Milk Fatty Acids as Potential Biomarkers of Enteric Methane Emissions in Dairy Cattle: A Review
Simple Summary
Abstract
1. Introduction
2. Greenhouse Gases
3. Methane in Agriculture
3.1. Rumen Methanogenesis
3.2. Methanogenesis in Relation to Milk Production
4. Methane Measurement Techniques
4.1. Respiration Chambers
4.2. Sulfur Hexafluoride Tracer
4.3. GreenFeed System
4.4. Sniffer System
4.5. Stoichiometric Approaches to Estimating Enteric Methane Emissions
5. Milk Fatty Acids as Biomarkers
5.1. Origin of Milk Fatty Acids and Their Relationship to Methane
5.2. Saturated Fatty Acids
5.3. Unsaturated Fatty Acids
5.4. Odd- and Branched-Chain Fatty Acids
6. Development of Prediction Models
6.1. Data Processing and Variable Selection
6.2. Modeling Approaches
6.3. Model Evaluation
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIC | Akaike information criterion |
BCFA | Branched-chain fatty acid |
BHBA | Beta-hydroxybutyrate |
BIC | Bayesian information criterion |
CCC | Concordance correlation coefficient |
CH3 | Methyl |
CH4 | Methane |
CH2COOH | Acetate |
CLA | Conjugated linoleic acid |
CO2 | Carbon dioxide |
CoM | Coenzyme M |
CoB | Coenzyme B |
EPA | Environmental Protection Agency |
FA | Fatty acid |
Fdox | Ferredoxin-oxidized |
Fdred | Ferredoxin-reduced |
GF | GreenFeed |
GHG | Greenhouse gas |
GWP | Global warming potential |
H2 | (Di) hydrogen |
H2O | Water |
H4MPT | Tetrahydromethanopterin |
IPCC | Intergovernmental Panel on Climate Change |
LCFA | Long-chain fatty acid |
MFR | Methanofuran |
MG | Mammary gland |
MUFA | Monounsaturated fatty acid |
N2O | Nitrous oxide |
OBCFA | Odd- and branched-chain fatty acid |
OCFA | Odd-chain fatty acid |
PUFA | Polyunsaturated fatty acid |
RC | Respiration chamber |
RFID | Radio-frequency identification |
RMSE | Root mean squared error |
RMSPE | Root mean squared prediction error |
SF6 | Sulfur hexafluoride |
SFA | Saturated fatty acid |
SMCFA | Short- and medium-chain fatty acid |
UFA | Unsaturated fatty acid |
VFA | Volatile fatty acid |
References
- Mikhaykov, A.; Moiseev, N.; Aleshin, K.; Burkhardt, T. Global climate change and greenhouse effect. Entrep. Sustain. Issues 2020, 7, 2897–2913. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change; IPCC: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2022 U.S. Environmental Protection Agency. EPA 430R-24004. 2024. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2022 (accessed on 3 July 2025).
- Russell, J.B.; Hespell, R.B. Microbial rumen fermentation. J. Dairy Sci. 1981, 64, 1153–1169. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 2015, 6, 37. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Tamminga, S.; Dewhurst, R.J.; van Vuuren, A.; De Brabander, D.; Demeyer, D. Milk odd- and branched-chain fatty acids in relation to the rumen fermentation pattern. J. Dairy Sci. 2006, 89, 3954–3964. [Google Scholar] [CrossRef]
- Churakov, M.; Karlsson, J.; Edvardsson Rasmussen, A.; Holtenius, K. Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animals 2021, 15, 100253. [Google Scholar] [CrossRef]
- Angulo, J.; Hiller, B.; Olivera, M.; Mahecha, L.; Dannenberger, D.; Nuernberg, G.; Losand, B.; Nuernberg, K. Dietary fatty acid intervention of lactating cows simultaneously affects lipid profiles of meat and milk. J. Sci. Food Agric. 2012, 92, 2968–2974. [Google Scholar] [CrossRef]
- Tuckett, R. Greenhouse gases. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 362–372. [Google Scholar]
- Raval, A.; Ramanathan, V. Observational determination of the greenhouse effect. Nature 1989, 342, 758–761. [Google Scholar] [CrossRef]
- Ramanathan, V.; Cicerone, R.J.; Singh, H.B.; Kiehl, J.T. Trace gas trends and their potential role in climate change. J. Geophys. Res. Atmos. 1985, 90, 5547–5566. [Google Scholar] [CrossRef]
- EPA, U.S. Overview of Greenhouse Gases. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 7 January 2025).
