Genomic Characterization of the Honeybee–Probiotic Strain Ligilactobacillus salivarius A3iob
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genomes
2.2. Average Amino Acid Identity Analysis
2.3. Multilocus Sequence Analysis and 16s rRNA Analysis
2.4. In Silico Analysis of Presence/Absence of Functional Genes
2.5. In Silico Analysis of Glycosyl Hydrolases and Glycosyl Transferases
2.6. In Silico Analysis of Antibacterial Compounds
2.7. In Silico Analysis of Virulence and Antimicrobial Resistance Genes
2.8. Statistical Analysis
3. Results
3.1. General Genomic Characteristics of L. salivarius A3iob
3.2. Phylogeny and Average Amino Acid Identity Analysis
3.3. Analysis of Adhesion Genes
3.4. Analysis of Genes Related to Exopolysaccharide Production, Glycosyl Hydrolases, and Glycosyl Transferases
3.5. Analysis of Genes for Vitamin Production and Antioxidant Systems
3.6. Analysis of Antimicrobial Genes
3.7. Analysis of Antimicrobial Resistance and Virulence Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kline, O.; Joshi, N.K. Mitigating the Effects of Habitat Loss on Solitary Bees in Agricultural Ecosystems. Agriculture 2020, 10, 115. [Google Scholar] [CrossRef]
- Aryal, S.; Ghosh, S.; Jung, C. Ecosystem Services of Honey Bees; Regulating, Provisioning and Cultural Functions. J. Apic. 2020, 35, 119–128. [Google Scholar] [CrossRef]
- Ravoet, J.; De Smet, L.; Meeus, I.; Smagghe, G.; Wenseleers, T.; de Graaf, D.C. Widespread Occurrence of Honey Bee Pathogens in Solitary Bees. J. Invertebr. Pathol. 2014, 122, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Ceccotti, M.; Miotti, C.; Pacini, A.; Signorini, M.; Giacobino, A. Varroa Destructor and Nosema Sp Seasonal Dynamics in Apis mellifera Colonies from Temperate Climate in Argentina. Rev. Vet. 2022, 31, 87–93. [Google Scholar] [CrossRef]
- Traynor, K.S.; Mondet, F.; de Miranda, J.R.; Techer, M.; Kowallik, V.; Oddie, M.A.Y.; Chantawannakul, P.; McAfee, A. Varroa Destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Trends Parasitol. 2020, 36, 592–606. [Google Scholar] [CrossRef]
- Noël, A.; Le Conte, Y.; Mondet, F. Varroa Destructor: How Does It Harm Apis mellifera Honey Bees and What Can Be Done about It? Emerg. Top. Life Sci. 2020, 4, 45–57. [Google Scholar] [CrossRef]
- Galajda, R.; Valenčáková, A.; Sučik, M.; Kandráčová, P. Nosema Disease of European Honey Bees. J. Fungi 2021, 7, 714. [Google Scholar] [CrossRef]
- Audisio, M.C. Gram-Positive Bacteria with Probiotic Potential for the Apis mellifera L. Honey Bee: The Experience in the Northwest of Argentina. Probiotics Antimicrob. Proteins 2017, 9, 22–31. [Google Scholar] [CrossRef]
- Pǎtruicǎ, S.; Mot, D. The Effect of Using Prebiotic and Probiotic Products on Intestinal Micro-Flora of the Honeybee (Apis mellifera carpatica). Bull. Entomol. Res. 2012, 102, 619–623. [Google Scholar] [CrossRef]
- Novicov Fanciotti, M.; Tejerina, M.; Benítez-Ahrendts, M.R.; Audisio, M.C. Honey Yield of Different Commercial Apiaries Treated with Lactobacillus salivarius A3iob, a New Bee-Probiotic Strain. Benef. Microbes 2018, 9, 291–298. [Google Scholar] [CrossRef]
