Comparative Evaluation of the Effectiveness of Using Quinoa Grain (Chenopodium quinoa Willd.) with High and Low Saponin Content in Broiler Chicken Feeding
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and Experimental Design
2.2. Broiler Chicken Nutrition
2.3. Growth and Meat Productivity of Broiler Chickens
2.4. Sample Collection
2.5. Biochemical Analysis of Blood
2.6. RNA Isolation and Real-Time PCR
2.7. Statistical Analysis
3. Results
3.1. Growth and Meat Productivity of Broiler Chickens
3.2. Biochemical Blood Parameters of Broiler Chickens
3.3. Expression of Genes of Broiler Chickens
4. Discussion
4.1. Growth and Meat Productivity of Broiler Chickens
4.2. Biochemical Blood Parameters of Broiler Chickens
4.3. Expression of Genes of Broiler Chickens
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nawiri, E.; Maina, J.G.; Atela, J.A.; Ambuko, J.L.; Kyalo, B. Effects of Inclusion of Mango Peel Waste in Diets of Layer Chickens on Performance and Egg Quality in Kenya. Agriculture 2024, 14, 944. [Google Scholar] [CrossRef]
- Sajid, Q.U.A.; Asghar, M.U.; Tariq, H.; Wilk, M.; Płatek, A. Insect Meal as an Alternative to Protein Concentrates in Poultry Nutrition with Future Perspectives (An Updated Review). Agriculture 2023, 13, 1239. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.A.; Williams, A.N.; Salahuddin, M.; Gadekar, S.; Lohakare, J. Algae as an alternative source of protein in poultry diets for sustainable production and disease resistance: Present status and future considerations. Front. Vet. Sci. 2024, 11, 1382163. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Costa, M.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A.M. Use of Grape By-Products to Enhance Meat Quality and Nutritional Value in Monogastrics. Foods 2022, 11, 2754. [Google Scholar] [CrossRef]
- Ibrahim, D.; El-sayed, H.I.; Mahmoud, E.R.; El-Rahman, G.I.A.; Bazeed, S.M.; Abdelwarith, A.A.; Elgamal, A.; Khalil, S.S.; Younis, E.M.; Kishawy, A.T.Y.; et al. Impacts of Solid-State Fermented Barley with Fibrolytic Exogenous Enzymes on Feed Utilization, and Antioxidant Status of Broiler Chickens. Vet. Sci. 2023, 10, 594. [Google Scholar] [CrossRef]
- Katu, J.K.; Tóth, T.; Varga, L. Enhancing the Nutritional Quality of Low-Grade Poultry Feed Ingredients Through Fermentation: A Review. Agriculture 2025, 15, 476. [Google Scholar] [CrossRef]
- Sun, X.; Ma, L.; Xuan, Y.; Liang, J. Degradation of Anti-Nutritional Factors in Maize Gluten Feed by Fermentation with Bacillus subtilis: A Focused Study on Optimizing Fermentation Conditions. Fermentation 2024, 10, 555. [Google Scholar] [CrossRef]
- Huang, H.; Jia, C.; Chen, X.; Zhang, L.; Jiang, Y.; Meng, X.; Liu, X. Progress in research on the effects of quinoa (Chenopodium quinoa) bioactive compounds and products on intestinal flora. Front. Nutr. 2024, 11, 1308384. [Google Scholar] [CrossRef]
- Voronov, S.; Pleskachiov, Y.; Shitikova, A.; Zargar, M.; Abdelkader, M. Diversity of the Biological and Proteinogenic Characteristics of Quinoa Genotypes as a Multi-Purpose Crop. Agronomy 2023, 13, 279. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Daba, A.W. Differential analysis of five quinoa (Chenopodium quinoa W.) genotypes under different salt stresses in a controlled environment. Am.-Eurasian J. Sustain. Agric. 2020, 14, 14–21. [Google Scholar] [CrossRef]