- AGA, Food and Agriculture Organization of the United Nations. Livestock Solutions for Climate Change; FAO.org: Rome, Italy, 2017. [Google Scholar]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 degrees C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef]
- Ellis, J.L.; Dijkstra, J.; Kebreab, E.; Bannink, A.; Odongo, N.E.; McBride, B.W.; France, J. Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. J. Agric. Sci. 2008, 146, 213–233. [Google Scholar] [CrossRef]
- Wolin, M.J. Interactions between the bacterial species of the rumen. In Digestion & Metabolism in the Ruminant; McDonald, I.W., Warner, A.C.I., Eds.; The University of New England Publishing Unit: Armidale, NSW, Australia, 1975; pp. 134–148. [Google Scholar]
- Martínez-Álvaro, M.; Auffret, M.D.; Duthie, C.-A.; Dewhurst, R.J.; Cleveland, M.A.; Watson, M.; Roehe, R. Bovine host genome acts on rumen microbiome function linked to methane emissions. Commun. Biol. 2022, 5, 350. [Google Scholar] [CrossRef]
- Greening, C.; Geier, R.; Wang, C.; Woods, L.C.; Morales, S.E.; McDonald, M.J.; Rushton-Green, R.; Morgan, X.C.; Koike, S.; Leahy, S.C.; et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 2019, 13, 2617–2632. [Google Scholar] [CrossRef]
- Leahy, S.C.; Kelly, W.J.; Altermann, E.; Ronimus, R.S.; Yeoman, C.J.; Pacheco, D.M.; Li, D.; Kong, Z.; McTavish, S.; Sang, C.; et al. The genome sequence of the rumen methanogen methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS ONE 2010, 5, e8926. [Google Scholar] [CrossRef]
- Friedman, N.; Jami, E.; Mizrahi, I. Compositional and functional dynamics of the bovine rumen methanogenic community across different developmental stages. Environ. Microbiol. 2017, 19, 3365–3373. [Google Scholar] [CrossRef]
- Lyu, Z.; Shao, N.; Akinyemi, T.; Whitman, W.B. Methanogenesis. Curr. Biol. 2018, 28, R727–R732. [Google Scholar] [CrossRef]
- Lessner, D.J. Methanogenesis biochemistry. In Encyclopedia of Life Sciences, 1st ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Williams, S.R.O.; Hannah, M.C.; Jacobs, J.L.; Wales, W.J.; Moate, P.J. Volatile fatty acids in ruminal fluid can be used to predict methane yield of dairy cows. Animals 2019, 9, 1006. [Google Scholar] [CrossRef]
- Wang, B.; Mao, S.Y.; Yang, H.J.; Wu, Y.M.; Wang, J.K.; Li, S.L.; Shen, Z.M.; Liu, J.X. Effects of alfalfa and cereal straw as a forage source on nutrient digestibility and lactation performance in lactating dairy cows. J. Dairy Sci. 2014, 97, 7706–7715. [Google Scholar] [CrossRef]
- Lou, Z.; Evans, A.C.O.; Bu, D. The relation and variation of OBCFA content in rumen fluid, blood and milk from lactating dairy cows. Livest. Sci. 2024, 281, 105417. [Google Scholar] [CrossRef]
- Kliem, K.E.; Humphries, D.J.; Kirton, P.; Givens, D.I.; Reynolds, C.K. Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows. Animal 2019, 13, 309–317. [Google Scholar] [CrossRef]
- Collomb, M.; Schmid, A.; Seieber, R.; Wechsler, D.; Ryhänen, E. Conjugated linoleic acids in milk fat: Variation and physiological effects. Int. Dairy J. 2006, 16, 1347–1361. [Google Scholar] [CrossRef]