- Tejerina, M.R.; Benítez-Ahrendts, M.R.; Audisio, M.C. Lactobacillus salivarius A3iob Reduces the Incidence of Varroa Destructor and Nosema Spp. in Commercial Apiaries Located in the Northwest of Argentina. Probiotics Antimicrob. Proteins 2020, 12, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, P.; Albarracin, L.; Kobayashi, H.; Hebert, E.M.; Saavedra, L.; Komatsu, R.; Gatica, B.; Miyazaki, A.; Ikeda-Ohtsubo, W.; Suda, Y.; et al. Genomic Characterization of Lactobacillus delbrueckii TUA4408L and Evaluation of the Antiviral Activities of Its Extracellular Polysaccharides in Porcine Intestinal Epithelial Cells. Front. Immunol. 2018, 9, 2178. [Google Scholar] [CrossRef]
- Quilodrán-Vega, S.; Albarracin, L.; Mansilla, F.; Arce, L.; Zhou, B.; Islam, M.A.; Tomokiyo, M.; Al Kassaa, I.; Suda, Y.; Kitazawa, H.; et al. Functional and Genomic Characterization of Ligilactobacillus salivarius TUCO-L2 Isolated from Lama Glama Milk: A Promising Immunobiotic Strain to Combat Infections. Front. Microbiol. 2020, 11, 608752. [Google Scholar] [CrossRef] [PubMed]
- Audisio, M.C.; Albarracín, L.; Torres, M.J.; Saavedra, L.; Hebert, E.M.; Villena, J. Draft Genome Sequences of Lactobacillus salivarius A3iob and Lactobacillus Johnsonii CRL1647, Novel Potential Probiotic Strains for Honeybees (Apis mellifera L.). Microbiol. Resour. Announc. 2018, 7, e00975-18. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef]
- Harris, H.M.B.; Bourin, M.J.B.; Claesson, M.J.; O’Toole, P.W. Phylogenomics and Comparative Genomics of Lactobacillus salivarius, a Mammalian Gut Commensal. Microb. Genom. 2017, 3, e000115. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Sigworth, F.J.; Doerschuk, P.C.; Carazo, J.M.; Scheres, S.H.W. An Introduction to Maximum-Likelihood Methods in Cryo-EM. Methods Enzymol. 2010, 482, 263–294. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Zheng, J.; Ge, Q.; Yan, Y.; Zhang, X.; Huang, L.; Yin, Y. DbCAN3: Automated Carbohydrate-Active Enzyme and Substrate Annotation. Nucleic Acids Res. 2023, 51, W115–W121. [Google Scholar] [CrossRef]
- Van Heel, A.J.; De Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A User-Friendly Web Server to Thoroughly Mine RiPPs and Bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef]
- Altschul, S. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Lee, J.Y.; Han, G.G.; Kim, E.B.; Choi, Y.J. Comparative Genomics of Lactobacillus salivarius Strains Focusing on Their Host Adaptation. Microbiol. Res. 2017, 205, 48–58. [Google Scholar] [CrossRef]
- Zhou, B.; Albarracin, L.; Indo, Y.; Arce, L.; Masumizu, Y.; Tomokiyo, M.; Islam, M.A.; Garcia-Castillo, V.; Ikeda-Ohtsubo, W.; Nochi, T.; et al. Selection of Immunobiotic Ligilactobacillus salivarius Strains from the Intestinal Tract of Wakame-Fed Pigs: Functional and Genomic Studies. Microorganisms 2020, 8, 1659. [Google Scholar] [CrossRef] [PubMed]
- Raftis, E.J.; Forde, B.M.; Claesson, M.J.; O’Toole, P.W. Unusual Genome Complexity in Lactobacillus salivarius JCM1046. BMC Genom. 2014, 15, 771. [Google Scholar] [CrossRef]
- Serata, M.; Iino, T.; Yasuda, E.; Sako, T. Roles of Thioredoxin and Thioredoxin Reductase in the Resistance to Oxidative Stress in Lactobacillus casei. Microbiology 2012, 158, 953–962. [Google Scholar] [CrossRef]
- Jordan, A.; Åslund, F.; Pontis, E.; Reichard, P.; Holmgren, A. Characterization of Escherichia coli NrdH: A Glutaredoxin-like Protein with a Thioredoxin-like Activity Profile. J. Biol. Chem. 1997, 272, 18044–18050. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, M.T.; Russo, P.; Capozzi, V.; Drider, D.; Spano, G.; Fiocco, D. Bioprospecting Antimicrobials from Lactiplantibacillus plantarum: Key Factors Underlying Its Probiotic Action. Int. J. Mol. Sci. 2021, 22, 12076. [Google Scholar] [CrossRef] [PubMed]
