Feature Extraction and Automatic Recognition Model Construction for Head Back Posture During the Parturition Process in Dairy Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Video Capture
2.2. Analysis of the Duration of Head Back During the Lying Parturition Process in Dairy Cows
2.3. Construction of Dataset for Recognition Model
2.4. Training of the YOLOv8 Recognition Model
2.5. Model Validation
2.6. Model Training Environment and Parameter Settings
2.7. Data Processing and Analysis
3. Results
3.1. Characteristics of Head Back During the Lying Parturition Process in Dairy Cows
3.2. Evaluating the Performance of YOLOv8 in Recognizing Calving Cow Head Postures
3.3. Validation Analysis of Camera Angle and Environmental Impact on Recognizing Calving Cow Head Postures
3.4. Analysis of Behavioral Changes in Primiparous and Multiparous Dairy Cows During Calving
3.5. Correlation Between Maternal Behavior Patterns During Primiparous and Multiparous Calving in Dairy Cows
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mee, J.F. Prevalence and risk factors for dystocia in dairy cattle: A review. Vet. J. 2008, 176, 93–101. [Google Scholar] [CrossRef]
- Keceli, A.S.; Catal, C.; Kaya, A.; Tekinerdogan, B. Development of a recurrent neural networks-based calving prediction model using activity and behavioral data. Comput. Electron. Agric. 2020, 170, 105285. [Google Scholar] [CrossRef]
- Umaña Sedó, S.G.; Renaud, D.L.; Morrison, J.; Pearl, D.L.; Mee, J.F.; Winder, C.B. Using an automated tail movement sensor device to predict calving time in dairy cows. JDS Commun. 2024, 5, 317–321. [Google Scholar] [CrossRef]
- Lanzoni, L.; Chincarini, M.; Giammarco, M.; Fusaro, I.; Iannotta, M.; Podaliri, M.; Contri, A.; Gloria, A.; Vignola, G. Changes in the behaviour before normal calving to predict its onset in Mediterranean buffaloes heifers. Appl. Anim. Behav. Sci. 2022, 254, 105721. [Google Scholar] [CrossRef]
- Higaki, S.; Koyama, K.; Sasaki, Y.; Abe, K.; Honkawa, K.; Horii, Y.; Minamino, T.; Mikurino, Y.; Okada, H.; Miwakeichi, F.; et al. Technical note: Calving prediction in dairy cattle based on continuous measurements of ventral tail base skin temperature using supervised machine learning. J. Dairy Sci. 2020, 103, 8535–8540. [Google Scholar] [CrossRef]
- Mainau, E.; Manteca, X. Pain and discomfort caused by parturition in cows and sows. Appl. Anim. Behav. Sci. 2011, 135, 241–251. [Google Scholar] [CrossRef]
- Ouellet, V.; Vasseur, E.; Heuwieser, W.; Burfeind, O.; Maldague, X.; Charbonneau, É. Evaluation of calving indicators measured by automated monitoring devices to predict the onset of calving in Holstein dairy cows. J. Dairy Sci. 2016, 99, 1539–1548. [Google Scholar] [CrossRef]
- Kebede, A.; Mohammed, A.K.; Tadessse, W.; Abera, D.; Nekemte, E. Review on Economic Impacts of Dystocia in Dairy Farm and Its Management and Prevention Methods. Nat. Sci. 2017, 15, 32–42. [Google Scholar]
- Kovács, L.; Kézér, F.L.; Ruff, F.; Szenci, O. Timing of obstetrical assistance affects peripartal cardiac autonomic function and early maternal behavior of dairy cows. Physiol. Behav. 2016, 165, 202–210. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Szenci, O. Effect of calving process on the outcomes of delivery and postpartum health of dairy cows with unassisted and assisted calvings. J. Dairy Sci. 2016, 99, 7568–7573. [Google Scholar] [CrossRef]