- Bainbridge, M.L.; Cersosimo, L.M.; Wright, A.D.; Kraft, J. Content and composition of branched-chain fatty acids in bovine milk are affected by lactation stage and breed of dairy cow. PLoS ONE 2016, 11, e0150386. [Google Scholar] [CrossRef]
- Krogh, M.A.; Hostens, M.; Salavati, M.; Grelet, C.; Sorensen, M.T.; Wathes, D.C.; Ferris, C.P.; Marchitelli, C.; Signorelli, F.; Napolitano, F.; et al. Between- and within-herd variation in blood and milk biomarkers in Holstein cows in early lactation. Animal 2020, 14, 1067–1075. [Google Scholar] [CrossRef]
- Stoop, W.M.; Bovenhuis, H.; Heck, J.M.L.; van Arendonk, J.A.M. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 2009, 92, 1469–1478. [Google Scholar] [CrossRef]
- Carroll, S.M.; DePeters, E.J.; Taylor, S.J.; Rosenberg, M.; Perez-Monti, H.; Capps, V.A. Milk composition of Holstein, Jersey, and Brown Swiss cows in response to increasing levels of dietary fat. Anim. Feed Sci. Technol. 2006, 131, 451–473. [Google Scholar] [CrossRef]
- Antanaitis, R.; Juozaitiene, V.; Jonike, V.; Baumgartner, W.; Paulauskas, A. Milk lactose as a biomarker of subclinical mastitis in dairy cows. Animals 2021, 11, 1736. [Google Scholar] [CrossRef]
- Hussein, H.A.; El-Razik, K.; Gomaa, A.M.; Elbayoumy, M.K.; Abdelrahman, K.A.; Hosein, H.I. Milk amyloid a as a biomarker for diagnosis of subclinical mastitis in cattle. Vet. World 2018, 11, 34–41. [Google Scholar] [CrossRef]
- Garro-Aguilar, Y.; Fernandez, R.; Calero, S.; Noskova, E.; Gulak, M.; de la Fuente, M.; Adell, A.; Simon, E.; Muzquiz, U.; Rodriguez-Pinon, D.; et al. Acute stress-induced changes in the lipid composition of cow’s milk in healthy and pathological animals. Molecules 2023, 28, 980. [Google Scholar] [CrossRef]
- Cai-yun, F.; Di, S.; He, T.; Rui-ting, H.; Lei, R.; Ying, Y.; Yan-jing, S.; Jian-bo, C. Milk production and composition and metabolic alterations in the mammary gland of heat-stressed lactating dairy cows. J. Integr. Agric. 2019, 18, 2844–2853. [Google Scholar] [CrossRef]
- Delosière, M.; Pires, J.; Bernard, L.; Cassar-Malek, I.; Bonnet, M. Milk proteome from in silico data aggregation allows the identification of putative biomarkers of negative energy balance in dairy cows. Sci. Rep. 2019, 9, 9718. [Google Scholar] [CrossRef]
- Tessari, R.; Mazzotta, E.; Blasi, F.; Morgante, M.; Badon, T.; Bedin, S.; Fabbri, G.; Lisuzzo, A.; Contiero, B.; Fiore, E. Milk fatty acids as biomarkers of metabolic diseases in dairy cows identified through thin layer chromatography and gas chromatographic techniques (tlc-gc). Large Anim. Rev. 2021, 27, 187–193. [Google Scholar]
- Heirbaut, S.; Jing, X.P.; Stefanska, B.; Pruszynska-Oszmalek, E.; Buysse, L.; Lutakome, P.; Zhang, M.Q.; Thys, M.; Vandaele, L.; Fievez, V. Diagnostic milk biomarkers for predicting the metabolic health status of dairy cattle during early lactation. J. Dairy Sci. 2023, 106, 690–702. [Google Scholar] [CrossRef]