- El Hazzam, K.; Hafsa, J.; Sobeh, M.; Mhada, M.; Taourirte, M.; EL Kacimi, K.; Yasri, A. An Insight into Saponins from Quinoa (Chenopodium quinoa Willd): A Review. Molecules 2020, 25, 1059. [Google Scholar] [CrossRef]
- Amiri, M.Y.A.; Jafari, M.A.; Irani, M. Growth performance, internal organ traits, intestinal morphology, and microbial population of broiler chickens fed quinoa seed-based diets with phytase or protease supplements and their combination. Trop. Anim. Health Prod. 2021, 53, 535. [Google Scholar] [CrossRef]
- Elbaz, A.M.; Zaki, E.F.; Morsy, A.S. Productive Performance, Physiological Responses, Carcass Traits, and Meat Quality of Broiler Chickens Fed Quinoa Seeds. Adv. Anim. Vet. Sci. 2021, 10, 354–363. [Google Scholar] [CrossRef]
- Mustafa, S.; Riaz, M.A.; Masoud, M.S.; Qasim, M.; Riaz, A. Impact of dietary inclusion of Chenopodium quinoa on growth performance and survival of Hubbard chicken. PLoS ONE 2022, 17, e0276524. [Google Scholar] [CrossRef] [PubMed]
- Niknafs, S.; Navarro, M.; Schneider, E.R.; Roura, E. The avian taste system. Front. Physiol. 2023, 14, 1235377. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; San Martín, R.; Sanders, M.; Miranda, M.; Lara, E. Characteristics and mathematical modeling of convective drying of quinoa (Chenopodium quinoa willd.): Influence of temperature on the kinetic parameters. J. Food Process. Preserv. 2010, 34, 945–963. [Google Scholar] [CrossRef]
- Efimov, D.N.; Egorova, A.V.; Emanuylova, J.V.; Ivanov, A.V.; Konopleva, A.P.; Zotov, A.A.; Lukashenko, V.S.; Komarov, A.A.; Egorov, I.A.; Egorova, T.A.; et al. Manual on Work with Poultry of Meat Cross ‘Smena-9′ with Autosex Maternal Parental Form: (Breeding Work; Egg Incubation; Technology of Growing, Housing; Feeding; Health and Biosecurity); VNITIP: Sergiev Posad, Russia, 2021. [Google Scholar]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef]
- Silva, E.T.d.; Leite, D.G.; Yuri, F.M.; Nery, F.d.S.G.; Rego, J.C.C.; Zanatta, R.d.A.; Santos, S.A.d.; Moura, V.V. Determinação do Índice de Temperatura e Umidade (ITU) para produção de aves na mesorregião metropolitana de Curitiba—PR. Rev. Acadêmica Ciências Agrárias Ambient. 2004, 2, 47–60. [Google Scholar] [CrossRef]
- Selionova, M.I.; Trukhachev, V.I.; Zagarin, A.Y.; Kulikov, E.I.; Belyaeva, N.P. Effects of Dietary Supplementation Using Phytobiotics with Different Functional Properties on Expression of Immunity Genes, Intestinal Histology, Growth, and Meat Productivity of Broiler Chickens. Vet. Sci. 2025, 12, 302. [Google Scholar] [CrossRef]
- Laptev, G.Y.; Filippova, V.A.; Kochish, I.I.; Yildirim, E.A.; Ilina, L.A.; Dubrovin, A.V.; Brazhnik, E.A.; Novikova, N.I.; Novikova, O.B.; Dmitrieva, M.E.; et al. Examination of the Expression of Immunity Genes and Bacterial Profiles in the Caecum of Growing Chickens Infected with Salmonella Enteritidis and Fed a Phytobiotic. Animals 2019, 9, 615. [Google Scholar] [CrossRef]
- Kondrakhin, I.P.; Arkhipov, A.V.; Levchenko, V.I.; Talanov, G.A.; Frolova, L.A.; Novikov, V.E. Methods of Veterinary Clinical Laboratory Diagnostics: A Handbook; KolosS: Moscow, Russia, 2004; p. 520. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Laptev, G.Y.; Yildirim, E.A.; Ilyina, L.A.; Filippova, V.A.; Kalitkina, K.A.; Ponomareva, E.S.; Dubrovin, A.V.; Tyurina, D.G.; Fisinin, V.I.; Egorov, I.A.; et al. Expression of genes of immune response and adaptation and cecal microbiome composition in males and females of chickens (Gallus gallus L.) in CM5 and CM9 preparental lines of Smena 9 cross. Agric. Biol. 2023, 58, 313–332. [Google Scholar] [CrossRef]