- Edwards, E.M.; Krawczel, P.D.; Dann, H.M.; Schneider, L.G.; Whitlock, B.; Proudfoot, K.L. Calving location preference and changes in lying and exploratory behavior of preparturient dairy cattle with access to pasture. J. Dairy Sci. 2020, 103, 5455–5465. [Google Scholar] [CrossRef]
- Lamanna, M.; Bovo, M.; Cavallini, D. Wearable Collar Technologies for Dairy Cows: A Systematized Review of the Current Applications and Future Innovations in Precision Livestock Farming. Animals 2025, 15, 458. [Google Scholar] [CrossRef]
- Cavallini, D.; Giammarco, M.; Buonaiuto, G.; Vignola, G.; De Matos Vettori, J.; Lamanna, M.; Prasinou, P.; Colleluori, R.; Formigoni, A.; Fusaro, I. Two years of precision livestock management: Harnessing ear tag device behavioral data for pregnancy detection in free-range dairy cattle on silage/hay-mix ration. Front. Anim. Sci. 2025, 6, 1547395. [Google Scholar] [CrossRef]
- Barraclough, R.A.C.; Shaw, D.J.; Boyce, R.; Haskell, M.J.; Macrae, A.I. The behavior of dairy cattle in late gestation: Effects of parity and dystocia. J. Dairy Sci. 2020, 103, 714–722. [Google Scholar] [CrossRef]
- Crociati, M.; Sylla, L.; De Vincenzi, A.; Stradaioli, G.; Monaci, M. How to Predict Parturition in Cattle? A Literature Review of Automatic Devices and Technologies for Remote Monitoring and Calving Prediction. Animals 2022, 12, 405. [Google Scholar] [CrossRef]
- Ono, Y.; Hatano, R.; Ohwada, H.; Nishiyama, H. Predicting Cow’s Delivery Using Movement and Position Data Based on Machine Learning. EasyChair 2019, 7, 310–316. [Google Scholar]
- Szenci, O. Accuracy to Predict the Onset of Calving in Dairy Farms by Using Different Precision Livestock Farming Devices. Animals 2022, 12, 2006. [Google Scholar] [CrossRef]
- Saint-Dizier, M.; Chastant-Maillard, S. Potential of connected devices to optimize cattle reproduction. Theriogenology 2018, 112, 53–62. [Google Scholar] [CrossRef]
- Saint-Dizier, M.; Chastant-Maillard, S. Methods and on-farm devices to predict calving time in cattle. Vet. J. 2015, 205, 349–356. [Google Scholar] [CrossRef]
- Sumi, K.; Zin, T.T.; Kobayashi, I.; Horii, Y. A study on cow monitoring system for calving process. In Proceedings of the 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 24–27 October 2017; pp. 1–2. [Google Scholar]
- González-Sánchez, C.; Sánchez-Brizuela, G.; Cisnal, A.; Fraile, J.C.; Pérez-Turiel, J.; Fuente-López, E. Prediction of Cow Calving in Extensive Livestock Using a New Neck-Mounted Sensorized Wearable Device: A Pilot Study. Sensors 2021, 21, 8060. [Google Scholar] [CrossRef]
- Wisnieski, L.; Norby, B.; Pierce, S.J.; Becker, T.; Gandy, J.C.; Sordillo, L.M. Predictive models for early lactation diseases in transition dairy cattle at dry-off. Prev. Vet. Med. 2019, 163, 68–78. [Google Scholar] [CrossRef]
- Liboreiro, D.N.; Machado, K.S.; Silva, P.R.; Maturana, M.M.; Nishimura, T.K.; Brandão, A.P.; Endres, M.I.; Chebel, R.C. Characterization of peripartum rumination and activity of cows diagnosed with metabolic and uterine diseases. J. Dairy Sci. 2015, 98, 6812–6827. [Google Scholar] [CrossRef]
- Mao, A.; Huang, E.; Wang, X.; Liu, K. Deep learning-based animal activity recognition with wearable sensors: Overview, challenges, and future directions. Comput. Electron. Agric. 2023, 211, 108043. [Google Scholar] [CrossRef]