- Riboulet-Bisson, E.; Sturme, M.H.J.; Jeffery, I.B.; O’Donnell, M.M.; Neville, B.A.; Forde, B.M.; Claesson, M.J.; Harris, H.; Gardiner, G.E.; Casey, P.G.; et al. Effect of Lactobacillus salivarius Bacteriocin ABP118 on the Mouse and Pig Intestinal Microbiota. PLoS ONE 2012, 7, e31113. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.N.; Field, T.R.; Ditcham, W.G.F.; Maguin, E.; Leigh, J.A. Identification and Disruption of Two Discrete Loci Encoding Hyaluronic Acid Capsule Biosynthesis Genes HasA, HasB, and HasC in Streptococcus Uberis. Infect. Immun. 2001, 69, 392–399. [Google Scholar] [CrossRef]
- Goulson, D. REVIEW: An Overview of the Environmental Risks Posed by Neonicotinoid Insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Le Conte, Y.; Navajas, M. Climate Change: Impact on Honey Bee Populations and Diseases. OIE Rev. Sci. Et Tech. 2008, 27, 485–510. [Google Scholar] [CrossRef]
- St Clair, A.L.; Zhang, G.; Dolezal, A.G.; O’Neal, M.E.; Toth, A.L. Diversified Farming in a Monoculture Landscape: Effects on Honey Bee Health and Wild Bee Communities. Environ. Entomol. 2020, 49, 753–764. [Google Scholar] [CrossRef]
- Kouchner, C.; Ferrus, C.; Blanchard, S.; Decourtye, A.; Basso, B.; Le Conte, Y.; Tchamitchian, M. Bee Farming System Sustainability: An Assessment Framework in Metropolitan France. Agric. Syst. 2019, 176, 102653. [Google Scholar] [CrossRef]
- Merlin Kamala, I.; Isaac Devanand, I. Honey Bee Farming for Sustainable Rural Livelihood. In Advances in Sustainable Development and Management of Environmental and Natural Resources: Economic Outlook and Opinions: Volume 1; Apple Academic Press: Palm Bay, FL, USA, 2021; pp. 331–373. [Google Scholar] [CrossRef]
- Zhang, G.; Olsson, R.L.; Hopkins, B.K. Strategies and Techniques to Mitigate the Negative Impacts of Pesticide Exposure to Honey Bees. Environ. Pollut. 2023, 318, 120915. [Google Scholar] [CrossRef] [PubMed]
- McFrederick, Q.S.; Wcislo, W.T.; Taylor, D.R.; Ishak, H.D.; Dowd, S.E.; Mueller, U.G. Environment or Kin: Whence Do Bees Obtain Acidophilic Bacteria? Mol. Ecol. 2012, 21, 1754–1768. [Google Scholar] [CrossRef]
- Zheng, H.; Perreau, J.; Elijah Powell, J.; Han, B.; Zhang, Z.; Kwong, W.K.; Tringe, S.G.; Moran, N.A. Division of Labor in Honey Bee Gut Microbiota for Plant Polysaccharide Digestion. Proc. Natl. Acad. Sci. USA 2019, 116, 25909–25916. [Google Scholar] [CrossRef]
- Ellegaard, K.M.; Brochet, S.; Bonilla-Rosso, G.; Emery, O.; Glover, N.; Hadadi, N.; Jaron, K.S.; van der Meer, J.R.; Robinson-Rechavi, M.; Sentchilo, V.; et al. Genomic Changes Underlying Host Specialization in the Bee Gut Symbiont Lactobacillus Firm5. Mol. Ecol. 2019, 28, 2224–2237. [Google Scholar] [CrossRef]
- Truong, A.T.; Kang, J.E.; Yoo, M.S.; Nguyen, T.T.; Youn, S.Y.; Yoon, S.S.; Cho, Y.S. Probiotic Candidates for Controlling Paenibacillus Larvae, a Causative Agent of American Foulbrood Disease in Honey Bee. BMC Microbiol. 2023, 23, 150. [Google Scholar] [CrossRef]
- Leska, A.; Nowak, A.; Czarnecka-Chrebelska, K.H. Adhesion and Anti-Adhesion Abilities of Potentially Probiotic Lactic Acid Bacteria and Biofilm Eradication of Honeybee (Apis mellifera L.) Pathogens. Molecules 2022, 27, 8945. [Google Scholar] [CrossRef]
