Motion Coupling at the Cervical Vertebral Joints in the Horse—An Ex Vivo Study Using Bone-Anchored Markers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimens
2.2. Mounting of the Specimen and Measurements
2.3. Data Processing and Analysis
3. Results
3.1. Range of Segmental Displacement at the Four Overall Movements
3.2. Overall Head and Neck Movement Angles
3.3. Correlation Between Yaw, Pitch, and Roll
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCC | Pearson correlation coefficient |
C1–C7 | Cervical vertebra one to seven |
CT | Computed tomography |
MRI | Magnetic resonance imaging |
T1 | Thoracic vertebra one |
H_y/p/r | Human yaw/pitch/roll |
CVJ | Cervical vertebral joint |
CVJs | Cervical vertebral joints (plural) |
ROM | Range of motion |
Appendix A
Musculi Capitis-Muscles for Specialised Movement of the Head | Musculi Colli-Long Muscles of the Neck | Musculi Dorsi-Long Muscles of the Back | Musculi Thoracis-Long Muscles of the Thorax |
---|---|---|---|
M. rectus capitis dorsalis major et minor | Mm. scaleni | M. trapezius | Mm. serrati dorsales et ventrales |
M. rectus capitis lateralis et ventralis | M. splenius cervicis et capitis | M. rhomboideus cervicis et thoracis | M. transversus thoracis |
M. obliquus capitis cranialis et caudalis | Mm. hyoidei | M. latissimus dorsi | M. rectus thoracis |
M. longus capitis | M. sternocephalicus | Mm. pectorales | |
M. brachiocephalicus | M. iliocostalis thoracis | ||
M. omotransversarius | M. longissimus atlantis, capitis, cervicis et thoracis | ||
M. sternomandibularis | M. spinalis thoracis et cervicis | ||
M. semispinalis capitis |
References
- Zsoldos, R.R.; Licka, T.F. The Equine Neck and Its Function during Movement and Locomotion. Zoology 2015, 118, 364–376. [Google Scholar] [CrossRef]
- Galis, F. Why Do Almost All Mammals Have Seven Cervical Vertebrae? Developmental Constraints, Hox Genes, and Cancer. J. Exp. Zool. 1999, 285, 19–26. [Google Scholar] [CrossRef]
- Dyson, S.; Murray, R. Vertebral Column. In Equine Neck and Back Pathology: Diagnosis and Treatment; Elsevier: Edinburgh, UK, 2018; pp. 60–78. [Google Scholar]
- Nickel, R.; Schummer, A.; Seiferle, E. Skelett Des Stammes, Wirbelsäule- Columna Vertebralis. In Lehrbuch der Anatomie der Haustiere; Parey: Stuttgart, Germany, 2004; Volume 1, pp. 30–38, 59, 221–228. [Google Scholar]
- König, H.E.; Liebig, H.-G. Skelett Des Stammes. In Anatomie der Haussäugetiere; Schattauer: Stuttgart, Germany, 2005; pp. 82–88. [Google Scholar]
- Buchner, H.H.F.; Savelberg, H.H.C.M.; Schamhardt, H.C.; Barneveld, A. Inertial Properties of Dutch Warmblood Horses. J. Biomech. 1997, 30, 653–658. [Google Scholar] [CrossRef]
- Moore, J. General Biomechanics: The Horse As a Biological Machine. J. Equine Vet. Sci. 2010, 30, 379–383. [Google Scholar] [CrossRef]
- Zsoldos, R.R.; Krüger, B.; Licka, T.F. From Maturity to Old Age: Tasks of Daily Life Require a Different Muscle Use in Horses. Comp. Exerc. Physiol. 2014, 10, 75–88. [Google Scholar] [CrossRef]
- Hepburn, R. Cervical Articular Process Disease, Fractures, and Other Axial Skeletal Disorders. In Equine Neurology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 386–400. ISBN 978-1-118-99371-2. [Google Scholar]
- Story, M.R.; Haussler, K.K.; Nout-Lomas, Y.S.; Aboellail, T.A.; Kawcak, C.E.; Barrett, M.F.; Frisbie, D.D.; McIlwraith, C.W. Equine Cervical Pain and Dysfunction: Pathology, Diagnosis and Treatment. Animals 2021, 11, 422. [Google Scholar] [CrossRef]
- Harrison, L.M.; Sole-Guitart, A.; Ahern, B.; Goff, L.M. Functional Anatomy of the Equine Thoracolumbar Spine Related to Equine Back Rehabilitation. J. Equine Rehabil. 2025, 3, 100027. [Google Scholar] [CrossRef]