- Eerdekens, A.; Deruyck, M.; Fontaine, J.; Martens, L.; De Poorter, E.; Plets, D.; Joseph, W. A framework for energy-efficient equine activity recognition with leg accelerometers. Comput. Electron. Agric. 2021, 183, 106020. [Google Scholar] [CrossRef]
- Belaid, M.A.; Rodriguez-Prado, M.; López-Suárez, M.; Rodríguez-Prado, D.V.; Calsamiglia, S. Prepartum behavior changes in dry Holstein cows at risk of postpartum diseases. J. Dairy Sci. 2021, 104, 4575–4583. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, J.; Ying, X.; Lu, C.; Zhou, X.; Gao, Y.; Wang, L.; Liu, H.; Song, H. Utilization of deep learning models to predict calving time in dairy cattle from tail acceleration data. Comput. Electron. Agric. 2024, 225, 109253. [Google Scholar] [CrossRef]
- Proudfoot, K.L.; Jensen, M.B.; Weary, D.M.; von Keyserlingk, M.A. Dairy cows seek isolation at calving and when ill. J. Dairy Sci. 2014, 97, 2731–2739. [Google Scholar] [CrossRef]
- Borchers, M.R.; Chang, Y.M.; Tsai, I.C.; Wadsworth, B.A.; Bewley, J.M. A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors. J. Dairy Sci. 2016, 99, 7458–7466. [Google Scholar] [CrossRef]
- Mainau, E.; Cuevas, A.; Ruiz-de-la-Torre, J.L.; Abbeloos, E.; Manteca, X. Effect of meloxicam administration after calving on milk production, acute phase proteins, and behavior in dairy cows. J. Vet. Behav. 2014, 9, 357–363. [Google Scholar] [CrossRef]
- Streyl, D.; Sauter-Louis, C.; Braunert, A.; Lange, D.; Weber, F.; Zerbe, H. Establishment of a standard operating procedure for predicting the time of calving in cattle. J. Vet. Sci. 2011, 12, 177–185. [Google Scholar] [CrossRef]
- von Keyserlingk, M.A.; Rushen, J.; de Passillé, A.M.; Weary, D.M. Invited review: The welfare of dairy cattle—Key concepts and the role of science. J. Dairy Sci. 2009, 92, 4101–4111. [Google Scholar] [CrossRef]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Clark, P.M.; Raggatt, P.R.; Price, C.P. Antibodies interfering in immunometric assays. Clin. Chem. 1985, 31, 1762. [Google Scholar] [CrossRef] [PubMed]
- Saifudin, A.L.I.; Madyawati, S.P.; Yuadi, I.; Rimayanti, R.; Mustofa, I.; Rulaningtyas, R.; Gunawan, T.S.; Besari, A.R.A. Monitoring cow behavior based on lying, standing, eating, and ruminating recognition using YOLOv8. Turk. J. Vet. Anim. Sci. 2024, 48, 190–197. [Google Scholar] [CrossRef]
- Zhao, K.; Duan, Y.; Chen, J.; Li, Q.; Hong, X.; Zhang, R.; Wang, M. Detection of Respiratory Rate of Dairy Cows Based on Infrared Thermography and Deep Learning. Agriculture 2023, 13, 1939. [Google Scholar] [CrossRef]
- Peng, Y.; Peng, Z.; Zou, H.; Liu, M.; Hu, R.; Xiao, J.; Liao, H.; Yang, Y.; Huo, L.; Wang, Z. A dynamic individual method for yak heifer live body weight estimation using the YOLOv8 network and body parameter detection algorithm. J. Dairy Sci. 2024, 107, 6178–6191. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, Y.; Yu, S.; Wang, R.; Song, Z.; Yan, Y.; Li, F.; Wang, Z.; Tian, F. Automatic Detection Method of Dairy Cow Feeding Behaviour Based on YOLO Improved Model and Edge Computing. Sensors 2022, 22, 3271. [Google Scholar] [CrossRef]
Target Categories | Definitions |
---|---|
Lying without head back | During parturition, the dairy cow is typically prone with the head naturally oriented forward |