- Menezes, C.; Malo-Estepa, I.; Johnston, D.; Delaney, A.; Crowe, M.; Diskin, M.; Dempsey, E. Electrochemical assay of sorbitol dehydrogenase at pedot modified electrodes—A new milk biomarker for confirmation of pregnancy in dairy cattle. Analyst 2020, 145, 7267–7278. [Google Scholar] [CrossRef]
- Ntallaris, T.; Bage, R.; Karlsson, J.; Holtenius, K. Milk fatty acids as indicators of delayed commencement of luteal activity in dairy cows in early lactation. Reprod. Domest. Anim. 2023, 58, 500–510. [Google Scholar] [CrossRef]
- Blaxter, K.L.; Clapperton, J.L. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 1965, 19, 511–522. [Google Scholar] [CrossRef]
- Llonch, P.; Troy, S.M.; Duthie, C.; Somarriba, M.; Rooke, J.; Haskell, M.J.; Rainer, R.; Turner, S.P. Changes in feed intake during isolation stress in respiration chambers may impact methane emissions assessment. Anim. Prod. Sci. 2018, 58, 1011–1016. [Google Scholar] [CrossRef]
- Deighton, M.H.; O’Loughlin, B.M.; Williams, S.R.O.; Moate, P.J.; Kennedy, E.; Boland, T.M.; Eckard, R.J. Declining sulphur hexafluoride permeability of polytetrafluoroethylene membranes causes overestimation of calculated ruminant methane emissions using the tracer technique. Anim. Feed Sci. Technol. 2013, 183, 86–95. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.; Weeks, H.; Zimmerman, P.R.; Harper, M.T.; Hristova, R.A.; Zimmerman, R.S.; Branco, A.F. The use of an automated system (GreenFeed) to monitor enteric methane and carbon dioxide emissions from ruminant animals. J. Vis. Exp. 2015, 103, e52904. [Google Scholar] [CrossRef]
- McGinn, S.M.; Coulombe, J.F.; Beauchemin, K.A. Technical note: Validation of the GreenFeed system for measuring enteric gas emissions from cattle. J. Anim. Sci. 2021, 99, skab046. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J. Dairy Sci. 2012, 95, 3166–3180. [Google Scholar] [CrossRef]
- Bell, M.J.; Potterton, S.L.; Craigon, J.; Saunders, N.; Wilcox, R.H.; Hunter, M.; Goodman, J.R.; Garnsworthy, P.C. Variation in enteric methane emissions among cows on commercial dairy farms. Animal 2014, 8, 1540–1546. [Google Scholar] [CrossRef]
- Sorg, D.; Difford, G.F.; Mühlbach, S.; Kuhla, B.; Swalve, H.H.; Lassen, J.; Strabel, T.; Pszczola, M. Comparison of a laser methane detector with the greenfeed and two breath analysers for on-farm measurements of methane emissions from dairy cows. Comput. Electron. Agric. 2018, 153, 285–294. [Google Scholar] [CrossRef]
- Sorg, D. Measuring livestock CH4 emissions with the laser methane detector: A review. Methane 2022, 1, 38–57. [Google Scholar] [CrossRef]
- Madsen, J.; Bjerg, B.S.; Hvelplund, T.; Weisbjerg, M.R.; Lund, P. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livest. Sci. 2010, 129, 223–227. [Google Scholar] [CrossRef]
- Suzuki, T.; Kamiya, Y.; Oikawa, K.; Nonaka, I.; Shinkai, T.; Terada, F.; Obitsu, T. Prediction of enteric methane emissions from lactating cows using methane to carbon dioxide ratio in the breath. Anim. Sci. J. 2021, 92, e13637. [Google Scholar] [CrossRef]
- Leng, R.A. Formation and production of volatile fatty acids in the rumen. In Physiology of Digestion and Metabolism in the Ruminant; Phillipson, A.T., Ed.; Oriel Press: Newcastle upon Tyne, UK, 1970; pp. 407–421. [Google Scholar]