- Ehrle, A.; Ressel, L.; Ricci, E.; Singer, E.R. Structure and Innervation of the Equine Supraspinous and Interspinous Ligaments. Anat. Histol. Embryol. 2017, 46, 223–231. [Google Scholar] [CrossRef]
- May-Davis, S.; Kleine, J. Variations and Implications of the Gross Anatomy in the Equine Nuchal Ligament Lamellae. J. Equine Vet. Sci. 2014, 34, 1110–1113. [Google Scholar] [CrossRef]
- Gellman, K.S.; Bertram, J.E.A. The Equine Nuchal Ligament 1: Structural and Material Properties. Vet. Comp. Orthop. Traumatol. 2002, 15, 1–6. [Google Scholar] [CrossRef]
- Clayton, H.M.; Hobbs, S.-J. The Role of Biomechanical Analysis of Horse and Rider in Equitation Science. Appl. Anim. Behav. Sci. 2017, 190, 123–132. [Google Scholar] [CrossRef]
- Krings, M.; Nyakatura, J.A.; Boumans, M.L.L.M.; Fischer, M.S.; Wagner, H. Barn Owls Maximize Head Rotations by a Combination of Yawing and Rolling in Functionally Diverse Regions of the Neck. J. Anat. 2017, 231, 12–22. [Google Scholar] [CrossRef]
- Neto, E.N.A.; Barreto, R.M.; Duarte, R.M.; Magalhaes, J.P.; Bastos, C.A.C.M.; Ren, T.I.; Cavalcanti, G.D.C. Real-Time Head Pose Estimation for Mobile Devices. In Intelligent Data Engineering and Automated Learning—IDEAL 2012; Yin, H., Costa, J.A.F., Barreto, G., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7435, pp. 467–474. ISBN 978-3-642-32638-7. [Google Scholar]
- Ishii, T.; Mukai, Y.; Hosono, N.; Sakaura, H.; Fujii, R.; Nakajima, Y.; Tamura, S.; Iwasaki, M.; Yoshikawa, H.; Sugamoto, K. Kinematics of the Cervical Spine in Lateral Bending: In Vivo Three-Dimensional Analysis. Spine 2006, 31, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Mukai, Y.; Hosono, N.; Sakaura, H.; Nakajima, Y.; Sato, Y.; Sugamoto, K.; Yoshikawa, H. Kinematics of the Upper Cervical Spine in Rotation: In Vivo Three-Dimensional Analysis. Spine 2004, 29, E139–E144. [Google Scholar] [CrossRef]
- Panjabi, M.M.; Crisco, J.J.; Vasavada, A.; Oda, T.; Cholewicki, J.; Nibu, K.; Shin, E. Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load–Displacement Curves. Spine 2001, 26, 2692–2700. [Google Scholar] [CrossRef]
- Merten, L.J.F.; Manafzadeh, A.R.; Herbst, E.C.; Amson, E.; Tambusso, P.S.; Arnold, P.; Nyakatura, J.A. The Functional Significance of Aberrant Cervical Counts in Sloths: Insights from Automated Exhaustive Analysis of Cervical Range of Motion. Proc. R. Soc. B 2023, 290, 20231592. [Google Scholar] [CrossRef]
- Clayton, H.M.; Townsend, H.G.G. Kinematics of the Cervical Spine of the Adult Horse. Equine Vet. J. 1989, 21, 189–192. [Google Scholar] [CrossRef]
- Schulze, N.; Ehrle, A.; Weller, R.; Fritsch, G.; Gernhardt, J.; Ben Romdhane, R.; Lischer, C. Computed Tomographic Evaluation of Adjacent Segment Motion after Ex Vivo Fusion of Equine Third and Fourth Cervical Vertebrae. Vet. Comp. Orthop. Traumatol. 2020, 33, 001–008. [Google Scholar] [CrossRef]
- Schmidburg, I.; Pagger, H.; Zsoldos, R.R.; Mehnen, J.; Peham, C.; Licka, T.F. Movement Associated Reduction of Spatial Capacity of the Equine Cervical Vertebral Canal. Vet. J. 2012, 192, 525–528. [Google Scholar] [CrossRef]
- Pagger, H.; Schmidburg, I.; Peham, C.; Licka, T. Determination of the Stiffness of the Equine Cervical Spine. Vet. J. 2010, 186, 338–341. [Google Scholar] [CrossRef]
- Clayton, H.M.; Kaiser, L.J.; Lavagnino, M.; Stubbs, N.C. Evaluation of Intersegmental Vertebral Motion during Performance of Dynamic Mobilization Exercises in Cervical Lateral Bending in Horses. Am. J. Veter-Res. 2012, 73, 1153–1159. [Google Scholar] [CrossRef]
- Zsoldos, R.R.; Groesel, M.; Kotschwar, A.; Kotschwar, A.B.; Licka, T.; Peham, C. A Preliminary Modelling Study on the Equine Cervical Spine with Inverse Kinematics at Walk. Equine Vet. J. 2010, 42, 516–522. [Google Scholar] [CrossRef]
