Thermal Stress Response Profiling Reveals Adaptive Advantages of Indigenous Hercegovačka and Dubska Pramenka Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Phenotypic Characteristics of the Dubska and Hercegovačka Pramenka Sheep
2.3. Environmental Data and Temperature–Humidity Index
2.4. Blood Sampling, Total RNA Extraction, and RT-PCR Analysis
2.5. Statistical Analysis
Gene | Primer Sequence | Amplicon Size | Annealing Temperature | Source |
---|---|---|---|---|
HSP90AA1 | F: CCACTTGGCGGTCAAGCATT | 79 bp | 54 °C | XM_027957416.1 |
R: AGGAGCTCGTCTTGGGACAA | ||||
HSPA8 | F: TGGGAAGACTGTTACCAACGCT | 78 bp | 60 °C | XM_012095633.2 |
R: GCATCTTTGGTAGCCTGACGC | ||||
HSPA1A | F: AGGACCTTGTCGTCCAGCAC | 64 bp | 60 °C | NM_001267874.1 |
R: AGTCGATGCCCTCGAACAGG | ||||
IL-10 | F: GTCGGAAATGATCCATTTTACCT | 80 bp | 52 °C | [34] |
R: GTCAGGCCCATGGTTCTCA | ||||
IL-6 | F: CCAGGAACGAAAGAGAGCTCCA | 78 bp | 57 °C | NM_001009392.1 |
R: GTGGACTGAAGGCGCTTGTG | ||||
NOS-3 | F: CAGTCCCAACAGGACGGGC | 80 bp | 54 °C | NM_001129901.1 |
R: GGCCGGGTCTGCAGTTTCC | ||||
SOD-2 | F: AGGCGCTGGAGAAGGGTGAT | 79 bp | 58 °C | NM_001280703.1 |
R: TTGATATGGCCCCCACCGTT | ||||
TNF-α | F: GGAGCCACCACGCTCTTCT | 67 bp | 60 °C | NM_001024860.1 |
R: GGGACTGCTCTTCCCTCTGG | ||||
GAPDH | F: ATGGGCGTGAACCACGAGAA | 62 bp | 54 °C | NM_001190390.1 |
R: GTGCAGGAGGCATTGCTGAC |
3. Results
3.1. Environmental Data
3.2. Quantitative Analysis of Relative Gene Expression Levels
4. Discussion
4.1. HSP Genes
4.2. Immune-Related Genes
4.3. Oxidative Stress-Related Genes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HSP | Heat shock protein |
IL | Interleukin |
TNF | Tumor necrosis factor |
NOS | Nitric oxide synthases |
SOD | Superoxide dismutase |
RT-PCR | Real-time PCR |
THI | Temperature–humidity index |
ROS | Reactive oxygen species |
SNP | Single-nucleotide polymorphism |
DTM | Digital terrain model |
EDTA | Ethylenediaminetetraacetic acid |
GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
Ct | Threshold cycle |
PCA | Principal component analysis |
References
- MacCallum, C.; Hill, E. Being positive about selection. PLoS Biol. 2006, 4, e87. [Google Scholar] [CrossRef]
- Marković, B.; Dovč, P.; Marković, M.; Radonjić, D.; Adakalić, M.; Simčič, M. Differentiation of some Pramenka sheep breeds based on morphometric characteristics. Arch. Anim. Breed. 2019, 62, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Salamon, D.; Gutierrez-Gil, B.; Arranz, J.J.; Barreta, J.; Batinic, V.; Dzidic, A. Genetic diversity and differentiation of 12 eastern Adriatic and western Dinaric native sheep breeds using microsatellites. Animal 2014, 8, 200–207. [Google Scholar] [CrossRef]
- Collier, R.J.; Baumgard, L.H.; Zimbelman, R.B.; Xiao, Y. Heat stress: Physiology of acclimation and adaptation. Appl. Anim. Sci. 2019, 35, 326–337. [Google Scholar] [CrossRef] [PubMed]
- van Wettere, W.H.E.J.; Kind, K.L.; Gatford, K.L.; Swinbourne, A.M.; Leu, S.T.; Hayman, P.T.; Kelly, J.M.; Weaver, D.R.; Kleemann, D.O. Review of the impact of heat stress on reproductive performance of sheep. J. Anim. Sci. Biotechnol. 2021, 12, 26. [Google Scholar] [CrossRef]