- Zimmerman, P.R. System for Measuring Metabolic Gas Emissions from Animals. No. US005265618A, 30 November 1993. [Google Scholar]
- Dervos, C.T.; Vassiliou, P. Sulfur hexafluoride (SF6): Global environmental effects and toxic byproduct formation. J. Air Waste Manag. Assoc. 2000, 50, 137–141. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. Variation among individual dairy cows in methane measurements made on farm during milking. J. Dairy Sci. 2012, 95, 3181–3189. [Google Scholar] [CrossRef]
- Demeyer, D.I.; Van Nevel, C.J. Methanogenesis, an integrated part of carbohydrate fermentation, and its control. In Digestion and Metabolism in the Ruminant; McDonald, I.W., Warner, A.C.I., Eds.; The University of New England Publishing Unit: Armidale, NSW, Australia, 1975; pp. 363–383. [Google Scholar]
- Alemu, A.W.; Dijkstra, J.; Bannink, A.; France, J.; Kebreab, E. Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production. Anim. Feed Sci. Technol. 2011, 166–167, 761–778. [Google Scholar] [CrossRef]
- Castro-Montoya, J.; Bhagwat, A.M.; Peiren, N.; De Campeneere, S.; De Baets, B.; Fievez, V. Relationships between odd- and branched-chain fatty acid profiles in milk and calculated enteric methane proportion for lactating dairy cattle. Anim. Feed Sci. Technol. 2011, 166–167, 596–602. [Google Scholar] [CrossRef]
- Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef]
- Parodi, P.W. Milk fat in human nutrition. Aust. J. Dairy Technol. 2004, 59, 3–59. [Google Scholar]
- Glasser, F.; Ferlay, A.; Doreau, M.; Schmidely, P.; Sauvant, D.; Chilliard, Y. Long-chain fatty acid metabolism in dairy cows: A meta-analysis of milk fatty acid yield in relation to duodenal flows and de novo synthesis. J. Dairy Sci. 2008, 91, 2771–2785. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Humphries, D.J.; Kirton, P.; Kliem, K.E.; Givens, D.I.; Reynolds, C.K. Effects of forage type and extruded linseed supplementation on methane production and milk fatty acid composition of lactating dairy cows. J. Dairy Sci. 2015, 98, 4000–4011. [Google Scholar] [CrossRef]
- Bayat, A.R.; Kairenius, P.; Stefanski, T.; Leskinen, H.; Comtet-Marre, S.; Forano, E.; Chaucheyras-Durand, F.; Shingfield, K.J. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J. Dairy Sci. 2015, 98, 3166–3181. [Google Scholar] [CrossRef]
- Fievez, V.; Colman, E.; Castro-Montoya, J.; Stefanov, I.; Vlaeminck, B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Taormina, V.M.; Unger, A.L.; Kraft, J. Full-fat dairy products and cardiometabolic health outcomes: Does the dairy-fat matrix matter? Front. Nutr. 2024, 11, 1386257. [Google Scholar] [CrossRef]
- Odongo, N.E.; Or-Rashid, M.M.; Kebreab, E.; France, J.; McBride, B.W. Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. J. Dairy Sci. 2007, 90, 1851–1858. [Google Scholar] [CrossRef]
- Chilliard, Y.; Martin, C.; Rouel, J.; Doreau, M. Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J. Dairy Sci. 2009, 92, 5199–5211. [Google Scholar] [CrossRef]
