental impact. A review. Sci. Total Environ. 2023, 901, 165951. [Google Scholar] [CrossRef] [PubMed]
- Petranyi, F.; Whitton, M.M.; Lobo, E.; Ramirez, S.; Radovanović, A.; Bajagai, Y.S.; Stanley, D. Precision glycan supplementation: A strategy to improve performance and intestinal health of laying hens in high-stress commercial environments. J. Anim. Physiol. Anim. Nutr. 2024, 108, 1498–1509. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Chu, T.; Zhang, Q.; Blokker, B.; Lv, Z.; Geremia, J.; Bortoluzzi, C. Microbiome modulation by a precision biotic in broilers chickens: A commercial study validation. Poult. Sci. 2023, 102, 102596. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xiong, X.; Danska, J.; Parkinson, J. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome specific functionality. Microbiome 2016, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Anish, C.; Schumann, B.; Pereira, C.L.; Seeberger, P.H. Chemical Biology Approaches to Designing Defined Carbohydrate Vaccines. Chem. Biol. 2014, 21, 28–50. [Google Scholar] [CrossRef] [PubMed]
- Tolonen, A.C.; Beauchemin, N.; Bayne, C.; Li, L.; Tan, J.; Lee, J.; Meehan, B.M.; Meisner, J.; Millet, Y.; LeBlanc, G.; et al. Synthetic glycans control gut microbiome structure and mitigate colitis in mice. Nat. Commun. 2022, 13, 1244. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Macfarlane, G.T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 1991, 70, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Blokker, B.; Bortoluzzi, C.; Iaconis, C.; Perez-Calvo, E.; Walsh, M.C.; Schyns, G.; Tamburini, I.; Geremia, J.M. Evaluation of a Novel Precision Biotic on Enterohepatic Health Markers and Growth Performance of Broiler Chickens under Enteric Challenge. Animals 2022, 12, 2502. [Google Scholar] [CrossRef] [PubMed]
- Osmanyan, A.K.; Ghazi Harsini, S.; Mahdavi, R.; Fisinin, V.I.; Arkhipova, A.L.; Glazko, T.T.; Kovalchuk, S.N.; Kosovsky, G.Y. Intestinal amino acid and peptide transporters in broiler are modulated by dietary amino acids and protein. Amino Acids. 2018, 50, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Hew, L.I.; Ravindran, G.; Bryden, W.L. A comparison of Ileal Digesta and excreta analysis for the determination of amino acid digestibility in food ingredients for poultry. Br. Poult. Sci. 1999, 40, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Other Elements in Official Methods of Analysis of AOAC International, 22nd ed.; Kane, P.F., Latimer, G.W., Jr., Eds.; Oxford University Press: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Protein in Official Methods of Analysis of AOAC International, 22nd ed.; Wendt Thiex, N.J., Latimer, G.W., Jr., Eds.; Oxford University Press: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Agricultural Marketing Service. ReportShell Eggs: Daily Southeast Regional Eggs AJ_PY008. 2023. Available online: https://mymarketnews.ams.usda.gov/viewReport/2736 (accessed on 15 September 2023).
- Bortoluzzi, C.; Segura-Wang, M.; Aureli, R.; Leduc, A.; Iuspa, M.A.; Cowieson, A.J. Supplementation of precision biotic leads to improved growth performance by modulating the microbiome of broiler chickens fed corn or wheat-based diets. Poult. Sci. 2024, 103, 104451. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.M.; Li, D.D.; Li, Z.R.; Wang, J.P.; Zeng, Q.F.; Bai, S.P.; Su, Z.W.; Zhang, K.Y. Effects of dietary crude protein levels and exogenous protease on performance, nutrient digestibility, trypsin activity and intestinal morphology in broilers. Livest. Sci. 2016, 193, 26–31. [Google Scholar] [CrossRef]