- Gyurova, A.; Vladimirova, A.; Peykov, S.; Dimitrov, M.; Strateva, T.; Dimov, S.G. Characterization of Enterococcus durans EDD2, a Strain from Beehives with Inhibitory Activity against Paenibacillus larvae. J. Apic. Res. 2023, 62, 1183–1196. [Google Scholar] [CrossRef]
- Couvigny, B.; Lapaque, N.; Rigottier-Gois, L.; Guillot, A.; Chat, S.; Meylheuc, T.; Kulakauskas, S.; Rohde, M.; Mistou, M.Y.; Renault, P.; et al. Three Glycosylated Serine-Rich Repeat Proteins Play a Pivotal Role in Adhesion and Colonization of the Pioneer Commensal Bacterium, Streptococcus salivarius. Environ. Microbiol. 2017, 19, 3579–3594. [Google Scholar] [CrossRef]
- Bensing, B.A.; Seepersaud, R.; Yen, Y.T.; Sullam, P.M. Selective Transport by SecA2: An Expanding Family of Customized Motor Proteins. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2014, 1843, 1674–1686. [Google Scholar] [CrossRef]
- Barta, D.G.; Cornea-Cipcigan, M.; Margaoan, R.; Vodnar, D.C. Biotechnological Processes Simulating the Natural Fermentation Process of Bee Bread and Therapeutic Properties—An Overview. Front. Nutr. 2022, 9, 871896. [Google Scholar] [CrossRef] [PubMed]
- Salomón, V.M.; Gianni De Carvalho, K.; Arroyo, F.; Maldonado, L.M.; Gennari, G.; Vera, N.; Romero, C.M. Biopolymer Production by Bacteria Isolated from Native Stingless Bee Honey, Scaptotrigona jujuyensis. Food Biosci. 2021, 42, 101077. [Google Scholar] [CrossRef]
- Karaca, B. Exopolysaccharides of Lactic Acid Bacteria Isolated from Honeybee Gut and Effects of Their Antibiofilm Activity against Streptococcus mutans. An. Acad. Bras. Cienc. 2023, 95, e20220979. [Google Scholar] [CrossRef]
- Zaghloul, E.H.; Ibrahim, M.I.A.; Zaghloul, H.A.H. Antibacterial Activity of Exopolysaccharide Produced by Bee Gut-Resident Enterococcus sp. BE11 against Marine Fish Pathogens. BMC Microbiol. 2023, 23, 231. [Google Scholar] [CrossRef] [PubMed]
- Bikric, S.; Aslim, B.; Dincer, İ.; Yuksekdag, Z.; Ulusoy, S.; Yavuz, S. Characterization of Exopolysaccharides (EPSs) Obtained from Ligilactobacillus salivarius Strains and Investigation at the Prebiotic Potential as an Alternative to Plant Prebiotics at Poultry. Probiotics Antimicrob. Proteins 2022, 14, 49–59. [Google Scholar] [CrossRef]
- Heilbronner, S.; Krismer, B.; Brötz-Oesterhelt, H.; Peschel, A. The Microbiome-Shaping Roles of Bacteriocins. Nat. Rev. Microbiol. 2021, 19, 726–739. [Google Scholar] [CrossRef]
- Endo, A.; Salminen, S. Honeybees and Beehives Are Rich Sources for Fructophilic Lactic Acid Bacteria. Syst. Appl. Microbiol. 2013, 36, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Corr, S.C.; Li, Y.; Riedel, C.U.; O’Toole, P.W.; Hill, C.; Gahan, C.G.M. Bacteriocin Production as a Mechanism for the Antiinfective Activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 2007, 104, 7617–7621. [Google Scholar] [CrossRef]
- Flynn, S.; van Sinderen, D.; Thornton, G.M.; Holo, H.; Nes, I.F.; Collins, J.K. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 2002, 148, 973–984. [Google Scholar] [CrossRef]