- Tyurina, D.G.; Laptev, G.Y.; Yildirim, E.A.; Ilyina, L.A.; Filippova, V.A.; Brazhnik, E.A.; Tarlavin, N.V.; Kalitkina, K.A.; Ponomareva, E.S.; Dubrovin, A.V.; et al. Influence of antibiotics, glyphosate and a Bacillus sp. strain on productivity performance and gene expression in cross Ross 308 broiler chickens (Gallus gallus L.). Agric. Biol. 2022, 57, 1147–1165. [Google Scholar] [CrossRef]
- Kirrella, A.A.; Abdo, S.E.; El-Naggar, K.; Soliman, M.M.; Aboelenin, S.M.; Dawood, M.A.O.; Saleh, A.A. Use of Corn Silk Meal in Broiler Diet: Effect on Growth Performance, Blood Biochemistry, Immunological Responses, and Growth-Related Gene Expression. Animals 2021, 11, 1170. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.I.; Kim, I.H. The effect of protease on growth performance, nutrient digestibility, and expression of growth-related genes and amino acid transporters in broilers. J. Anim. Sci. Technol. 2020, 62, 614–627. [Google Scholar] [CrossRef]
- Fagundes, N.S.; Milfort, M.C.; Williams, S.M.; Da Costa, M.J.; Fuller, A.L.; Menten, J.F.; Rekaya, R.; Aggrey, S.E. Dietary methionine level alters growth, digestibility, and gene expression of amino acid transporters in meat-type chickens. Poult. Sci. 2020, 99, 67–75. [Google Scholar] [CrossRef]
- Danek-Majewska, A.; Kwiecień, M.; Winiarska-Mieczan, A.; Haliniarz, M.; Bielak, A. Raw Chickpea (Cicer arietinum L.) as a Substitute of Soybean Meal in Compound Feed for Broiler Chickens: Effects on Growth Performance, Lipid Metabolism, Fatty Acid Profile, Antioxidant Status, and Dietary Value of Muscles. Animals 2021, 11, 3367. [Google Scholar] [CrossRef]
- Nasir, M.A.; Pasha, I.; Butt, M.S.; Nawaz, H. Biochemical characterization of quinoa with special reference to its protein quality. Pak. J. Agri. Sci. 2015, 52, 731–737. [Google Scholar]
- Mithila, M.V.; Khanum, F. Effectual comparison of quinoa and amaranth supplemented diets in controlling appetite; a biochemical study in rats. J. Food Sci. Technol. 2015, 52, 6735–6741. [Google Scholar] [CrossRef]
- Noratto, G.D.; Murphy, K.; Chew, B.P. Quinoa intake reduces plasma and liver cholesterol, lessens obesity-associated inflammation, and helps to prevent hepatic steatosis in obese db/db mouse. Food Chem. 2019, 287, 107–114. [Google Scholar] [CrossRef]
- James, L.E.A. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 2009, 58, 1–31. [Google Scholar] [CrossRef]
- Jiang, M.; Hong, C.; Zou, W.; Ye, Z.; Lu, L.; Liu, Y.; Zhang, T.; Ding, Y. Recent advances in the anti-tumor activities of saponins through cholesterol regulation. Front. Pharmacol. 2025, 15, 1469392. [Google Scholar] [CrossRef] [PubMed]
- Little, A.; Murphy, K.; Solverson, P. Quinoa’s Potential to Enhance Dietary Management of Obesity and Type-2 Diabetes: A Review of the Current Evidence. Diabetology 2021, 2, 77–94. [Google Scholar] [CrossRef]
- Naımatı, S.; Doğan, S.C.; Asghar, M.U.; Wilk, M.; Korczyński, M. The Effect of Quinoa Seed (Chenopodium quinoa Willd.) Extract on the Performance, Carcass Characteristics, and Meat Quality in Japanese Quails (Coturnix coturnix japonica). Animals 2022, 12, 1851. [Google Scholar] [CrossRef]