- Engelke, S.W.; Das, G.; Derno, M.; Tuchscherer, A.; Wimmers, K.; Rychlik, M.; Kienberger, H.; Berg, W.; Kuhla, B.; Metges, C.C. Methane prediction based on individual or groups of milk fatty acids for dairy cows fed rations with or without linseed. J. Dairy Sci. 2019, 102, 1788–1802. [Google Scholar] [CrossRef]
- Dijkstra, J.; van Zijderveld, S.M.; Apajalahti, J.; Bannink, A.; Gerrits, W.J.J.; Newbold, J.R.; Perdok, H.B.; Berends, H. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim. Feed Sci. Technol. 2011, 166, 590–595. [Google Scholar] [CrossRef]
- Castro-Montoya, J.; Campeneere, S.D.; Baets, B.D.; Fievez, V. The potential of milk fatty acids as biomarkers for methane emissions in dairy cows: A quantitative multi-study survey of literature data. J. Agric. Sci. 2016, 154, 515–531. [Google Scholar] [CrossRef]
- Palmquist, D.L. Milk fat: Origin of fatty acids and influence of nutritional factors thereon. In Advanced Dairy Chemistry, Lipids; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2006; Volume 2, pp. 43–92. [Google Scholar]
- Bayat, A.R.; Tapio, I.; Vilkki, J.; Shingfield, K.J.; Leskinen, H. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J. Dairy Sci. 2018, 101, 1136–1151. [Google Scholar] [CrossRef]
- Kliem, K.E.; Morgan, R.; Humphries, D.J.; Shingfield, K.J.; Givens, D.I. Effect of replacing grass silage with maize silage in the diet on bovine milk fatty acid composition. Animal 2008, 2, 1850–1858. [Google Scholar] [CrossRef]
- Bessa, R.J.B.; Maia, M.R.G.; Jerónimo, E.; Belo, A.T.; Cabrita, A.R.J.; Dewhurst, R.J.; Fonseca, A.J.M. Using microbial fatty acids to improve understanding of the contribution of solid associated bacteria to microbial mass in the rumen. Anim. Feed Sci. Technol. 2009, 150, 197–206. [Google Scholar] [CrossRef]
- Abdoul-Aziz, S.K.A.; Zhang, Y.; Wang, J. Milk odd and branched chain fatty acids in dairy cows: A review on dietary factors and its consequences on human health. Animals 2021, 11, 3210. [Google Scholar] [CrossRef]
- de Souza, J.; Leskinen, H.; Lock, A.L.; Shingfield, K.J.; Huhtanen, P. Between-cow variation in milk fatty acids associated with methane production. PLoS ONE 2020, 15, e0235357. [Google Scholar] [CrossRef]
- Mohammed, R.; McGinn, S.M.; Beauchemin, K.A. Prediction of enteric methane output from milk fatty acid concentrations and rumen fermentation parameters in dairy cows fed sunflower, flax, or canola seeds. J. Dairy Sci. 2011, 94, 6057–6068. [Google Scholar] [CrossRef]
- Kaneda, T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol. Rev. 1991, 55, 288–302. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Gervais, R.; Rahman, M.M.; Gadeyne, F.; Gorniak, M.; Doreau, M.; Fievez, V. Postruminal synthesis modifies the odd- and branched-chain fatty acid profile from the duodenum to milk. J. Dairy Sci. 2015, 98, 4829–4840. [Google Scholar] [CrossRef]
- van Gastelen, S.; Antunes-Fernandes, E.C.; Hettinga, K.A.; Dijkstra, J. Relationships between methane emission of Holstein Friesian dairy cows and fatty acids, volatile metabolites and non-volatile metabolites in milk. Animal 2017, 11, 1539–1548. [Google Scholar] [CrossRef]
