Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Transect Survey and Sample Collection
2.2. DNA Extraction and Amplification
2.3. Sequencing and Data Processing
2.4. Data Analysis
3. Results
3.1. Diet Structure
3.2. Feeding and Nesting Relationship Networks
3.3. Temporal and Species-Specific Dietary Variations
4. Discussion
4.1. Avian Foraging Preference and Flexibility
4.2. Key Taxa and Implications for Forest Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; Working Paper No. ESA/P/WP.252; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Jokimäki, J.; Suhonen, J.; Kaisanlahti-Jokimäki, M.-L. Urban core areas are important for species conservation: A European-level analysis of breeding bird species. Landsc. Urban Plan. 2018, 178, 73–81. [Google Scholar] [CrossRef]
- Whelan, C.J.; Şekercioğlu, Ç.H.; Wenny, D.G. Why birds matter: From economic ornithology to ecosystem services. J. Ornithol. 2015, 156, 227–238. [Google Scholar] [CrossRef]
- Villegas, M.; Garitano-Zavala, A. Bird community responses to different urban conditions in La Paz, Bolivia. Urban Ecosyst. 2010, 13, 375–391. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Li, X.; Yang, J. Exploring the relationship between frugivorous birds and fruit trees in urban parks using citizen science data. Urban Ecosyst. 2025, 28, 1–15. [Google Scholar] [CrossRef]
- Lee, P.-Y.; Rotenberry, J.T. Relationships between bird species and tree species assemblages in forested habitats of eastern North America. J. Biogeogr. 2005, 32, 1139–1150. [Google Scholar] [CrossRef]
- Mezquida, E.T. Nest site selection and nesting success of five species of passerines in a South American open Prosopis woodland. J. Ornithol. 2004, 145, 16–22. [Google Scholar] [CrossRef]
- Buchanan, G.M.; Grant, M.C.; Sanderson, R.A.; Pearce-Higgins, J.W. The contribution of invertebrate taxa to moorland bird diets and the potential implications of land-use management. IBIS 2006, 148, 615–628. [Google Scholar] [CrossRef]
- Mainwaring, M.C.; Hartley, I.R.; Lambrechts, M.M.; Deeming, D.C. The design and function of birds’ nests. Ecol. Evol. 2014, 4, 3909–3928. [Google Scholar] [CrossRef] [PubMed]
- Kleindorfer, S. Nesting success in Darwin’s small tree finch, Camarhynchus parvulus: Evidence of female preference for older males and more concealed nests. Anim. Behav. 2007, 74, 795–804. [Google Scholar] [CrossRef]
- Smith, P.G. Characteristics of urban natural areas influencing winter bird use in southern Ontario, Canada. Environ. Manag. 2007, 39, 338–352. [Google Scholar] [CrossRef]
- Newell, F.L.; Rodewald, A.D. Role of topography, canopy structure, and floristics in nest-site selection and nesting success of canopy songbirds. For. Ecol. Manag. 2011, 262, 739–749. [Google Scholar] [CrossRef]
- Brightsmith, D.J. Parrot nesting in southeastern Peru: Seasonal patterns and keystone trees. Wilson Bull. 2005, 117, 296–305. [Google Scholar] [CrossRef]
- Galbraith, J.A.; Beggs, J.R.; Jones, D.N.; Stanley, M.C. Supplementary feeding restructures urban bird communities. Proc. Natl. Acad. Sci. USA 2015, 112, E2648–E2657. [Google Scholar] [CrossRef]
- Messeder, J.V.S.; Guerra, T.J.; Dáttilo, W.; Silveira, F.A. Searching for keystone plant resources in fruit-frugivore interaction networks across the Neotropics. Biotropica 2020, 52, 857–870. [Google Scholar] [CrossRef]
- Díaz, A.; Reynoso, A.; Pellón, J.J.; Camarena, N.; Tataje, D.; Quispe-Torres, A.; Montenegro, J.-F.; Hein, L. Diet and bird-plant interaction networks based on citizen science data in Lima, Peru: Exotic and native species are important. Stud. Neotrop. Fauna Environ. 2024, 59, 1028–1043. [Google Scholar] [CrossRef]
- Holland, J.; Hutchison, M.; Smith, B.; Aebischer, N. A review of invertebrates and seed-bearing plants as food for farmland birds in Europe. Ann. Appl. Biol. 2006, 148, 49–71. [Google Scholar] [CrossRef]
- Jordán, F. Keystone species and food webs. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, B.D.; Snider, A.M.; Forsman, A.M.; Hobson, K.A.; Latta, S.C.; Miller, E.T.; Polito, M.J.; Powell, L.L.; Rogers, S.L.; Sherry, T.W. Current methods and future directions in avian diet analysis. Auk 2022, 139, ukab077. [Google Scholar] [CrossRef]