- Son, J.; Lee, W.-D.; Kim, C.-H.; Kim, H.; Hong, E.-C.; Kim, H.-J. Effect of Dietary Crude Protein Reduction Levels on Performance, Nutrient Digestibility, Nitrogen Utilization, Blood Parameters, Meat Quality, and Welfare Index of Broilers in Welfare-Friendly Environments. Animals 2024, 14, 3131. [Google Scholar] [CrossRef]
- Horio, Y.; Nishida, Y.; Sakakibara, R.; Inagaki, S.; Kamisaki, Y.; Wada, W. Induction of cytosolic aspartate aminotransferase by a high-protein diet. Biochem. Int. 1988, 16, 579–586. [Google Scholar]
- Li, G.; Zhou, L.; Zhang, C.; Shi, Y.; Dong, D.; Bai, M.; Wang, R.; Zhang, C. Insulin-Like Growth Factor 1 Regulates Acute Inflammatory Lung Injury Mediated by Influenza Virus Infection. Front. Microbiol. 2019, 10, 2541. [Google Scholar] [CrossRef]
- Anh, N.T.L.; Kunhareang, S.; Duangjinda, M. Association of chicken growth hormones and insulin-like growth factor gene polymorphisms with growth performance and carcass traits in Thai broilers. Asian-Australas. J. Anim. Sci. 2015, 28, 1686–1695. [Google Scholar] [CrossRef]
- Schiaffino, S.; Mammucari, C. Regulation of skeletal muscle growth by the IGF1-akt/PKB pathway: Insights from genetic models. Skelet. Muscle 2011, 1, 4. [Google Scholar] [CrossRef]
- Sizova, E.A.; Lutkovskaya, Y.V. Expression of genes associated with economic traits of broiler chickens (Gallus gallus domesticus), as influenced by various paratypical factors (review). Agric. Biol. 2023, 58, 581–597. [Google Scholar] [CrossRef]
- Jia, J.; Ahmed, I.; Liu, L.; Liu, Y.; Xu, Z.; Duan, X.; Li, Q.; Dou, T.; Gu, D.; Rong, H.; et al. Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens. PLoS ONE 2018, 13, e0195378. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Hu, B.; Liao, Z.; Wei, H.; Zhao, Y.; Liang, J.; Luo, W.; Nie, Q.; Luo, Q.; Zhang, D.; et al. Growth Hormone Receptor Controls Adipogenic Differentiation of Chicken Bone Marrow Mesenchymal Stem Cells by Affecting Mitochondrial Biogenesis and Mitochondrial Function. Front. Cell Dev. Biol. 2022, 10, 827623. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Hu, B.; Sun, D.; Zhao, C.; Wei, H.; Li, D.; Liao, Z.; Zhao, Y.; Liang, J.; Shi, M.; et al. Growth hormone receptor gene influences mitochondrial function and chicken lipid metabolism by AMPK-PGC1α-PPAR signaling pathway. BMC Genom. 2022, 23, 219. [Google Scholar] [CrossRef]
- Kim, T.H.; Zhou, H. Correction: Functional Analysis of Chicken IRF7 in Response to dsRNA Analog Poly(I:C) by Integrating Overexpression and Knockdown. PLoS ONE 2015, 10, e0137672. [Google Scholar] [CrossRef]
- Kim, T.H.; Zhou, H. Overexpression of Chicken IRF7 Increased Viral Replication and Programmed Cell Death to the Avian Influenza Virus Infection Through TGF-Beta/FoxO Signaling Axis in DF-1. Front. Genet. 2018, 9, 415. [Google Scholar] [CrossRef]
- Alhazmi, H.A.; Najmi, A.; Javed, S.A.; Sultana, S.; Bratty, M.A.; Makeen, H.A.; Meraya, A.M.; Ahsan, W.; Mohan, S.; Taha, M.M.E.; et al. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front. Immunol. 2021, 12, 637553. [Google Scholar] [CrossRef]
- Saleh, H.; Mirakzehi, M.T.; Agah, M.J.; Baranzehi, T.; Saleh, H. The Effects of Saccharomyces Cerevisiae and Citric Acid on Productive Performance, Egg Quality Parameters, Small Intestinal Morphology, and Immune-Related Gene Expression in Laying Japanese Quails. Braz. J. Poult. Sci. 2022, 24, 1–12. [Google Scholar] [CrossRef]