Lying with head back | During parturition, the dairy cow is in a recumbent position with the head turned backward, exhibiting a head back posture |
Other | During parturition, the dairy cow does not exhibit normal recumbent parturition postures, showing standing or transitional standing behavior |
Items | Validation Set Size | Collection Locations | Collection Time |
---|---|---|---|
Buttock | 1534 | Barns 1–4 | July, August, and September |
Head | 1332 | ||
Abdomen | 1395 | ||
Sunny | 1382 | ||
Overcast | 1058 | ||
Daytime | 1225 | ||
Nighttime | 1035 |
Parameters | Number |
---|---|
epoch | 300 |
input_shape | [600, 600] |
anchors_size | [8, 16, 32] |
momentum | 0.9 |
weight_decay | 0 |
save_period | 5 |
Primiparous Cows (n = 20) | Multiparous Cows (n = 20) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 (min) | T2 (min) | T3 (min) | Tt (min) | Assisted Calving | T1 (min) | T2 (min) | T3 (min) | Tt (min) | Assisted Calving | |
1 | 6.93 | 19.67 | 12.65 | 39.25 | No | 1.2 | 18.47 | 4.67 | 24.33 | No |
2 | 1.8 | 15.68 | 1.13 | 18.62 | No | 2.4 | 5.7 | 2.67 | 10.77 | No |
3 | 8.78 | 29.77 | 0 | 38.55 | No | 8.75 | 11.45 | 3.4 | 23.6 | No |
4 | 16.27 | 3.28 | 0 | 19.55 | No | 8.8 | 12.63 | 0 | 21.43 | No |
5 | 15.6 | 3.9 | 0 | 19.5 | No | 7.22 | 8.68 | 0 | 15.9 | No |
6 | 4.27 | 15.73 | 0 | 20 | No | 3 | 27 | 0 | 30 | No |
7 | 8.78 | 10.65 | 0 | 19.43 | No | 7.15 | 5.07 | 6.05 | 18.27 | No |
8 | 26.53 | 21.9 | 0.98 | 49.42 | Yes | 2.98 | 7.68 | 5.22 | 15.88 | No |
9 | 31.7 | 0 | 8.62 | 40.32 | Yes | 4.32 | 19.5 | 0.5 | 24.32 | No |
10 | 14.17 | 4.22 | 15.32 | 33.7 | No | 10.02 | 6.08 | 0 | 16.1 | No |
11 | 25.78 | 26.87 | 0.98 | 53.63 | Yes | 2.1 | 5.23 | 4.33 | 11.67 | No |
12 | 28.45 | 12.97 | 7.03 | 48.45 | No | 12.68 | 12.32 | 0 | 25 | No |
13 | 53.17 | 8.67 | 47.17 | 109 | Yes | 18.07 | 6.93 | 35 | 60 | No |
14 | 33.87 | 17.13 | 0 | 51 | Yes | 16.25 | 5.85 | 10.9 | 33 | No |
15 | 29.9 | 7.73 | 7.37 | 45 | No | 16.63 | 10.2 | 11.17 | 38 | No |
16 | 21.05 | 3.63 | 3.32 | 28 | No | 20.85 | 9.8 | 27.35 | 58 | Yes |
17 | 49 | 3.48 | 7.52 | 60 | Yes | 14.9 | 2.1 | 4 | 21 | Yes |
18 | 28.02 | 12.38 | 4.6 | 45 | No | 12.98 | 4.67 | 5.35 | 23 | No |
19 | 28.33 | 16.67 | 0 | 45 | No | 14.77 | 6.97 | 0.27 | 22 | No |
20 | 31.33 | 5.4 | 11.27 | 48 | Yes | 15.07 | 9.93 | 0 | 25 | Yes |
Average duration ± standard deviation | 23.19 ± 13.85 | 11.99 ± 8.38 | 6.4 ± 10.76 | 41.57 ± 20.55 | 10 ± 6.08 | 9.82 ± 5.98 | 6.05 ± 9.33 | 25.87 ± 13.12 | ||
Proportion | 55.78% | 28.83% | 15.39% | 100% | 38.69% | 37.94% | 23.37% | 100.00% |
Calf Birth Weight Below 37 kg (n = 20) | Calf Birth Weight Above 43 kg (n = 20) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 (min) | T2 (min) | T3 (min) | Tt (min) | Assisted Calving | T1 (min) | T2 (min) | T3(min) | Tt (min) | Assisted Calving | |
1 | 19.67 | 6.93 | 12.65 | 39.25 | No | 16.63 | 10.2 | 11.17 | 38 | No |
2 | 15.68 | 1.8 | 1.13 | 18.62 | No | 20.85 | 9.8 | 27.35 | 58 | Yes |
3 | 29.77 | 8.78 | 0 | 38.55 | No | 14.9 | 2.1 | 4 | 21 | Yes |
4 | 4.22 | 14.17 | 15.32 | 33.7 | No | 12.98 | 4.67 | 5.35 | 23 | No |
5 | 3.9 | 15.6 | 0 | 19.5 | No | 8.8 | 12.63 | 0 | 21.43 | No |
6 | 15.73 | 4.27 | 0 | 20 | No | 15.07 | 9.93 | 0 | 25 | Yes |