- Srivathsan, A.; Ang, A.; Vogler, A.P.; Meier, R. Fecal metagenomics for the simultaneous assessment of diet, parasites, and population genetics of an understudied primate. Front. Zool. 2016, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hacker, C.E.; Cong, W.; Xue, Y.; Li, J.; Zhang, Y.; Wu, L.; Ji, Y.; Dai, Y.; Li, Y.; Jin, L. Dietary diversity and niche partitioning of carnivores across the Qinghai–Tibetan Plateau of China using DNA metabarcoding. J. Mammal. 2022, 103, 1005–1018. [Google Scholar] [CrossRef]
- Lin, L.; Guo, Z.; Bai, J.; Zhong, Z.; Li, J.; Guo, Q. Seasonal covariations of diet-gut microbiota in the adaptation of the newly reintroduced Père David’s deer (Elaphurus davidianus) to the northern habitat. Glob. Ecol. Conserv. 2024, 52, e02983. [Google Scholar] [CrossRef]
- Cong, W.; Li, J.; Hacker, C.; Li, Y.; Zhang, Y.; Jin, L.; Zhang, Y.; Li, D.; Xue, Y.; Zhang, Y. Different coexistence patterns between apex carnivores and mesocarnivores based on temporal, spatial, and dietary niche partitioning analysis in Qilian Mountain National Park, China. elife 2024, 13, RP90559. [Google Scholar] [CrossRef]
- Liang, H.; Wen, J.; Wang, M.; Lan, X.; Lin, D.; Zhou, X.; Bao, W. Bird diversity survey and analysis at Xishan Forest Unit in Beijing. J. Biol. 2015, 32, 63–67. [Google Scholar] [CrossRef]
- eBird. Available online: https://ebird.org/home (accessed on 30 June 2024).
- Xeno-Canto: Sharing Wildlife Sounds from Around the World. Available online: https://xeno-canto.org (accessed on 30 June 2024).
- Mackinnon, J.; Phillipps, K.; He, F. A Field Guide to the Birds of China; Hunan Education Publishing House: Changsha, China, 2000. [Google Scholar]
- Suzuki, M. Bird’s Nests of the World; China Children’s Press: Beijing, China, 2014. [Google Scholar]
- Zheng, G.M. Identification of Common Bird Nests and Eggs in Hebei Province. Bull. Biol. 1963, 4, 9–14. [Google Scholar]
- Jiang, F.; Gao, H.; Qin, W.; Song, P.; Wang, H.; Zhang, J.; Liu, D.; Wang, D.; Zhang, T. Marked seasonal variation in structure and function of gut microbiota in forest and alpine musk deer. Front. Microbiol. 2021, 12, 699797. [Google Scholar] [CrossRef]
- Erickson, D.L.; Reed, E.; Ramachandran, P.; Bourg, N.A.; McShea, W.J.; Ottesen, A. Reconstructing a herbivore’s diet using a novel rbcL DNA mini-barcode for plants. AoB Plants 2017, 9, plx015. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.J.; Mata, V.A.; Velo-Antón, G. COI metabarcoding provides insights into the highly diverse diet of a generalist salamander, Salamandra salamandra (Caudata: Salamandridae). Diversity 2022, 14, 89. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yu, H.; Yu, Y.; Huang, J.; Zhou, Z.; Zeng, J.; Chen, P.; Xiao, F.; He, Z.; Yan, Q. Ecological stability of microbial communities in Lake Donghu regulated by keystone taxa. Ecol. Indic. 2022, 136, 108695. [Google Scholar] [CrossRef]
- Zhu, D.; Lu, L.; Zhang, Z.; Qi, D.; Zhang, M.; O’Connor, P.; Wei, F.; Zhu, Y.-G. Insights into the roles of fungi and protist in the giant panda gut microbiome and antibiotic resistome. Environ. Int. 2021, 155, 106703. [Google Scholar] [CrossRef]
- Bascompte, J.; Jordano, P. Plant-animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 567–593. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; pp. 361–362. [Google Scholar] [CrossRef]
- Layeghifard, M.; Hwang, D.M.; Guttman, D.S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 2017, 25, 217–228. [Google Scholar] [CrossRef]
- Yuan, M.; Guo, X.; Wu, L.; Zhang, Y.; Xiao, N.; Ning, D.; Shi, Z.; Zhou, X.; Wu, L.; Yang, Y. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 2021, 11, 343–348. [Google Scholar] [CrossRef]
- Goecks, J.; Nekrutenko, A.; Taylor, J.; The Galaxy Team. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11, R86. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Reese, A.T.; Kartzinel, T.R.; Petrone, B.L.; Turnbaugh, P.J.; Pringle, R.M.; David, L.A. Using DNA metabarcoding to evaluate the plant component of human diets: A proof of concept. MSystems 2019, 4, 419–458. [Google Scholar] [CrossRef] [PubMed]