- Kaneda, T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol. Rev. 1991, 55, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Avigan, J.; Steinberg, D.; Gutman, A.; Mize, C.E.; Milne, G.W.A. Alphadecarboxylation, an important pathway for degradation of phytanic acid in animals. Biochem. Biophys. Res. Commun. 1966, 24, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Salway, J. The Krebs Uric Acid Cycle: A Forgotten Krebs Cycle. Trends. Biochem. Sci. 2018, 43, 847–849. [Google Scholar] [CrossRef] [PubMed]
- Simoyi, M.F.; Van Dyke, K.; Klandorf, H. Manipulation of plasma uric acid in broiler chicks and its effect on leukocyte oxidative activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282, R791–R796. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cai, H.; Li, S.; Liu, G.; Deng, X.; Bryden, W.; Zheng, A. Comparing the potential of Bacillus amyloliquefaciens CGMCC18230 with antimicrobial growth promoters for growth performance, bone development, expression of phosphorus transporters, and excreta microbiome in broiler chickens. Poult. Sci. 2022, 101, 102126. [Google Scholar] [CrossRef] [PubMed]
- Board, M.M.; Crespo, R.; Shah, D.H.; Faux, C.M. Biochemical Reference Intervals for Backyard Hens. J. Avian Med. Surg. 2018, 32, 301. [Google Scholar] [CrossRef] [PubMed]
- Harr, K.E. Diagnostic Value of Biochemistry. In Clinical Avian Medicine; Harrison, G.J., Lightfoot, T.L., Eds.; Spix Publishing: Palm Beach, FL, USA, 2006; pp. 616–623. [Google Scholar]
- Cottam, M.; Houston, D.; Lobley, G.; Hamilton, I. The use of muscle protein for egg production in the Zebra Finch Taeniopygia guttata. Ibis 2002, 144, 210–217. [Google Scholar] [CrossRef]
- Vignale, K.; Caldas, J.V.; England, J.A.; Boonsinchai, N.; Sodsee, P.; Pollock, E.D.; Coon, C.N. The effect of sexual maturity and egg production on skeletal muscle (pectoralis major and gastrocnemius) protein turnover in broiler breeder pure lines. Poult. Sci. 2018, 97, 531–539. [Google Scholar] [CrossRef] [PubMed]
Treatments 1 | ||||
---|---|---|---|---|
Ingredients (%) | PC | NC | NC+PB1 | NC+PB2 |
Corn | 57.88 | 66.06 | 66.01 | 65.99 |
Soybean Meal, Dehulled solvent | 23.07 | 18.59 | 18.59 | 18.59 |
Calcium Carbonate | 9.83 | 9.80 | 9.80 | 9.80 |
Dried Distillers Grains and Solubles | 5.00 | 2.56 | 2.56 | 2.56 |
Animal Fat | 2.28 | 0.73 | 0.73 | 0.73 |
Dicalcium Phosphorus | 1.01 | 1.13 | 1.13 | 1.13 |
Salt | 0.326 | 0.349 | 0.349 | 0.349 |
DL-Methionine 98.5% | 0.217 | 0.223 | 0.223 | 0.223 |
L-Lysine 78.8% | 0.168 | 0.254 | 0.254 | 0.254 |
DSM Trace Mineral Premix 2 | 0.120 | 0.120 | 0.120 | 0.120 |
L-Threonine 98.5% | 0.048 | 0.091 | 0.091 | 0.091 |
DSM Vitamin Premix 3 | 0.038 | 0.038 | 0.038 | 0.038 |
L-Valine | 0.010 | 0.059 | 0.059 | 0.059 |
Precision biotic (kg/tonne) | 0.00 | 0.00 | 0.500 | 0.700 |
Calculated Values (%) [dAmino Acids:dLysine] | ||||
Metabolizable Energy (kcal/kg) | 2844 | 2844 | 2844 | 2844 |
Moisture | 10.97 | 11.21 | 11.21 | 11.21 |
Crude Protein | 17.50 | 15.50 | 15.50 | 15.50 |
Crude Fat | 4.96 | 3.49 | 3.49 | 3.49 |