- Shimizu, M.; Nii, T.; Isobe, N.; Yoshimura, Y. Effects of avian infectious bronchitis with Newcastle disease and Marek’s disease vaccinations on the expression of toll-like receptors and avian β-defensins in the kidneys of broiler chicks. Poult. Sci. 2020, 99, 7092–7100. [Google Scholar] [CrossRef]
- Yang, Q.; Fong, L.A.; Lyu, W.; Sunkara, L.T.; Xiao, K.; Zhang, G. Synergistic Induction of Chicken Antimicrobial Host Defense Peptide Gene Expression by Butyrate and Sugars. Front. Microbiol. 2021, 12, 781649. [Google Scholar] [CrossRef]
- Frazier, S.; Ajiboye, K.; Olds, A.; Wyatt, T.; Luetkemeier, E.S.; Wong, E.A. Functional characterization of the chicken peptide transporter 1 (PEPT1, SLC15A1) gene. Anim. Biotechnol. 2008, 19, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Vacca, F.; Barca, A.; Gomes, A.S.; Mazzei, A.; Piccinni, B.; Cinquetti, R.; Vecchio, G.D.; Romano, A.; Rønnestad, I.; Bossi, E.; et al. The peptide transporter 1a of the zebrafish Danio rerio, an emerging model in nutrigenomics and nutrition research: Molecular characterization, functional properties, and expression analysis. Genes Nutr. 2019, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Ruales, J.; Nair, B.M. Saponins, phytic acid, tannins and protease inhibitors in quinoa (Chenopodium quinoa, Willd) seeds. Food Chem. 1993, 48, 137–143. [Google Scholar] [CrossRef]
- Getachew, G.; Putnam, D.; De Ben, M.C.; De Peters, E.J. Potential of Sorghum as an Alternative to Corn Forage. Am. J. Plant Sci. 2016, 7, 1106–1121. [Google Scholar] [CrossRef]
- Ciurescu, G.; Vasilachi, A.; Idriceanu, L.; Dumitru, M. Effects of corn replacement by sorghum in broiler chickens diets on performance, blood chemistry, and meat quality. Ital. J. Anim. Sci. 2023, 22, 537–547. [Google Scholar] [CrossRef]
- Varlı, S.N.; Şanlıer, N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J. Cereal Sci. 2016, 69, 371–376. [Google Scholar] [CrossRef]
- Keskin, S.; Evlice, A.K. Fırın Ürünlerinde Kinoa Kullanımı. Tarla Bitk. Merk. Araştırma Enstitüsü Derg. 2015, 24, 150–156. [Google Scholar] [CrossRef]
- McDonell, E. The Quinoa Bust: The Making and Unmaking of an Andean Miracle Crop (California Studies in Food and Culture Book 84), 1st ed.; University of California Press: Oakland, CA, USA, 2025; pp. 1–328. [Google Scholar]
Component of Compound Feeds (%) | Compound Feed Without Quinoa Grain | Compound Feed with Quinoa Grain | ||||
---|---|---|---|---|---|---|
0–10 Starter | 11–22 Grower | 23–35 Finisher | 0–10 Starter | 11–22 Grower | 23–35 Finisher | |
Composition of compound feeds | ||||||
Wheat | 52.70 | 36.89 | 38.63 | 53.87 | 38.10 | 40.21 |
Corn | 9.00 | 20.00 | 22.40 | 5.77 | 15.06 | 16.95 |
Quinoa | - | - | - | 3.00 | 5.00 | 5.00 |
Full-fat soybeans | 11.00 | 10.00 | 15.00 | 11.06 | 10.00 | 14.95 |
Soybean meal | 4.80 | 10.34 | 3.00 | 4.53 | 9.56 | 1.91 |
Sunflower meal | 9.00 | 10.00 | 9.55 | 8.63 | 10.00 | 10.00 |
Fish meal | 8.50 | 3.20 | 3.00 | 8.50 | 3.20 | 3.00 |
Sunflower oil | 1.89 | 5.00 | 4.00 | 1.59 | 4.56 | 3.63 |
Lysine monohydrochloride 98% | 0.30 | 0.20 | 0.25 | 0.30 | 0.20 | 0.26 |
DL-methionine 98.5% | 0.20 | 0.20 | 0.20 | 0.21 | 0.21 | 0.21 |
L-threonine 98% | 0.06 | 0.21 | 0.21 | 0.06 | 0.21 | 0.21 |
Table salt | 0.10 | 0.16 | 0.16 | 0.10 | 0.16 | 0.16 |