- Mägi, M.; Mänd, R.; Tamm, H.; Sisask, E.; Kilgas, P.; Tilgar, V. Low reproductive success of great tits in the preferred habitat: A role of food availability. Ecoscience 2009, 16, 145–157. [Google Scholar] [CrossRef]
- O’Brien, E.L.; Dawson, R.D. Plumage color and food availability affect male reproductive success in a socially monogamous bird. Behav. Ecol. 2011, 22, 66–72. [Google Scholar] [CrossRef]
- Yorio, P.M.; Giaccardi, M. Urban and fishery waste tips as food sources for birds in northern coastal Patagonia, Argentina. Ornitol. Neotrop. 2002, 13, 283–292. [Google Scholar]
- Gray, E.R.; van Heezik, Y. Exotic trees can sustain native birds in urban woodlands. Urban Ecosyst. 2016, 19, 315–329. [Google Scholar] [CrossRef]
- Högstedt, G. Effect of additional food on reproductive success in the magpie (Pica pica). J. Anim. Ecol. 1981, 1, 219–229. [Google Scholar] [CrossRef]
- Evans, B.A.; Gawlik, D.E. Urban food subsidies reduce natural food limitations and reproductive costs for a wetland bird. Sci. Rep. 2020, 10, 14021. [Google Scholar] [CrossRef]
- Bao, M.; Yang, S.; Yang, Y.; Zhou, S.; Li, C. Tolerance distance of common birds to human disturbances in urban areas. J. Biol. 2019, 1, 55–59. [Google Scholar] [CrossRef]
- Chace, J.F.; Walsh, J.J. Urban effects on native avifauna: A review. Landsc. Urban Plan. 2006, 74, 46–69. [Google Scholar] [CrossRef]
- Reed, T.E.; Warzybok, P.; Wilson, A.J.; Bradley, R.W.; Wanless, S.; Sydeman, W.J. Timing is everything: Flexible phenology and shifting selection in a colonial seabird. J. Anim. Ecol. 2009, 78, 376–387. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, C.F.; Dilks, P.J. Foods and foraging of forest birds in temperate rainforest, South Westland, New Zealand. N. Z. J. Ecol. 1994, 2, 87–107. [Google Scholar]
- Capilla-Lasheras, P.; Thompson, M.J.; Sánchez-Tójar, A.; Haddou, Y.; Branston, C.J.; Réale, D.; Charmantier, A.; Dominoni, D.M. A global meta-analysis reveals higher variation in breeding phenology in urban birds than in their non-urban neighbours. Ecol. Lett. 2022, 25, 2552–2570. [Google Scholar] [CrossRef]
- Wu ZhengYi, W.Z.; Raven, P.; Hong DeYuan, H.D. MORUS. In Flora of China. Volume 5: Ulmaceae Through Basellaceae; Harvard Papers in Botany: New York, NY, USA, 2003; pp. 22–26. [Google Scholar]
- Jin, Q.; Zhu, H.; Wang, S.; Li, K.; Chen, X.; Zhao, H.; Ye, K. Preference of birds to fruit characteristics of common landscaping trees in campus green spaces in Hangzhou. J. Zhejiang AF Univ. 2022, 6, 1359–1368. [Google Scholar] [CrossRef]
- Herrera, C.M. Avian interference of insect frugivory: An exploration into the plant-bird-fruit pest evolutionary triad. Oikos 1984, 2, 203–210. [Google Scholar] [CrossRef]
- Coblentz, K.E. Relative prey abundance and predator preference predict individual diet variation in prey-switching experiments. Ecology 2020, 101, e02911. [Google Scholar] [CrossRef]
- Hespenheide, H.A. Food preference and the extent of overlap in some insectivorous birds, with special reference to the Tyrannidae. IBIS 1971, 113, 59–72. [Google Scholar] [CrossRef]
- Molokwu, M.N.; Nilsson, J.Å.; Olsson, O. Diet selection in birds: Trade-off between energetic content and digestibility of seeds. Behav. Ecol. 2011, 22, 639–647. [Google Scholar] [CrossRef]
- Renner, S.C.; Baur, S.; Possler, A.; Winkler, J.; Kalko, E.K.; Bates, P.J.; Mello, M.A. Food preferences of winter bird communities in different forest types. PLoS ONE 2012, 7, e53121. [Google Scholar] [CrossRef]
- Chatterjee, S.; Basu, P. Food preferences determine habitat selection at multiple scales: Implication for bird conservation in tropical forests. Anim. Conserv. 2018, 21, 332–342. [Google Scholar] [CrossRef]
- Bender, I.M.; Kissling, W.D.; Böhning-Gaese, K.; Hensen, I.; Kühn, I.; Wiegand, T.; Dehling, D.M.; Schleuning, M. Functionally specialised birds respond flexibly to seasonal changes in fruit availability. J. Anim. Ecol. 2017, 86, 800–811. [Google Scholar] [CrossRef]