- Latash, M.L. The Bliss (Not the Problem) of Motor Abundance (Not Redundancy). Exp. Brain. Res. 2012, 217, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nakano, N.; Iino, Y.; Inaba, Y.; Fukashiro, S.; Yoshioka, S. Utilizing Hierarchical Redundancy for Accurate Throwing Movement. Hum. Mov. Sci. 2022, 81, 102918. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Jana, S.; Ghosal, A.; Murthy, A. Exploration of Joint Redundancy but Not Task Space Variability Facilitates Supervised Motor Learning. Proc. Natl. Acad. Sci. USA 2016, 113, 14414–14419. [Google Scholar] [CrossRef] [PubMed]
- Edelman, G.M.; Gally, J.A. Degeneracy and Complexity in Biological Systems. Proc. Natl. Acad. Sci. USA 2001, 98, 13763–13768. [Google Scholar] [CrossRef]
- Papi, E.; Bull, A.M.J.; McGregor, A.H. Spinal Segments Do Not Move Together Predictably during Daily Activities. Gait Posture 2019, 67, 277–283. [Google Scholar] [CrossRef]
- Egenvall, A.; Engström, H.; Byström, A. Back Motion in Unridden Horses in Walk, Trot and Canter on a Circle. Vet. Res. Commun. 2023, 47, 1831–1843. [Google Scholar] [CrossRef]
- Von Borstel, U.; Kienapfel, K.; McLean, A.; Wilkins, C.; McGreevy, P. Hyperflexing the Horse’s Neck: A Systematic Review and Meta-Analysis. Sci. Rep. 2024, 14, 22886. [Google Scholar] [CrossRef]
- Rhodin, M.; Johnston, C.; Holm, K.R.; Wennerstrand, J.; Drevemo, S. The Influence of Head and Neck Position on Kinematics of the Back in Riding Horses at the Walk and Trot. Equine Vet. J. 2005, 37, 7–11. [Google Scholar] [CrossRef]
- Johnson, J.A.; Da Costa, R.C.; Bhattacharya, S.; Goel, V.; Allen, M.J. Kinematic Motion Patterns of the Cranial and Caudal Canine Cervical Spine. Vet. Surg. 2011, 40, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Shah, A.; Kothari, M.; Gaikwad, S.; Dhande, P. Comparative Quantitative Analysis of Osseous Anatomy of the Craniovertebral Junction of Tiger, Horse, Deer, and Humans. J. Craniovert. Jun. Spine 2011, 2, 32. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, I.G.; Watson, A.G.; Heissan, J.A. Congenital Occipitoatlantoaxial Malformations in the Horse. Equine Vet. J. 1978, 10, 103–113. [Google Scholar] [CrossRef]
- Licka, T. Closed Reduction of an Atlanto-occipital and Atlantoaxial Dislocation in a Foal. Vet. Rec. 2002, 151, 356–357. [Google Scholar] [CrossRef]
- Puangthong, C.; Bootcha, R.; Petchdee, S.; Chanda, M. Chronic Atlantoaxial Luxation Imaging Features in a Pony with Intermittent Neck Stiffness. J. Equine Vet. Sci. 2020, 91, 103128. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, H.; Wang, C.; Tsai, T.-Y.; Yu, Y.; Ostergaard, P.; Li, G.; Cha, T. Intervertebral Range of Motion Characteristics of Normal Cervical Spinal Segments (C0-T1) during in Vivo Neck Motions. J. Biomech. 2020, 98, 109418. [Google Scholar] [CrossRef]
- Cook, C.; Hegedus, E.; Showalter, C.; Sizer, P.S. Coupling Behavior of the Cervical Spine: A Systematic Review of the Literature. J. Manip. Physiol. Ther. 2006, 29, 570–575. [Google Scholar] [CrossRef]
- Panjabi, M.M.; Summers, D.J.; Pelker, R.R.; Videman, T.; Friedlaender, G.E.; Southwick, W.O. Three-dimensional Load-displacement Curves Due to Forces on the Cervical Spine. J. Orthop. Res. 1986, 4, 152–161. [Google Scholar] [CrossRef]
- Anderst, W.J.; Donaldson, W.F.; Lee, J.Y.; Kang, J.D. Cervical Motion Segment Percent Contributions to Flexion-Extension During Continuous Functional Movement in Control Subjects and Arthrodesis Patients. Spine 2013, 38, E533–E539. [Google Scholar] [CrossRef]