- Mehaba, N.; Coloma-Garcia, W.; Such, X.; Caja, G.; Salama, A.A.K. Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes. J. Dairy Sci. 2021, 104, 1099–1110. [Google Scholar] [CrossRef]
- Ramón, M.; Díaz, C.; Pérez-Guzman, M.D.; Carabaño, M.J. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep. J. Dairy Sci. 2016, 99, 5764–5779. [Google Scholar] [CrossRef] [PubMed]
- Somero, G.N. The cellular stress response and temperature: Function, regulation, and evolution. J. Exp. Zool. A Ecol. Integr. Physiol. 2020, 333, 379–397. [Google Scholar] [CrossRef]
- Cantet, J.M.; Yu, Z.; Ríus, A.G. Heat stress-mediated activation of immune–inflammatory pathways. Antibiotics 2021, 10, 1285. [Google Scholar] [CrossRef]
- Wanjala, G.; Bagi, Z.; Gavojdian, D.; Badaoui, B.; Astuti, P.K.; Mizeranschi, A.; Ilisiu, E.; Ohran, H.; Pasic Juhas, E.; Loukovitis, D. Genetic diversity and adaptability of native sheep breeds from different climatic zones. Sci. Rep. 2025, 15, 17931. [Google Scholar] [CrossRef]
- Halász, A.; Suli, A.; Miko, E.; Persovits, E.; Orosz, S. Value in grass-matter of fibre and carbs. Appl. Stud. Agribus. Commer. 2022, 15, 3–4. [Google Scholar] [CrossRef]
- FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture. In FAO Commission on Genetic Resources for Food and Agriculture Assessments; Scherf, B.D., Pilling, D., Eds.; FAO: Rome, Italy, 2015; Available online: https://www.fao.org/4/i4787e/i4787e00.pdf (accessed on 12 December 2024).
- Astuti, P.K.; Bagi, Z.; Bodrogi, L.; Pinter, T.; Skoda, G.; Fajardo, R.; Kusza, S. Hungarian indigenous Tsigai, a promising breed for excellent heat tolerance and immunity. Saudi J. Biol. Sci. 2023, 30, 103747. [Google Scholar] [CrossRef]
- Kusza, S.; Nagy, I.; Németh, T.; Molnár, A.; Jávor, A.; Kukovics, S. The genetic variability of Hungarian Tsigai sheep. Arch. Anim. Breed. 2010, 53, 313–323. [Google Scholar] [CrossRef]
- Djokic, M.; Drzaic, I.; Shihabi, M.; Markovic, B.; Cubric-Curik, V. Genomic diversity analyses of some indigenous Montenegrin sheep populations. Diversity 2023, 15, 640. [Google Scholar] [CrossRef]
- Cinkulov, M.C.; Popovski, Z.; Porcu, K.; Tanaskovska, B.; Hoda, A.; Bytyqi, H.; Mehmeti, H.; Hodžić, A.; Vrtkovski, G.; Djedovic, R.; et al. Genetic diversity and structure of the West Balkan Pramenka sheep types as revealed by microsatellite and mitochondrial DNA analysis. J. Anim. Breed. Genet. 2008, 51, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Berihulay, H.; Abied, A.; He, X.; Jiang, L.; Ma, Y. Adaptation mechanisms of small ruminants to environmental heat stress. Animals 2019, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Osei-Amponsah, R.; Chauhan, S.S.; Leury, B.J.; Cheng, L.; Cullen, B.; Clarke, I.J.; Dunshea, F.R. Genetic selection for thermotolerance in ruminants. Animals 2019, 9, 1148. [Google Scholar] [CrossRef] [PubMed]
- Sejian, V.; Bagath, M.; Krishnan, G.; Rashamol, V.P.; Pragna, P.; Deveraj, C.; Bhatta, R. Genes for resilience to heat stress in small ruminants: A review. Small Rumin. Res. 2019, 173, 42–53. [Google Scholar] [CrossRef]