- O’Callaghan, J.; Buttó, L.F.; MacSharry, J.; Nally, K.; O’Toole, P.W. Influence of adhesion and bacteriocin production by Lactobacillus salivarius on the intestinal epithelial cell transcriptional response. Appl. Environ. Microbiol. 2012, 78, 5196–5203. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lei, L.; Chen, W.; Chi, X.; Han, K.; Wang, Y.; Ma, L.; Liu, Z.; Xu, B. The Comparison of Antioxidant Performance, Immune Performance, IIS Activity and Gut Microbiota Composition between Queen and Worker Bees Revealed the Mechanism of Different Lifespan of Female Casts in the Honeybee. Insects 2022, 13, 772. [Google Scholar] [CrossRef]
- Feng, T.; Wang, J. Oxidative Stress Tolerance and Antioxidant Capacity of Lactic Acid Bacteria as Probiotic: A Systematic Review. Gut Microbes 2020, 12, 1801944. [Google Scholar] [CrossRef]
- Reott, M.A.; Parker, A.C.; Rocha, E.R.; Smith, C.J. Thioredoxins in Redox Maintenance and Survival during Oxidative Stress of Bacteroides fragilis. J. Bacteriol. 2009, 191, 3384–3391. [Google Scholar] [CrossRef] [PubMed]
- Rocha, E.R.; Tzianabos, A.O.; Smith, C.J. Thioredoxin Reductase Is Essential for Thiol/Disulfide Redox Control and Oxidative Stress Survival of the Anaerobe Bacteroides fragilis. J. Bacteriol. 2007, 189, 8015–8023. [Google Scholar] [CrossRef]
- Serrano, L.M.; Molenaar, D.; Wels, M.; Teusink, B.; Bron, P.A.; de Vos, W.M.; Smid, E.J. Thioredoxin Reductase Is a Key Factor in the Oxidative Stress Response of Lactobacillus plantarum WCFS1. Microb. Cell Fact. 2007, 6, 29. [Google Scholar] [CrossRef]
- Jovanovic, N.M.; Glavinic, U.; Delic, B.; Vejnovic, B.; Aleksic, N.; Mladjan, V.; Stanimirovic, Z. Plant-Based Supplement Containing B-Complex Vitamins Can Improve Bee Health and Increase Colony Performance. Prev. Vet. Med. 2021, 190, 105322. [Google Scholar] [CrossRef] [PubMed]
- Glavinic, U.; Stankovic, B.; Draskovic, V.; Stevanovic, J.; Petrovic, T.; Lakic, N.; Stanimirovic, Z. Dietary Amino Acid and Vitamin Complex Protects Honey Bee from Immunosuppression Caused by Nosema Ceranae. PLoS ONE 2017, 12, e0187726. [Google Scholar] [CrossRef] [PubMed]
- Stanimirović, Z.; Glavinić, U.; Ristanić, M.; Jelisić, S.; Vejnović, B.; Niketić, M.; Stevanović, J. Diet Supplementation Helps Honey Bee Colonies in Combat Infections by Enhancing Their Hygienic Behaviour. Acta Vet. 2022, 72, 145–166. [Google Scholar] [CrossRef]
Species | Strain | GenBank | Isolation Source |
---|---|---|---|
Bombella intestine | R-52487 | GCA_002003665.1 | Crop of a bumblebee B. lapidaries |
Bombella apis | SME1 | GCA_009362775.1 | Hive Apis melifera |
Lactobacillus acidophilus | La-14 | GCA_000389675.2 | Human |
Bifidobacterium lactis | BI-04 | GCA_000022705.1 | Fecal sample from a healthy adult |
Apilactobacillus kunkeei | EFB6 | GCA_000687335.1 | Apis mellifera gut |
Apilactobacillus kunkeei | UASWS1868-NN17 | GCA_005930975.1 | Apis melliera gut |
Apilactobacillus kunkeei | UASWS1870-NN20 | GCA_005930935.1 | Apis mellifera gut |
Apilactobacillus kunkeei | AR114 | GCA_000830375.1 | Apis mellifera gut |
Apilactobacillus kunkeei | MP2 | GCA_001314945.1 | Chilean honeybee gut |
Apilactobacillus kunkeei | FF30-6 | GCA_001949975.2 | Apis mellifera |
Apilactobacillus kunkeei | IBH001 | GCA_026428215.1 | Apis mellifera |
Bifidobacterium sp. | A11 | GCA_000499185.1 | Apis mellifera |
Bifidobacterium sp. | 7101 | GCA_000499285.1 | Apis mellifera |
Enterococcus durans | EDD2 | GCA_010974995.1 | Pollen from A. melifera beehives |
Ligilactobacillus salivarius | A3iob | GCA_003129685.1 | Apis mellifera gut |
Apilactobacillus micheneri | Hlig3 | GCA_002993975.1 | Halictus ligatus gut |