Monocalcium phosphate | 0.60 | 1.00 | 1.00 | 0.55 | 0.96 | 0.93 |
Limestone flour | 1.10 | 1.50 | 1.30 | 1.08 | 1.48 | 1.28 |
Sodium sulfate | 0.20 | 0.25 | 0.25 | 0.20 | 0.25 | 0.25 |
Vitamin B4 80% | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Premix | 0.50 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00 |
Nutritional value and chemical composition of compound feeds | ||||||
Metabolic energy (kcal/100 g) | 296.25 | 310.99 | 312.35 | 296.24 | 310.98 | 312.39 |
Crude protein (%) | 22.08 | 20.76 | 19.05 | 22.08 | 20.76 | 19.05 |
Crude fiber (%) | 3.80 | 3.88 | 3.94 | 3.78 | 3.92 | 4.04 |
Calcium (%) | 0.99 | 0.96 | 0.86 | 0.99 | 0.96 | 0.86 |
Available phosphorus (%) | 0.45 | 0.41 | 0.40 | 0.45 | 0.41 | 0.40 |
Total lysine (%) | 1.39 | 1.19 | 1.11 | 1.39 | 1.19 | 1.11 |
Total methionine + cystine (%) | 0.93 | 0.88 | 0.83 | 0.93 | 0.88 | 0.83 |
Amino Acid Content (g/100 g Protein) | Value |
---|---|
Valine | 3.42 |
Leucine + isoleucine | 8.22 |
Lysine | 4.26 |
Methionine + cystine | 0.84 |
Threonine | 3.86 |
Phenylalanine | 3.11 |
Total protein (%) | 13.36 |
Gene | Primers | Author |
---|---|---|
The housekeeping gene | ||
ACTB (β-actin) | F: CTGTGCCCATCTATGAAGGCTA R: ATTTCTCTCTCGGCTGTGGTG | Laptev G.Yu. et al., 2023 [25] |
Genes associated with growth and development of skeletal muscles (pectoral muscle tissue) | ||
IGF1 (insulin-like growth factor 1) | F: GCTGCCGGCCCAGAA R: ACGAACTGAAGAGCATCAACCA | Tyurina D.G. et al., 2022 [26] |
GHR (growth hormone receptor) | F: AACACAGATACCCAACAGCC R: AGAAGTCAGTGTTTGTCAGGG | Kirrella A.A. et al., 2021 [27] |
Immunity-related genes (cecal tissue) | ||
AvBD9 (avian beta-defensin 9) | F: AACACCGTCAGGCATCTTCACA R: CGTCTTCTTGGCTGTAAGCTGGA | Laptev G.Yu. et al., 2023 [25] |
AvBD10 (avian beta-defensin 10) | F: GCTCTTCGCTGTTCTCCTCT R: CCAGAGATGGTGAAGGTG | |
IL6 (interleukin 6) | F: AGGACGAGATGTGCAAGAAGTTC R: TTGGGCAGGTTGAGGTTGTT | Tyurina D.G. et al., 2022 [26] |
IRF7 (interferon regulatory factor 7) | F: ATCCCTTGGAAGCACAACGCC R: CTGAGGCAACCGCGTAGACCTT | Laptev G.Yu. et al., 2023 [25] |
Genes associated with nutrient transport (jejunum tissue) | ||
SLC15A1 (solute carrier family 15 member 1) | F: AATTGGGCAGGCAGTCATGG R: AGCGCGATGAGAATCAAGCC | Park J.H. et al., 2020 [28] |
SLC38A2 (solute carrier family 38 member 2) | F: CGCAGGACACTGGTATCTTAAT R: GCCACTGGTATAGCCCAAATA | Fagundes N.S. et al., 2020 [29] |
Age/Sex | Groups | p-Value | ||||
---|---|---|---|---|---|---|
CON | SAP | SAP-FREE | Anova | Linear | Quadratic | |
Dynamics of live weight of broiler chickens (g) (n = 50) | ||||||
0 days | 45.7 ± 0.49 | 45.5 ± 0.49 | 45.6 ± 0.49 | 0.958 | 0.970 | 0.770 |
7 days | 204.6 ± 2.10 | 202.6 ± 2.10 | 200.3 ± 2.17 | 0.365 | 0.157 | 0.954 |
14 days | 511.8 ± 6.72 | 495.9 ± 6.72 | 498.7 ± 6.87 | 0.209 | 0.178 | 0.258 |
21 days | 1035.2 ± 13.17 | 1014.3 ± 13.17 | 1004.2 ± 13.32 | 0.244 | 0.101 | 0.737 |
28 days | 1655.1 ± 25.86 | 1610.9 ± 25.54 | 1600.5 ± 26.55 | 0.293 | 0.144 | 0.593 |
36 days | 2162.9 ± 45.11 | 2142.9 ± 44.48 | 2107.0 ± 47.94 | 0.694 | 0.398 | 0.886 |
Cockerels | 2260.6 ± 52.72 | 2336.0 ± 59.78 | 2246.4 ± 55.92 | 0.509 | 0.854 | 0.252 |
Hens | 2059.5 ± 56.48 | 2042.9 ± 50.82 | 1958.4 ± 60.13 | 0.429 | 0.226 | 0.607 |
Calculated indicators | ||||||
Absolute gain (g) | 2117.2 | 2097.4 | 2061.4 | n/a | ||
Average daily gain (g) | 58.8 | 58.3 | 57.3 | n/a | ||