- Al-Jaryan, I.; Al-Thuwaini, T.M.; Al-Jebory, H.H. Heat Shock Protein 70 and Its Role in Alleviating Heat Stress and Improving Livestock Performance. Rev. Agric. Sci. 2023, 11, 234–242. [Google Scholar] [CrossRef]
- Yadav, V.P.; Dangi, S.S.; Chouhan, V.S.; Gupta, M.; Dangi, S.K.; Singh, G.; Maurya, V.P.; Kumar, P.; Sarkar, M. Expression analysis of NOS family and HSP genes during thermal stress in goat (Capra hircus). Int. J. Biometeorol. 2016, 60, 381–389. [Google Scholar] [CrossRef]
- Lee, W.C.; Wen, H.C.; Chang, C.P.; Chen, M.Y.; Lin, M.T. Heat shock protein 72 overexpression protects against hyperthermia, circulatory shock, and cerebral ischemia during heatstroke. J. Appl. Physiol. 2006, 100, 2073–2082. [Google Scholar] [CrossRef]
- Gade, N.; Mahapatra, R.K.; Sonawane, A.; Singh, V.K.; Doreswamy, R.; Saini, M. Molecular characterization of heat shock protein 70-1 gene of goat (Capra hircus). Mol. Biol. Int. 2010, 2010, 108429. [Google Scholar] [CrossRef]
- Frossard, J.L.; Bhagat, L.; Lee, H.S.; Hietaranta, A.J.; Singh, V.P.; Song, A.M.; Saluja, A.K. Both thermal and non-thermal stress protect against caerulein induced pancreatitis and prevent trypsinogen activation in the pancreas. Gut 2002, 50, 78–83. [Google Scholar] [CrossRef]
- Seixas, L.; De Melo, C.B.; Tanure, C.B.; Peripolli, V.; McManus, C. Heat tolerance in Brazilian hair sheep. Asian-Australas. J. Anim. Sci. 2017, 30, 593–601. [Google Scholar] [CrossRef]
- Upadhyay, A.; Chompoo, J.; Taira, N.; Fukuta, M.; Tawata, S. Significant longevity-extending effects of Alpinia zerumbet leaf extract on the life span of Caenorhabditis elegans. Biosci. Biotechnol. Biochem. 2013, 77, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Ohran, H.; Pojskić, N.; Pašić-Juhas, E.; Hrković-Porobija, A.; Hrelja, E.; Sivac, A.; Batinić, V.; Hodžić, A. Hematological and blood biochemical variations in Pramenka sheep under thermal stress conditions. Vet. Arh. 2024, 94, 463–474. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Marcial-Pablo, M.D.J.; Enciso, J. Digital terrain models generated with low-cost UAV photogrammetry: Methodology and accuracy. ISPRS Int. J. Geo-Inf. 2021, 10, 285. [Google Scholar] [CrossRef]
- Finocchiaro, R.; Van Kaam, J.B.C.H.M.; Portolano, B.; Misztal, I. Effect of heat stress on production of Mediterranean dairy sheep. J. Dairy Sci. 2005, 88, 1855–1864. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Sow, F.B.; Gallup, J.M.; Meyerholz, D.K.; Ackermann, M.R. Gene profiling studies in the neonatal ovine lung show enhancing effects of VEGF on the immune response. Dev. Comp. Immunol. 2009, 33, 761–771. [Google Scholar] [CrossRef]
- Marai, I.F.M.; El-Darawany, A.A.; Fadiel, A.; Abdel-Hafez, M.A.M. Physiological traits as affected by heat stress in sheep–A review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Ramón, M.; Menéndez Buxadera, A.; Molina, A.; Carabaño, M.J. Heat stress response in sheep populations under different climatic and productive schemes. In Proceedings of the Book of Abstracts of the 70th Annual Meeting of the EAAP, Ghent, Belgium, 26–30 August 2019. [Google Scholar]