Calcium | 4.20 | 4.20 | 4.20 | 4.20 |
Crude Fiber | 2.15 | 2.02 | 2.02 | 2.02 |
Available Phosphorus | 0.45 | 0.45 | 0.45 | 0.45 |
Choline (mg/kg) | 1531.22 | 1378.51 | 1378.51 | 1378.51 |
Dig. Lys | 0.90 | 0.85 | 0.85 | 0.85 |
Dig. Arg | 0.99 [110.09] | 0.85 [100.00] | 0.85 [100.00] | 0.85 [100.00] |
Dig. TSAA | 0.72 [80.00] | 0.68 [80.00] | 0.68 [80.00] | 0.68 [80.00] |
Dig. Val | 0.72 [80.00] | 0.68 [80.00] | 0.68 [80.00] | 0.68 [80.00] |
Dig. Ile | 0.64 [70.66] | 0.55 [64.67] | 0.55 [64.67] | 0.55 [64.67] |
Dig. Thr | 0.60 [66.67] | 0.57 [67.06] | 0.57 [67.06] | 0.57 [67.06] |
Dig. Met | 0.47 [52.62] | 0.45 [53.45] | 0.45 [53.45] | 0.45 [53.45] |
Dig. Trp | 0.17 [19.04] | 0.15 [17.07] | 0.15 [17.07] | 0.15 [17.07] |
Analyzed Values (%) | ||||
Moisture | 10.55 | 10.55 | 10.49 | 10.83 |
Crude Protein | 16.50 | 14.68 | 14.88 | 14.71 |
Crude Fat | 5.30 | 3.71 | 3.92 | 3.98 |
Crude Fiber | 2.47 | 2.24 | 2.09 | 2.43 |
Trt 1 | HDEP 2 (%) | AEW 3 (g) | UE 4 (%) |
---|---|---|---|
PC | 98.75 a | 59.17 | 4.81 |
NC | 97.52 b | 58.26 | 5.14 |
NC+PB1 | 97.92 ab | 58.64 | 5.06 |
NC+PB2 | 98.19 ab | 58.70 | 4.58 |
SEM 5 | 0.2289 | 0.2528 | 0.5140 |
p-value | 0.0028 | 0.0935 | 0.8631 |
Trt 1 | gf/ge 2 (g) | kg/doz 3 (kg) | g/b/d 4 (g) | lbs/100 5 (lbs) | CBW 6 (g) |
---|---|---|---|---|---|
PC | 2.002 | 1.402 | 115.14 | 25.38 | 564.95 |
NC | 2.056 | 1.431 | 115.92 | 25.56 | 377.36 |
NC+PB1 | 2.026 | 1.415 | 115.31 | 25.42 | 479.18 |
NC+PB2 | 2.020 | 1.419 | 115.79 | 25.53 | 478.29 |
SEM 7 | 0.0226 | 0.0074 | 0.5520 | 0.1217 | 54.71 |
p-value | 0.2355 | 0.0624 | 0.7042 | 0.7043 | 0.2473 |
Trt 1 | AID 2 of CP (%) | ATTD 3 of CP (%) | |
---|---|---|---|
PC | 58.05 | 43.15 ab | |
NC | 73.71 | 55.95 a | |
NC+PB1 | 72.18 | 41.32 b | |
NC+PB2 | 70.78 | 37.69 b | |
SEM 4 | 7.935 | 5.833 | |
p-value | 0.2651 | 0.0462 | |
Pairwise Comparisons (p-Values) | |||
PC vs. | NC NC+PB1 | 0.0813 0.1130 | 0.0549 0.7726 |
NC+PB2 | 0.1507 | 0.3930 | |
NC vs. | NC+PB1 | 0.8589 | 0.0306 |
NC+PB2 | 0.7337 | 0.0090 | |
NC+PB1 vs. | NC+PB2 | 0.8707 | 0.5678 |
Trt 1 | Feed Cost (USD/100/d) 2 | Income (USD/100/d) | Income–Feed Cost (USD/100/d) |
---|---|---|---|
PC | 7.06 a | 29.38 | 22.33 |
NC | 6.79 b | 28.81 | 22.02 |
NC+PB1 | 6.78 b | 29.14 | 22.36 |
NC+PB2 | 6.82 b | 29.40 | 22.58 |
SEM 3 | 0.0324 | 0.4200 | 0.4328 |
p-value | <0.0001 | 0.7381 | 0.8384 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodewald, E.; Jasek, B.; Zhang, L.; Roberts, S.; Bortoluzzi, C.; Adhikari, P. Role of a Precision Biotic Fed to Dekalb White Laying Hens at Peak Production. Animals 2025, 15, 2095. https://doi.org/10.3390/ani15142095
Rodewald E, Jasek B, Zhang L, Roberts S, Bortoluzzi C, Adhikari P. Role of a Precision Biotic Fed to Dekalb White Laying Hens at Peak Production. Animals. 2025; 15(14):2095. https://doi.org/10.3390/ani15142095
Chicago/Turabian StyleRodewald, ElsiAnna, Brooke Jasek, Li Zhang, Stacey Roberts, Cristiano Bortoluzzi, and Pratima Adhikari. 2025. "Role of a Precision Biotic Fed to Dekalb White Laying Hens at Peak Production" Animals 15, no. 14: 2095. https://doi.org/10.3390/ani15142095
APA StyleRodewald, E., Jasek, B., Zhang, L., Roberts, S., Bortoluzzi, C., & Adhikari, P. (2025). Role of a Precision Biotic Fed to Dekalb White Laying Hens at Peak Production. Animals, 15(14), 2095. https://doi.org/10.3390/ani15142095