Apilactobacillus micheneri | HV_11 | GCA_006493545.1 | Augochlorella sp. gut |
Apilactobacillus micheneri | HV_65 | GCA_006493595.1 | Megachile rotundata (pollen) |
Apilactobacillus micheneri | HV_23 | GCA_006493625.1 | Dialictus sp. gut |
Apilactobacillus timberlakei | HV_25 | GCA_006493105.1 | Dialictus sp. gut |
Apilactobacillus timberlakei | HV_12 | GCA_002993965.1 | Augochlorella sp. gut |
Apilactobacillus timberlakei | HV_02 | GCA_006493435.1 | Agapostemon sp. gut |
Apilactobacillus timberlakei | HV_26 | GCA_006493425.1 | Agapostemon sp. gut |
Apilactobacillus timberlakei | HV_04 | GCA_006493055.1 | Augochlorella sp. gut |
Apilactobacillus timberlakei | HV_10 | GCA_006493095.1 | Augochlorella sp. gut |
Apilactobacillus timberlakei | HV_09 | GCA_006493175.1 | Agapostemon sp. gut |
Apilactobacillus timberlakei | HV_28 | GCA_006493125.1 | Agapostemon sp. gut |
Apilactobacillus quenuiae | HV_6 | GCA_002994005.1 | Augochlorella sp. gut |
Apilactobacillus apinorum | Fhon13 | GCA_946888465.1 | Apis mellifera |
Apilactobacillus waqarii | HBW1 | GCA_019061205.1 | Apis mellifera |
Species | Strain | GenBank | Isolation Source |
---|---|---|---|
Ligilactobacillus salivarius | A3iob | GCA_003129685.1 | Honeybee intestine |
Ligilactobacillus salivarius | ATCC11741 | GCA_000159395.1 | Human saliva |
Ligilactobacillus salivarius | CECT5713 | GCA_000143435.1 | Feces of breast-fed human infant |
Ligilactobacillus salivarius | CICC 23174 | GCA_001723525.1 | Chicken intestine |
Ligilactobacillus salivarius | DJ-sa-01 | GCA_003316955.1 | Chicken intestine |
Ligilactobacillus salivarius | FFIG58 | GCA_013401855.1 | Pig intestine |
Ligilactobacillus salivarius | Gul1 | GCA_002079565.1 | Human saliva |
Ligilactobacillus salivarius | Gul2 | GCA_002079545.1 | Human saliva |
Ligilactobacillus salivarius | JCM1046 | GCA_000758365.1 | Pig intestine |
Ligilactobacillus salivarius | LPM01 | GCA_900094615.1 | Human breast milk |
Ligilactobacillus salivarius | REN | GCA_001011095.1 | Human feces |
Ligilactobacillus salivarius | TUCO-L2 | GCA_004405135.1 | Lama glama milk |
Ligilactobacillus salivarius | UCC118 | GCA_000008925.1 | Human ileum |
Ligilactobacillus salivarius | ZLS006 | GCA_002162055.1 | Pig intestine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elean, M.; Arroyo Guerra, A.; Albarracin, L.; Nishiyama, K.; Kitazawa, H.; Audisio, M.C.; Villena, J. Genomic Characterization of the Honeybee–Probiotic Strain Ligilactobacillus salivarius A3iob. Animals 2025, 15, 2606. https://doi.org/10.3390/ani15172606
Elean M, Arroyo Guerra A, Albarracin L, Nishiyama K, Kitazawa H, Audisio MC, Villena J. Genomic Characterization of the Honeybee–Probiotic Strain Ligilactobacillus salivarius A3iob. Animals. 2025; 15(17):2606. https://doi.org/10.3390/ani15172606
Chicago/Turabian StyleElean, Mariano, Alejandro Arroyo Guerra, Leonardo Albarracin, Keita Nishiyama, Haruki Kitazawa, M. Carina Audisio, and Julio Villena. 2025. "Genomic Characterization of the Honeybee–Probiotic Strain Ligilactobacillus salivarius A3iob" Animals 15, no. 17: 2606. https://doi.org/10.3390/ani15172606
APA StyleElean, M., Arroyo Guerra, A., Albarracin, L., Nishiyama, K., Kitazawa, H., Audisio, M. C., & Villena, J. (2025). Genomic Characterization of the Honeybee–Probiotic Strain Ligilactobacillus salivarius A3iob. Animals, 15(17), 2606. https://doi.org/10.3390/ani15172606