- Carabaño, M.J.; Ramón, M.; Menéndez-Buxadera, A.; Molina, A.; Díaz, C. Selecting for heat tolerance. Anim. Front. 2019, 9, 62–68. [Google Scholar] [CrossRef]
- Salces-Ortiz, J.; González, C.; Moreno-Sánchez, N.; Calvo, J.H.; Pérez-Guzmán, M.D.; Serrano, M.M. Ovine HSP90AA1 expression rate is affected by several SNPs at the promoter under both basal and heat stress conditions. PLoS ONE 2013, 8, e66641. [Google Scholar] [CrossRef]
- Kregel, K.C. Invited review: Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 2002, 92, 2177–2186. [Google Scholar] [CrossRef]
- Joy, A.; Dunshea, F.R.; Leury, B.J.; Clarke, I.J.; Digiacomo, K.; Chauhan, S.S. Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals 2020, 10, 867. [Google Scholar] [CrossRef]
- Maiti, S.; Picard, D. Cytosolic Hsp90 isoform-specific functions and clinical significance. Biomolecules 2022, 12, 1166. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Carcavilla, A.; Mutikainen, M.; González, C.; Calvo, J.H.; Kantanen, J.; Sanz, A.; Serrano, M. A SNP in the HSP90AA1 gene 5′ flanking region is associated with the adaptation to differential thermal conditions in the ovine species. Cell Stress Chaperones 2010, 15, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.M.; Singh, S.; Ganguly, I.; Nachiappan, R.K.; Venkataramanan, R.; Chopra, A.; Narula, H.K. Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell Stress Chaperones 2017, 22, 675–684. [Google Scholar] [CrossRef]
- Hoter, A.; El-Sabban, M.E.; Naim, H.Y. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci. 2018, 19, 2560. [Google Scholar] [CrossRef]
- Astuti, P.K.; Ilie, D.E.; Gavojdian, D.; Wanjala, G.; Badaoui, B.; Ohran, H.; Pasic Juhas, E.; Bagi, Z.; Javor, A.; Kusza, S. Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique. Sci. Rep. 2022, 12, 20991. [Google Scholar] [CrossRef]
- Kumar, S.; Magotra, A.; Kumar, N.; Bangar, Y.C. Expression and SNP profiling of HSP70 gene associated with thermotolerance traits in Munjal sheep. J. Therm. Biol. 2025, 130, 104151. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Upadhyay, R.C.; Chaudhary, U.B.; Kumar, R.; Singh, S.; Ashutosh; Jagan Mohanarao, G.; Polley, S.; Mukherjee, A.; Das, T.K.; et al. Seasonal variation in expression pattern of genes under HSP70 family in heat- and cold-adapted goats (Capra hircus). Cell Stress Chaperones 2014, 19, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Xu, Y.; Mao, C.; Wang, Z.; Guo, S.; Jin, X.; Yan, S.; Shi, B. Effects of heat stress on antioxidant status and immune function and expression of related genes in lambs. Int. J. Biometeorol. 2020, 64, 2093–2104. [Google Scholar] [CrossRef]
- Ellamie, A.M.; Fouda, W.A.; Ibrahim, W.M.; Ramadan, G. Dietary supplementation of brown seaweed (Sargassum latifolium) alleviates the environmental heat stress-induced toxicity in male Barki sheep (Ovis aries). J. Therm. Biol. 2020, 89, 102561. [Google Scholar] [CrossRef] [PubMed]