Chickens survival (%) | 96.0 | 98.0 | 90.0 | n/a | ||
Feed-to-gain ratio (kg/kg) | 1.86 | 1.90 | 1.84 | n/a | ||
European productivity index (units) | 310.10 | 307.02 | 286.28 | n/a |
Indicators | Groups | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | SAP | SAP-FREE | Anova | Linear | Quadratic | ||
Cockerels, n = 3 | |||||||
Gutted carcass weight (g) | 1622.3 | 1690.7 | 1615.2 | 47.28 | 0.501 | 0.919 | 0.260 |
Slaughter yield (%) | 74.0 | 73.6 | 70.8 | 1.84 | 0.458 | 0.267 | 0.610 |
Pectoral muscle weight (g) | 398.0 | 430.1 | 443.9 | 18.55 | 0.275 | 0.131 | 0.701 |
Pectoral muscle yield (%) | 18.2 | 18.7 | 19.4 | 0.78 | 0.537 | 0.286 | 0.925 |
Thigh muscle weight (g) | 211.5 b | 231.7 a | 218.4 ab | 3.70 | 0.022 | 0.235 | 0.010 |
Thigh muscle yield (%) | 9.7 | 10.1 | 9.6 | 0.16 | 0.122 | 0.756 | 0.050 |
Shin weight (g) | 152.8 | 138.0 | 143.7 | 4.22 | 0.117 | 0.177 | 0.094 |
Shin yield (%) | 7.0 a | 6.0 b | 6.3 b | 0.14 | 0.007 | 0.014 | 0.010 |
Other muscle weight (g) | 143.2 ab | 176.1 a | 110.4 b | 10.71 | 0.014 | 0.074 | 0.009 |
Other muscle yield (%) | 6.5 ab | 7.7 a | 4.8 b | 0.49 | 0.019 | 0.050 | 0.017 |
Total skeletal muscle weight (g) | 905.6 | 975.9 | 916.5 | 28.60 | 0.252 | 0.797 | 0.113 |
Muscle yield from live weight (%) | 41.3 | 42.4 | 40.2 | 1.18 | 0.443 | 0.513 | 0.284 |
Fat weight (g) | 63.6 a | 72.9 a | 27.7 b | 7.99 | 0.016 | 0.019 | 0.032 |
Fat yield (%) | 2.9 a | 3.2 a | 1.2 b | 0.35 | 0.016 | 0.015 | 0.043 |
Liver weight (g) | 56.9 | 60.6 | 56.1 | 3.65 | 0.660 | 0.882 | 0.388 |
Heart weight (g) | 12.0 | 14.5 | 15.7 | 1.38 | 0.222 | 0.101 | 0.704 |
Gizzard weight without cuticle (g) | 17.0 | 19.9 | 19.0 | 1.00 | 0.197 | 0.219 | 0.170 |
Ratio of edible parts to inedible parts | 2.0 | 2.0 | 1.8 | 0.19 | 0.622 | 0.403 | 0.657 |
Hens, n = 3 | |||||||
Gutted carcass weight (g) | 1469.5 | 1399.0 | 1467.8 | 26.26 | 0.177 | 0.965 | 0.074 |
Slaughter yield (%) | 73.3 | 69.9 | 74.2 | 1.05 | 0.061 | 0.554 | 0.025 |
Pectoral muscle weight (g) | 355.1 | 364.0 | 384.9 | 13.43 | 0.340 | 0.168 | 0.728 |
Pectoral muscle yield (%) | 17.7 | 18.2 | 19.5 | 0.77 | 0.329 | 0.164 | 0.691 |
Thigh muscle weight (g) | 167.4 | 253.7 | 158.9 | 25.74 | 0.074 | 0.823 | 0.028 |
Thigh muscle yield (%) | 8.3 | 12.7 | 8.0 | 1.24 | 0.069 | 0.865 | 0.026 |
Shin weight (g) | 117.6 | 91.2 | 131.2 | 14.50 | 0.220 | 0.533 | 0.111 |
Shin yield (%) | 5.9 | 4.6 | 6.6 | 0.75 | 0.224 | 0.503 | 0.116 |
Other muscle weight (g) | 165.0 | 108.8 | 128.5 | 15.09 | 0.095 | 0.139 | 0.086 |
Other muscle yield (%) | 8.2 | 5.4 | 6.5 | 0.79 | 0.111 | 0.168 | 0.092 |
Total skeletal muscle weight (g) | 805.1 | 817.7 | 803.5 | 24.02 | 0.902 | 0.965 | 0.665 |
Muscle yield from live weight (%) | 40.2 | 40.9 | 40.6 | 1.34 | 0.938 | 0.828 | 0.789 |
Fat weight (g) | 40.1 | 55.7 | 53.3 | 8.33 | 0.418 | 0.306 | 0.413 |
Fat yield (%) | 2.0 | 2.8 | 2.7 | 0.43 | 0.432 | 0.305 | 0.441 |
Liver weight (g) | 50.8 | 51.6 | 48.5 | 4.81 | 0.899 | 0.753 | 0.754 |
Heart weight (g) | 9.7 | 11.4 | 11.0 | 1.34 | 0.659 | 0.514 | 0.543 |
Gizzard weight without cuticle (g) | 24.4 | 18.6 | 17.7 | 2.29 | 0.165 | 0.086 | 0.425 |
Ratio of edible parts to inedible parts | 1.9 | 2.1 | 2.0 | 0.18 | 0.594 | 0.529 | 0.437 |
Indicators | Groups | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | SAP | SAP-FREE | Anova | Linear | Quadratic | ||