7 | 10.65 | 8.78 | 0 | 19.43 | No | 16.27 | 3.28 | 0 | 19.55 | No |
8 | 18.47 | 2.87 | 4.67 | 26 | No | 26.53 | 21.9 | 0.98 | 49.42 | Yes |
9 | 6.93 | 18.07 | 35 | 60 | No | 31.7 | 0 | 8.62 | 40.32 | Yes |
10 | 16.67 | 28.33 | 0 | 45 | No | 25.78 | 26.87 | 0.98 | 53.63 | Yes |
11 | 5.7 | 2.4 | 2.67 | 10.77 | No | 28.45 | 12.97 | 7.03 | 48.45 | No |
12 | 11.45 | 8.75 | 3.4 | 23.6 | No | 53.17 | 8.67 | 47.17 | 109 | Yes |
13 | 8.68 | 7.22 | 0 | 15.9 | No | 33.87 | 17.13 | 0 | 51 | Yes |
14 | 27 | 3 | 0 | 30 | No | 29.9 | 7.73 | 7.37 | 45 | No |
15 | 5.07 | 7.15 | 6.05 | 18.27 | No | 21.05 | 3.63 | 3.32 | 28 | No |
16 | 7.68 | 2.98 | 5.22 | 15.88 | No | 31.33 | 5.4 | 11.27 | 48 | Yes |
17 | 19.5 | 4.32 | 0.5 | 24.32 | No | 2.1 | 5.23 | 4.33 | 11.67 | No |
18 | 6.08 | 10.02 | 0 | 16.1 | No | 12.68 | 12.32 | 0 | 25 | No |
19 | 5.85 | 16.25 | 10.9 | 33 | No | 49 | 3.48 | 7.52 | 60 | Yes |
20 | 6.97 | 14.77 | 0.27 | 22 | No | 28.02 | 12.38 | 4.6 | 45 | No |
Average duration ± standard deviation | 12.28 ± 7.66 | 9.32 ± 6.77 | 4.89 ± 8.48 | 26.49 ± 12.06 | 23.95 ± 12.61 | 9.52 ± 6.76 | 7.55 ± 11.28 | 41.02 ± 21.59 | ||
Proportion | 46.36% | 35.19% | 18.45% | 100% | 58.39% | 23.30% | 18.41% | 100% |
Indicator | Model | Lying Without Head Back | Lying with Head Back | Other |
---|---|---|---|---|
Precision (P) | 66.31% | 65.10% | 69.76% | 68.47% |
Recall (R) | 70.49% | 68.71% | 75.35% | 73.08% |
Average Precision (AP) | 68.03% | 69.13% | 70.12% | 64.14% |
F1 score | 0.68 | 0.67 | 0.71 | 0.69 |
Items | Average Precision (AP) | Frame per Second (FPS) | ||
---|---|---|---|---|
Lying Without Head Back | Lying with Head Back | Other | ||
Buttock (n = 1534) | 43.20% | 50.10% | 75.20% | 87 |
Head (n = 1332) | 60.20% | 34.50% | 70.30% | 76 |
Abdomen (n = 1395) | 93.30% | 92.50% | 95.20% | 83 |
Items | Average Precision (AP) | Frame per Second (FPS) | ||
---|---|---|---|---|
Lying Without Head Back | Lying with Head Back | Other | ||
Sunny (n = 1382) | 90.20% | 94.20% | 92.40% | 73 |
Overcast (n = 1058) | 90.40% | 93.30% | 94.50% | 78 |
Daytime (n = 1225) | 92.50% | 96.30% | 94.30% | 82 |
Nighttime (n = 1035) | 91.40% | 94.30% | 95.10% | 79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Song, Y.; An, X.; Zhalaga; An, Y.; Wang, Y.; Liu, N.; Gu, J.; Qi, J. Feature Extraction and Automatic Recognition Model Construction for Head Back Posture During the Parturition Process in Dairy Cows. Animals 2025, 15, 2470. https://doi.org/10.3390/ani15172470
Li X, Song Y, An X, Zhalaga, An Y, Wang Y, Liu N, Gu J, Qi J. Feature Extraction and Automatic Recognition Model Construction for Head Back Posture During the Parturition Process in Dairy Cows. Animals. 2025; 15(17):2470. https://doi.org/10.3390/ani15172470
Chicago/Turabian StyleLi, Xia, Yifeng Song, Xiaoping An, Zhalaga, Yuning An, Yuan Wang, Na Liu, Jiaxu Gu, and Jingwei Qi. 2025. "Feature Extraction and Automatic Recognition Model Construction for Head Back Posture During the Parturition Process in Dairy Cows" Animals 15, no. 17: 2470. https://doi.org/10.3390/ani15172470
APA StyleLi, X., Song, Y., An, X., Zhalaga, An, Y., Wang, Y., Liu, N., Gu, J., & Qi, J. (2025). Feature Extraction and Automatic Recognition Model Construction for Head Back Posture During the Parturition Process in Dairy Cows. Animals, 15(17), 2470. https://doi.org/10.3390/ani15172470