- Rawash, R.A.A.; Sharaby, M.A.; Hassan, G.E.-D.A.; Elkomy, A.E.; Hafez, E.E.; Abu Hafsa, S.H.; Salem, M.M. Expression profiling of HSP70 and interleukins 2, 6 and 12 genes of Barki sheep during summer and winter seasons in two different locations. Int. J. Biometeorol. 2022, 66, 2047–2053. [Google Scholar] [CrossRef]
- Caroprese, M.; Ciliberti, M.G.; De Palo, P.; Santillo, A.; Sevi, A.; Albenzio, M. Glucocorticoid effects on sheep peripheral blood mononuclear cell proliferation and cytokine production under in vitro hyperthermia. J. Dairy Sci. 2018, 101, 8544–8551. [Google Scholar] [CrossRef]
- Lian, P.; Braber, S.; Garssen, J.; Wichers, H.J.; Folkerts, G.; Fink-Gremmels, J.; Varasteh, S. Beyond heat stress: Intestinal integrity disruption and mechanism-based intervention strategies. Nutrients 2020, 12, 734. [Google Scholar] [CrossRef]
- Patra, A.K.; Kar, I. Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals. J. Anim. Sci. Technol. 2021, 63, e20210. [Google Scholar] [CrossRef]
- Fontoura, A.B.P.; Javaid, A.; Sáinz de la Maza-Escolà, V.; Salandy, N.S.; Fubini, S.L.; Grilli, E.; McFadden, J.W. Heat stress develops with increased total-tract gut permeability, and dietary organic acid and pure botanical supplementation partly restores lactation performance in Holstein dairy cows. J. Dairy Sci. 2022, 105, 7842–7860. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Peng, D.; Li, G.; Chen, J.; Gu, X. Exposure to heat-stress environment affects the physiology, circulation levels of cytokines, and microbiome in dairy cows. Sci. Rep. 2018, 8, 11015. [Google Scholar] [CrossRef]
- Siddiqui, S.H.; Kang, D.; Park, J.; Khan, M.; Shim, K. Chronic heat stress regulates the relation between heat shock protein and immunity in broiler small intestine. Sci. Rep. 2020, 10, 2215. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, M.W.; Vieira Dada, J.M.; Pereira, V.A.; Zandi-Karimi, A.; Ghisi, N.d.C.; Oliveira De Barros, F.R. Scientific knowledge about gene expression in ruminants under heat stress—A scientometric review. J. Therm. Biol. 2025, 110, 104028. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Xu, Y.; Jin, X.; Wang, Z.; Mao, C.; Guo, S.; Yan, S.; Shi, B. Influence of cold environments on growth, antioxidant status, immunity and expression of related genes in lambs. Animals 2022, 12, 2535. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, Y.; Wang, J.; Huang, N.; Jiang, Q.; Ju, Z.; Yang, C.; Wei, X.; Xiao, Y.; Zhang, Y.; et al. Selection signature and CRISPR/Cas9-mediated gene knockout analyses reveal ZC3H10 involved in cold adaptation in Chinese native cattle. Genes 2022, 13, 1910. [Google Scholar] [CrossRef]
HERCEGOVAČKA PRAMENKA | DUBSKA PRAMENKA | |||||||
---|---|---|---|---|---|---|---|---|
Podveležje | Nevesinje | Vlašić | Kupres | |||||
Geographical data | ||||||||
Altitude (m) | 864 | 877 | 1159 | 1131 | ||||
GPS coordinates | 43.281656, 17.950202 | 43.256564, 18.124937 | 44.311932, 17.538586 | 43.824834, 17.365428 | ||||
Climatological data | ||||||||
Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter | |
AvT (°C) | 20.59 | 6.76 | 20.10 | 5.34 | 15.08 | 1.00 | 15.77 | 2.11 |