- Jahreis, G.; Fritsche, J.; Steinhart, H. Conjugated linoleic acid in milk fat: High variation depending on production system. Nutr. Res. 1997, 17, 1479–1484. [Google Scholar] [CrossRef]
- Castro-Montoya, J.M.; Peiren, N.; Veneman, J.; De Baets, B.; De Campeneere, S.; Fievez, V. Predictions of methane emission levels and categories based on milk fatty acid profiles from dairy cows. Animal 2017, 11, 1153–1162. [Google Scholar] [CrossRef]
- van Lingen, H.J.; Crompton, L.A.; Hendriks, W.H.; Reynolds, C.K.; Dijkstra, J. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle. J. Dairy Sci. 2014, 97, 7115–7132. [Google Scholar] [CrossRef]
- Bougouin, A.; Appuhamy, J.A.D.R.N.; Ferlay, A.; Kebreab, E.; Martin, C.; Moate, P.J.; Benchaar, C.; Lund, P.; Eugène, M. Individual milk fatty acids are potential predictors of enteric methane emissions from dairy cows fed a wide range of diets: Approach by meta-analysis. J. Dairy Sci. 2019, 102, 10616–10631. [Google Scholar] [CrossRef]
- Denninger, T.M.; Schwarm, A.; Birkinshaw, A.; Terranova, M.; Dohme-Meier, F.; Münger, A.; Eggerschwiler, E.; Bapst, B.; Wegmann, S.; Clauss, M.; et al. Immediate effect of Acacia mearnsii tannins on methane emissions and milk fatty acid profiles of dairy cows. Anim. Feed Sci. Technol. 2020, 261, 114388. [Google Scholar] [CrossRef]
- Dijkstra, J.; van Gastelen, S.; Antunes-Fernandes, E.C.; Warner, D.; Hatew, B.; Klop, G.; Podesta, S.C.; van Lingen, H.J.; Hettinga, K.A.; Bannink, A. Relationships between milk fatty acid profiles and enteric methane production in dairy cattle fed grass- or grass silage-based diets. Anim. Prod. Sci. 2016, 56, 541–548. [Google Scholar] [CrossRef]
- Rico, D.E.; Chouinard, P.Y.; Hassanat, F.; Benchaar, C.; Gervais, R. Prediction of enteric methane emissions from Holstein dairy cows fed various forage sources. Animal 2016, 10, 203–211. [Google Scholar] [CrossRef]
CH4 Measurement Technique | Pros | Cons | References |
---|---|---|---|
Respiration chamber |
|
| [5,44] |
Sulfur hexafluoride (SF6) tracer |
|
| [3,5,45] |
GreenFeed |
|
| [46,47] |
Sniffer |
|
| [48,49] |
Laser detection |
|
| [50,51] |
CH4/CO2 ratio |
|
| [52,53] |
VFA measurement |
|
| [25,54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youngmark, E.C.; Kraft, J. Milk Fatty Acids as Potential Biomarkers of Enteric Methane Emissions in Dairy Cattle: A Review. Animals 2025, 15, 2212. https://doi.org/10.3390/ani15152212
Youngmark EC, Kraft J. Milk Fatty Acids as Potential Biomarkers of Enteric Methane Emissions in Dairy Cattle: A Review. Animals. 2025; 15(15):2212. https://doi.org/10.3390/ani15152212
Chicago/Turabian StyleYoungmark, Emily C., and Jana Kraft. 2025. "Milk Fatty Acids as Potential Biomarkers of Enteric Methane Emissions in Dairy Cattle: A Review" Animals 15, no. 15: 2212. https://doi.org/10.3390/ani15152212
APA StyleYoungmark, E. C., & Kraft, J. (2025). Milk Fatty Acids as Potential Biomarkers of Enteric Methane Emissions in Dairy Cattle: A Review. Animals, 15(15), 2212. https://doi.org/10.3390/ani15152212