22 days | |||||||
Total protein (g/L) | 27.1 | 29.6 | 30.0 | 2.04 | 0.572 | 0.343 | 0.698 |
Albumin (g/L) | 13.6 | 14.2 | 14.9 | 0.86 | 0.592 | 0.326 | 0.964 |
Globulin (g/L) | 13.4 | 15.3 | 15.1 | 1.18 | 0.505 | 0.358 | 0.490 |
ALT (IU/L) | 6.0 | 6.6 | 4.9 | 0.67 | 0.291 | 0.304 | 0.229 |
AST (IU/L) | 171.9 | 156.8 | 163.0 | 8.20 | 0.470 | 0.470 | 0.330 |
Glucose (mmol/L) | 13.4 | 13.1 | 13.6 | 0.59 | 0.855 | 0.821 | 0.625 |
Total cholesterol (mmol/L) | 3.5 | 4.0 | 4.1 | 0.19 | 0.136 | 0.075 | 0.344 |
Triglycerides (mmol/L) | 0.3 | 0.4 | 0.4 | 0.07 | 0.881 | 0.808 | 0.675 |
Creatinine (μmol/L) | 34.3 | 34.7 | 34.3 | 1.74 | 0.984 | 1.000 | 0.862 |
Uric acid (μmol/L) | 201.1 | 280.8 | 175.0 | 91.64 | 0.711 | 0.847 | 0.440 |
TCWA (mg/L) | 26.0 | 26.6 | 25.5 | 5.13 | 0.989 | 0.954 | 0.897 |
Ceruloplasmin (mg/L) | 56.0 | 64.7 | 73.0 | 7.21 | 0.319 | 0.147 | 0.986 |
TBA-AP (μmol/L) | 2.8 | 2.7 | 3.1 | 0.21 | 0.333 | 0.249 | 0.350 |
CP/TBA-AP | 20.3 | 24.0 | 23.2 | 1.87 | 0.388 | 0.312 | 0.353 |
36 days | |||||||
Total protein (g/L) | 37.2 | 37.9 | 35.4 | 2.65 | 0.796 | 0.648 | 0.640 |
Albumin (g/L) | 13.9 | 15.9 | 15.7 | 1.28 | 0.502 | 0.357 | 0.484 |
Globulin (g/L) | 23.3 | 21.9 | 19.7 | 1.88 | 0.442 | 0.224 | 0.857 |
ALT (IU/L) | 5.6 | 5.4 | 7.2 | 0.88 | 0.350 | 0.236 | 0.411 |
AST (IU/L) | 206.3 b | 203.0 b | 276.4 a | 15.57 | 0.026 | 0.019 | 0.091 |
Glucose (mmol/L) | 7.3 | 11.8 | 13.0 | 1.75 | 0.127 | 0.061 | 0.461 |
Total cholesterol (mmol/L) | 4.1 | 4.2 | 3.9 | 0.26 | 0.771 | 0.593 | 0.651 |
Triglycerides (mmol/L) | 0.4 | 0.3 | 0.3 | 0.04 | 0.258 | 0.293 | 0.198 |
Creatinine (μmol/L) | 30.0 b | 32.8 ab | 34.7 a | 0.84 | 0.022 | 0.008 | 0.716 |
Uric acid (μmol/L) | 127.9 | 150.4 | 155.8 | 37.48 | 0.859 | 0.618 | 0.859 |
TCWA (mg/L) | 29.3 | 26.3 | 28.2 | 2.06 | 0.606 | 0.718 | 0.368 |
Ceruloplasmin (mg/L) | 145.7 | 103.0 | 81.0 | 28.05 | 0.323 | 0.154 | 0.774 |
TBA-AP (μmol/L) | 2.5 | 2.6 | 2.4 | 0.22 | 0.875 | 0.847 | 0.647 |
CP/TBA-AP | 60.7 | 39.1 | 34.6 | 12.01 | 0.329 | 0.176 | 0.583 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagarin, A.Y.; Shitikova, A.V.; Selionova, M.I.; Akchurin, S.V.; Gladkikh, M.Y. Comparative Evaluation of the Effectiveness of Using Quinoa Grain (Chenopodium quinoa Willd.) with High and Low Saponin Content in Broiler Chicken Feeding. Animals 2025, 15, 2574. https://doi.org/10.3390/ani15172574
Zagarin AY, Shitikova AV, Selionova MI, Akchurin SV, Gladkikh MY. Comparative Evaluation of the Effectiveness of Using Quinoa Grain (Chenopodium quinoa Willd.) with High and Low Saponin Content in Broiler Chicken Feeding. Animals. 2025; 15(17):2574. https://doi.org/10.3390/ani15172574
Chicago/Turabian StyleZagarin, Artem Yu., Aleksandra V. Shitikova, Marina I. Selionova, Sergey V. Akchurin, and Marianna Yu. Gladkikh. 2025. "Comparative Evaluation of the Effectiveness of Using Quinoa Grain (Chenopodium quinoa Willd.) with High and Low Saponin Content in Broiler Chicken Feeding" Animals 15, no. 17: 2574. https://doi.org/10.3390/ani15172574
APA StyleZagarin, A. Y., Shitikova, A. V., Selionova, M. I., Akchurin, S. V., & Gladkikh, M. Y. (2025). Comparative Evaluation of the Effectiveness of Using Quinoa Grain (Chenopodium quinoa Willd.) with High and Low Saponin Content in Broiler Chicken Feeding. Animals, 15(17), 2574. https://doi.org/10.3390/ani15172574