AvRH (%) | 48.73 | 44.20 | 49.47 | 51.72 | 81.60 | 61.60 | 81.53 | 86.90 |
THIavg | 22.22 | 4.95 | 21.62 | 2.82 | 15.38 | −3.46 | 16.38 | −3.70 |
AvT-BC | 21.06 | 5.74 | 19.79 | 2.00 | 13.50 | 5.50 | 12.77 | 2.85 |
MaT-BC | 25.66 | 10.31 | 25.15 | 9.75 | 17.90 | 8.05 | 17.79 | 6.24 |
MiT-BC | 16.91 | 0.86 | 14.55 | −5.60 | 10.20 | 0.80 | 11.39 | −0.06 |
AvRH-BC | 23.17 | 65.73 | 58.71 | 85.17 | 84.22 | 97.91 | 84.06 | 96.42 |
RHmax-BC | 100.00 | 62.31 | 91.45 | 100.00 | 100.00 | 99.60 | 100.00 | 98.81 |
THIavg-BC | 21.87 | 2.66 | 21.50 | −3.74 | 13.09 | 0.76 | 12.03 | −3.21 |
THImax-BC | 31.79 | 8.93 | 30.50 | 7.22 | 19.82 | 4.61 | 19.64 | 1.85 |
AvT-5daysBC | 22.11 | 3.85 | 21.69 | 2.66 | 15.98 | −2.41 | 16.28 | −3.13 |
MaT-5daysBC | 29.76 | 10.61 | 31.55 | 10.55 | 30.45 | 7.70 | 29.39 | 5.99 |
MiT-5daysBC | 15.56 | −0.49 | 12.00 | −3.80 | 2.85 | −10.10 | 5.11 | −8.89 |
AvRH-5daysBC | 54.84 | 45.23 | 58.94 | 65.57 | 70.43 | 86.41 | 70.03 | 85.85 |
RHmax-5daysBC | 100.00 | 79.03 | 94.50 | 77.57 | 99.02 | 99.82 | 98.93 | 99.45 |
THIavg-5daysBC | 24.39 | 1.25 | 24.01 | −1.51 | 16.58 | −10.31 | 16.99 | −11.31 |
THImax-5daysBC | 38.12 | 8.98 | 40.37 | 8.93 | 39.10 | 4.06 | 37.46 | 1.44 |
HERCEGOVAČKA PRAMENKA | DUBSKA PRAMENKA | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total of Both Strains | Total within Strain | Nevesinje | Podveležje | Total within Strain | Vlašić | Kupres | |||||||||
Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter | ||
HSP90AA1 | U | 32 (72.7%) | 28 (63.6%) | 24 (100%) | 23 (95.8%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 8 (38.1%) | 6 (26.1%) | 5 (41.7%) | 2 (18.2%) | 3 (33.3%) | 4 (33.3%) |
N | 6 (13.6%) | 12 (27.3%) | 0 | 0 | 0 | 0 | 0 | 0 | 7 (33.3%) | 13 (56.5%) | 4 (33.3%) | 7 (63.6%) | 3 (33.3%) | 6 (50%) | |
D | 6 (13.6%) | 4 (9.1%) | 0 | 1 (4.2%) | 0 | 0 | 0 | 0 | 6 (28.6%) | 4 (17.4%) | 3 (25%) | 2 (18.2%) | 3 (33.3%) | 2 (16.7%) | |
HSPA8 | U | 35 (81.4%) | 40 (93%) | 17 (77.3%) | 21 (95.5%) | 9 (81.8%) | 10 (90.9%) | 8 (72.7%) | 11 (100%) | 18 (87.5%) | 19 (90.5%) | 12 (100%) | 10 (83.4%) | 6 (66.7%) | 9 (100%) |
N | 3 (7%) | 2 (4.7%) | 2 (9.1%) | 1 (4.5%) | 0 | 1 (9.1%) | 2 (18.2%) | 0 | 1 (4.8%) | 1 (4.8%) | 0 | 1 (8.3%) | 1 (11.1%) | 0 | |
D | 5 (11.6%) | 1 (2.3%) | 3 (13.6%) | 0 | 2 (18.2%) | 0 | 1 (9.1%) | 0 | 2 (9.5%) | 1 (4.8%) | 0 | 1 (8.3%) | 2 (22.2%) | 0 | |
HSPA1A | U | 4 (8.7%) | 3 (6.5%) | 3 (13%) | 1 (4.3%) | 2 (16.7%) | 0 | 1 (9.1%) | 1 (9.1%) | 1 (4.3%) | 2 (8.7%) | 0 | 2 (16.7%) | 1 (9.1%) | 0 |
N | 19 (41.3%) | 17 (37%) | 10 (43.5%) | 8 (34.8%) | 5 (41.7%) | 4 (33.3%) | 5 (45.5%) | 4 (36.4%) | 9 (39.1%) | 9 (39.1%) | 4 (33.3%) | 3 (25%) | 5 (45.5%) | 6 (54.5%) | |
D | 23 (50%) | 26 (56.5%) | 10 (43.5%) | 14 (60.9%) | 5 (41.7%) | 8 (66.7%) | 5 (45.5%) | 6 (54.5%) | 13 (56.5%) | 12 (52.2%) | 8 (66.7%) | 7 (58.3%) | 5 (45.5%) | 5 (45.5%) | |
IL-6 | U | 6 (14.6%) | 3 (7.3%) | 5 (25%) | 1 (5%) | 0 | 1 (11.1%) | 5 (41.7%) | 0 | 1 (4.8%) | 2 (9.5%) | 0 | 1 (9.1%) | 1 (10%) | 1 (8.3%) |
N | 0 | 2 (4.9%) | 0 | 1 (5%) | 0 | 0 | 0 | 1 (9.1%) | 0 | 1 (4.8%) | 0 | 1 (9.1%) | 0 | 0 | |