- Reardon, R.J.M.; Bailey, R.; Walmsley, J.P.; Heller, J.; Lischer, C. An In Vitro Biomechanical Comparison of a Locking Compression Plate Fixation and Kerf Cut Cylinder Fixation for Ventral Arthrodesis of the Fourth and the Fifth Equine Cervical Vertebrae: Ventral Arthrodesis of Equine Cervical Vertebrae. Vet. Surg. 2010, 39, 980–990. [Google Scholar] [CrossRef] [PubMed]
- Baudisch, N.; Schneidewind, L.; Becke, S.; Keller, M.; Overhoff, M.; Tettke, D.; Gruben, V.; Eichler, F.; Meyer, H.J.; Lischer, C.; et al. Computed Tomographic Study Analysing Functional Biomechanics in the Thoracolumbar Spine of Horses with and without Spinal Pathology. Anat. Histol. Embryol. 2024, 53, e13016. [Google Scholar] [CrossRef]
- Nestadt, C.L.; Lusi, C.M.; Davies, H.M.S. Effect of Different Head-and-Neck Positions on Nuchal Ligament Dimensions in Fetal Foals. J. Equine Vet. Sci. 2015, 35, 153–160. [Google Scholar] [CrossRef]
- Dippel, M.; Zsoldos, R.R.; Licka, T.F. An Equine Cadaver Study Investigating the Relationship between Cervical Flexion, Nuchal Ligament Elongation and Pressure at the First and Second Cervical Vertebra. Vet. J. 2019, 252, 105353. [Google Scholar] [CrossRef] [PubMed]
- Valentin, S.; Grösel, M.; Licka, T. The Presence of Long Spinal Muscles Increases Stiffness and Hysteresis of the Caprine Spine In-Vitro. J. Biomech. 2012, 45, 2506–2512. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Vangipuram, G.; Fisher, M.B.; Yang, G.; Hsu, S.; Bianchi, J.; Ronholdt, C.; Woo, S.L. The Effects of Multiple Freeze–Thaw Cycles on the Biomechanical Properties of the Human Bone-patellar Tendon-bone Allograft. J. Orthop. Res. 2011, 29, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.K.; Woo, S.L.-Y.; Takakura, Y.; Gabriel, M.T.; Abramowitch, S.D. The Effects of Refreezing on the Viscoelastic and Tensile Properties of Ligaments. J. Biomech. 2006, 39, 1153–1157. [Google Scholar] [CrossRef]
- Panjabi, M.M.; Krag, M.; Summers, D.; Videman, T. Biomechanical Time-tolerance of Fresh Cadaveric Human Spine Specimens. J. Orthop. Res. 1985, 3, 292–300. [Google Scholar] [CrossRef]
- Nickel, R.; Schummer, A.; Seiferle, E. Muskeln Des Stammes. In Lehrbuch der Anatomie der Haustiere; Parey: Stuttgart, Germany, 2004; Volume 1, pp. 333–403. [Google Scholar]
- König, H.E.; Liebich, H.-G. Faszien Und Muskeln Des Kopfes Und Stammes. In Anatomie der Haussäugetiere; Schattauer: Stuttgart, Germany, 2005; pp. 101–140. [Google Scholar]
Breed | Sex | Age (yrs) | Reason for Euthanasia | |
---|---|---|---|---|
Horse A | Warmblood | Gelding | 13 | Tumour conchae/sinus |
Horse B | Unknown | Mare | 6 | Colic |
Horse C | German Riding Pony | Mare | 24 | Spleen rupture |
Horse D | Hanoverian | Gelding | 10 | Fracture third phalanx |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosch, K.; Zsoldos, R.R.; Hartig, A.; Licka, T. Motion Coupling at the Cervical Vertebral Joints in the Horse—An Ex Vivo Study Using Bone-Anchored Markers. Animals 2025, 15, 2259. https://doi.org/10.3390/ani15152259
Bosch K, Zsoldos RR, Hartig A, Licka T. Motion Coupling at the Cervical Vertebral Joints in the Horse—An Ex Vivo Study Using Bone-Anchored Markers. Animals. 2025; 15(15):2259. https://doi.org/10.3390/ani15152259
Chicago/Turabian StyleBosch, Katharina, Rebeka R. Zsoldos, Astrid Hartig, and Theresia Licka. 2025. "Motion Coupling at the Cervical Vertebral Joints in the Horse—An Ex Vivo Study Using Bone-Anchored Markers" Animals 15, no. 15: 2259. https://doi.org/10.3390/ani15152259
APA StyleBosch, K., Zsoldos, R. R., Hartig, A., & Licka, T. (2025). Motion Coupling at the Cervical Vertebral Joints in the Horse—An Ex Vivo Study Using Bone-Anchored Markers. Animals, 15(15), 2259. https://doi.org/10.3390/ani15152259