- Bender, I.M.; Kissling, W.D.; Blendinger, P.G.; Böhning-Gaese, K.; Hensen, I.; Kühn, I.; Muñoz, M.C.; Neuschulz, E.L.; Nowak, L.; Quitián, M. Morphological trait matching shapes plant–frugivore networks across the Andes. Ecography 2018, 41, 1910–1919. [Google Scholar] [CrossRef]
- Xu, Y. Preliminary Study on Breeding Behavior and Trophic Ecology of the Eurasian Blackbird (Turdus merula). China Acad. J. 2009, 3, 31–33. [Google Scholar]
- Karp, D.S.; Mendenhall, C.D.; Sandí, R.F.; Chaumont, N.; Ehrlich, P.R.; Hadly, E.A.; Daily, G.C. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 2013, 16, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- García, D.; Rumeu, B.; Illera, J.C.; Minarro, M.; Palomar, G.; González-Varo, J.P. Common birds combine pest control and seed dispersal in apple orchards through a hybrid interaction network. Agric. Ecosyst. Environ. 2024, 365, 108927. [Google Scholar] [CrossRef]
- Møller, A.P. Nest predation and nest site choice in passerine birds in habitat patches of different size: A study of magpies and blackbirds. Oikos 1988, 2, 215–221. [Google Scholar] [CrossRef]
- Andren, H. Corvid density and nest predation in relation to forest fragmentation: A landscape perspective. Ecology 1992, 73, 794–804. [Google Scholar] [CrossRef]
- Stake, M.M.; Cimprich, D.A. Using Video to Monitor Predation at Black-Capped Vireo Nests. Condor Ornithol. Appl. 2003, 105, 348–357. [Google Scholar] [CrossRef]
- Thompson III, F.R. Factors affecting nest predation on forest songbirds in North America. IBIS 2007, 149, 98–109. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Song, J.; Li, L.; Bi, Z.; Fu, X. A Study on Bird Conmunity in Spring and Summer at Donglingshan Area of Beijing. J. Beijing Norm. Univ. Nat. Sci. 2000, 5, 677–682. [Google Scholar]
- Li, X. A Study on Bird Biodiversity and Conservation in the Mountainous Areas in Beijing. Doctoral Thesis, Beijing Forestry University, Beijing, China, 2008. [Google Scholar]
- He, H.; Wang, N.; Dong, L. A Case Study to Investigate the Foraging Pattern of Urban Birds on Edible Plants in Beijing. Chin. J. Zool. 2021, 4, 491–499. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, H.; Xia, Z.; Li, F.; Zhong, W.; Qiao, Y.; Li, Z.; Qi, X. Research on Reforestation Technology of Degraded Robbin pseudoacacia Plantation. J. Green Sci. Technol. 2023, 25, 117–120. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Zhou, L.; Li, J.; Zhang, Z.; Li, J. Leiothrix in Daweishan of Liuyang Nesting tree selection based on concealment of nest affecting breeding success: A case study of Red-billed City, Hunan Province. Chin. J. Ecol. 2024, 5, 1354–1359. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Xu, J.; Ding, Y.; Wu, S.; Tang, H.; Li, H.; Wang, X.; Ma, B.; Wang, Z. The influence of habitat types on bird community in urban parks. Acta Ecol. Sin. 2015, 12, 4186–4195. [Google Scholar] [CrossRef][Green Version]
- Peng, Z.; Gao, T.; Shi, C.; Chen, Y.; Bi, J.; Qiu, L. The relationships between vegetation structure, habitat characteristics and bird diversityin campus green spaces. Chin. J. Ecol. 2020, 9, 3032–3042. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Zhao, Y.; Yuan, C.; Zhang, Y.; Qiu, S.; Cao, J. Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation. Animals 2025, 15, 2271. https://doi.org/10.3390/ani15152271
Lin L, Zhao Y, Yuan C, Zhang Y, Qiu S, Cao J. Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation. Animals. 2025; 15(15):2271. https://doi.org/10.3390/ani15152271
Chicago/Turabian StyleLin, Lele, Yongjian Zhao, Chao Yuan, Yushu Zhang, Siyu Qiu, and Jixin Cao. 2025. "Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation" Animals 15, no. 15: 2271. https://doi.org/10.3390/ani15152271
APA StyleLin, L., Zhao, Y., Yuan, C., Zhang, Y., Qiu, S., & Cao, J. (2025). Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation. Animals, 15(15), 2271. https://doi.org/10.3390/ani15152271