D | 35 (85.4%) | 36 (87.8%) | 15 (75%) | 18 (90%) | 9 (100%) | 8 (88.9%) | 7 (58.3%) | 10 (90.9%) | 20 (95.2%) | 18 (85.7%) | 11 (100%) | 9 (81.8%) | 9 (90%) | 11 (91.7%) | |
IL-10 | U | 38 (84.4%) | 25 (55.6%) | 21 (87.5%) | 14 (58.3%) | 11 (91.7%) | 9 (75%) | 10 (83.3%) | 5 (41.7%) | 17 (81%) | 11 (52.4%) | 7 (70%) | 4 (40%) | 10 (90.9%) | 7 (63.6%) |
N | 2 (4.4%) | 7 (15.6%) | 1 (4.2%) | 3 (12.5%) | 1 (8.3%) | 0 | 0 | 3 (25%) | 1 (4.8%) | 4 (19%) | 0 | 2 (20%) | 1 (9.1%) | 2 (18.2%) | |
D | 5 (11.1%) | 13 (28.9%) | 2 (8.3%) | 7 (29.2%) | 0 | 3 (25%) | 2 (16.7%) | 4 (33.3%) | 3 (14.3%) | 6 (28.6%) | 3 (30%) | 4 (40%) | 0 | 2 (18.2%) | |
TNF-α | U | 1 (2.8%) | 1 (2.8%) | 0 | 1 (6.2%) | 0 | 1 (12.5%) | 0 | 0 | 1 (5%) | 0 | 0 | 0 | 1 (12.5%) | 0 |
N | 0 | 2 (5.6%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 (10%) | 0 | 1 (8.3%) | 0 | 1 (12.5%) | |
D | 35 (97.2%) | 33 (91.7%) | 16 (100%) | 15 (93.7%) | 8 (100%) | 7 (87.5%) | 8 (100%) | 8 (100%) | 19 (95%) | 18 (90%) | 12 (100%) | 11 (91.7%) | 7 (87.5%) | 7 (87.5%) | |
NOS-3 | U | 1 (2.3%) | 2 (4.5%) | 1 (4.5%) | 1 (4.5%) | 1 (10%) | 0 | 0 | 1 (8.3%) | 0 | 1 (4.5%) | 0 | 1 (9.1%) | 0 | 0 |
N | 3 (6.8%) | 2 (4.5%) | 2 (9.1%) | 2 (9.1%) | 1 (10%) | 1 (10%) | 1 (8.3%) | 1 (8.3%) | 1 (4.5%) | 0 | 0 | 0 | 1 (9.1%) | 0 | |
D | 40 (90.9%) | 40 (90.9%) | 19 (86.4%) | 19 (86.4%) | 8 (80%) | 9 (90%) | 11 (91.7%) | 10 (83.3%) | 21 (95.5%) | 21 (95.5%) | 11 (100%) | 10 (90.9%) | 10 (90.9%) | 11 (100%) | |
SOD-2 | U | 2 (5.1%) | 3 (7.7%) | 1 (5%) | 1 (5%) | 1 (11.1%) | 0 | 0 | 1 (9.1%) | 1 (5.3%) | 2 (10.5%) | 0 | 2 (18.2%) | 1 (12.5%) | 0 |
N | 10 (25.6%) | 9 (23.1%) | 5 (25%) | 3 (15%) | 2 (22.2%) | 1 (11.1%) | 3 (27.3%) | 2 (18.2%) | 5 (26.3%) | 6 (31.6%) | 2 (18.2%) | 3 (27.3%) | 3 (37.5%) | 3 (37.5%) | |
D | 27 (69.2%) | 27 (69.2%) | 14 (70%) | 16 (80%) | 6 (66.7%) | 8 (88.9%) | 8 (72.7%) | 8 (72.7%) | 13 (68.4%) | 11 (57.9%) | 9 (81.8%) | 6 (54.5%) | 4 (50%) | 5 (62.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohran, H.; Pojskic, N.; Ramic, J.; Kusza, S.; Lojo-Kadric, N.; Hodzic, A. Thermal Stress Response Profiling Reveals Adaptive Advantages of Indigenous Hercegovačka and Dubska Pramenka Sheep. Animals 2025, 15, 2678. https://doi.org/10.3390/ani15182678
Ohran H, Pojskic N, Ramic J, Kusza S, Lojo-Kadric N, Hodzic A. Thermal Stress Response Profiling Reveals Adaptive Advantages of Indigenous Hercegovačka and Dubska Pramenka Sheep. Animals. 2025; 15(18):2678. https://doi.org/10.3390/ani15182678
Chicago/Turabian StyleOhran, Husein, Naris Pojskic, Jasmin Ramic, Szilvia Kusza, Naida Lojo-Kadric, and Aida Hodzic. 2025. "Thermal Stress Response Profiling Reveals Adaptive Advantages of Indigenous Hercegovačka and Dubska Pramenka Sheep" Animals 15, no. 18: 2678. https://doi.org/10.3390/ani15182678
APA StyleOhran, H., Pojskic, N., Ramic, J., Kusza, S., Lojo-Kadric, N., & Hodzic, A. (2025). Thermal Stress Response Profiling Reveals Adaptive Advantages of Indigenous Hercegovačka and Dubska Pramenka Sheep. Animals, 15(18), 2678. https://doi.org/10.3390/ani15182678