Rodent-Borne Parasites and Human Disease: A Growing Public Health Concern
Simple Summary
Abstract
1. Introduction
2. Protozoa
2.1. Toxoplasma gondii
2.2. Trypanosoma cruzi
2.3. Leishmania spp.
2.4. Giardia intestinalis
2.5. Cryptosporidium spp.
2.6. Babesia microti
2.7. Entamoeba histolytica
3. Helminths
3.1. Hymenolepis spp.
3.2. Trichinella spiralis
3.3. Angiostrongylus cantonensis
3.4. Capillaria hepatica
3.5. Baylisascaris procyonis
3.6. Echinococcus multilocularis
4. Ectoparasites
4.1. Xenopsylla cheopis
4.2. Ornithonyssus bacoti
4.3. Ixodes spp.
5. Climate Change and Anthropogenic Activities Leading to the Emergence of Rodent-Borne Zoonoses
5.1. Habitat Modification and Behavioral Shifts in Rodents
5.2. Impact of Extreme Weather Events
5.3. Alteration of Pathogen Dynamics
6. Public Health Implications and Mitigation Strategies
6.1. Surveillance and Early Warning System
6.2. Rodent Control and Habitat Management
6.3. Climate Change Adaptation and Mitigation
7. Prevention and Control Strategies Based on the One Health Approach
8. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lundwall, Å.; Persson, M.; Hansson, K.; Jonsson, M. Identification of the major rabbit and guinea pig semen coagulum proteins and description of the diversity of the REST gene locus in the mammalian clade Glires. PLoS ONE 2020, 15, e0240607. [Google Scholar] [CrossRef]
- Maxeiner, S.; Benseler, F.; Brose, N.; Krasteva-Christ, G. Of Humans and Gerbils- Independent Diversification of Neuroligin-4 Into X- and Y-Specific Genes in Primates and Rodents. Front. Mol. Neurosci. 2022, 15, 838262. [Google Scholar] [CrossRef]
- Pereira, M.; Smiley, K.O.; Lonstein, J.S. Parental Behavior in Rodents. Adv. Neurobiol. 2022, 27, 1–53. [Google Scholar] [CrossRef]
- Hardgrove, E.; Zimmerman, D.M.; von Fricken, M.E.; Deem, S. A scoping review of rodent-borne pathogen presence, exposure, and transmission at zoological institutions. Prev. Vet. Med. 2021, 193, 105345. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Farag, E.; Hassan, M.M.; Jaffrey, S.S.; Atta, M.; Al-Marri, A.M.; Al-Zeyara, A.M.; Al Romaihi, H.; Bansal, D.; Mkhize-Kwitshana, Z.L. Rodent-borne zoonoses in Qatar: A possible One-Health framework for the intervention of future epidemic. One Health 2023, 16, 100517. [Google Scholar] [CrossRef] [PubMed]
- Morand, S.; Blasdell, K.; Bordes, F.; Buchy, P.; Carcy, B.; Chaisiri, K.; Chaval, Y.; Claude, J.; Cosson, J.F.; Desquesnes, M.; et al. Changing landscapes of Southeast Asia and rodent-borne diseases: Decreased diversity but increased transmission risks. Ecol. Appl. 2019, 29, e01886. [Google Scholar] [CrossRef] [PubMed]
- Moratal, S.; Dea-Ayuela, M.A.; Cardells, J.; Marco-Hirs, N.M.; Puigcercós, S.; Lizana, V.; López-Ramon, J. Potential Risk of Three Zoonotic Protozoa (Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption. Foods 2020, 9, 1913. [Google Scholar] [CrossRef]
- Robertson, L.J.; Clark, C.G.; Debenham, J.J.; Dubey, J.P.; Kváč, M.; Li, J.; Ponce-Gordo, F.; Ryan, U.; Schares, G.; Su, C.; et al. Are molecular tools clarifying or confusing our understanding of the public health threat from zoonotic enteric protozoa in wildlife? Int. J. Parasitol. Parasites Wildl. 2019, 9, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Galán-Puchades, M.T.; Gosálvez, C.; Trelis, M.; Gómez-Samblás, M.; Solano-Parada, J.; Osuna, A.; Sáez-Durán, S.; Bueno-Marí, R.; Fuentes, M.V. Parasite Fauna and Coinfections in Urban Rats Naturally Infected by the Zoonotic Parasite Angiostrongylus cantonensis. Pathogens 2023, 13, 28. [Google Scholar] [CrossRef]
- Paller, V.G.V.; Fornesa, R.N.; Fernandez, D.A.P.; Estaño, L.A. Rats and their helminth parasites: Potential zoonosis threats of land use change in the northeastern sub-watersheds of Mount Makiling, Laguna, Philippines. Helminthologia 2024, 61, 30–39. [Google Scholar] [CrossRef]
- Tijjani, M.; Majid, R.A.; Abdullahi, S.A.; Unyah, N.Z. Detection of rodent-borne parasitic pathogens of wild rats in Serdang, Selangor, Malaysia: A potential threat to human health. Int. J. Parasitol. Parasites Wildl. 2020, 11, 174–182. [Google Scholar] [CrossRef]
- Frye, M.J.; Firth, C.; Bhat, M.; Firth, M.A.; Che, X.; Lee, D.; Williams, S.H.; Lipkin, W.I. Preliminary Survey of Ectoparasites and Associated Pathogens from Norway Rats in New York City. J. Med. Entomol. 2015, 52, 253–259. [Google Scholar] [CrossRef]
- Rajamannar, V.; Govindarajan, R.; Kumar, A.; Samuel, P.P. A review of public health important fleas (Insecta, Siphonaptera) and flea-borne diseases in India. J. Vector Borne Dis. 2022, 59, 12–21. [Google Scholar] [CrossRef]
- Wells, L.E.; Elston, D.M. What’s eating you? oriental rat flea (Xenopsylla cheopis). Cutis 2020, 106, 124–126. [Google Scholar] [CrossRef]
- Dini, F.M.; Mazzoni Tondi, C.; Galuppi, R. Helminthofauna Diversity in Synanthropic Rodents of the Emilia-Romagna Region (Italy): Implications for Public Health and Rodent Control. Vet. Sci. 2024, 11, 585. [Google Scholar] [CrossRef] [PubMed]
- Ellwanger, J.H.; Veiga, A.B.G.; Kaminski, V.L.; Valverde-Villegas, J.M.; Freitas, A.W.Q.; Chies, J.A.B. Control and prevention of infectious diseases from a One Health perspective. Genet. Mol. Biol. 2021, 44, e20200256. [Google Scholar] [CrossRef] [PubMed]
- Parande Shirvan, S.; Yaghfoori, S.; Mahmoudi, A.; Naddaf, S.R.; Molawi, G.; Ahmadi, A.; Hugot, J.P.; Mostafavi, E. Prevalence of Helminths Infection in Wild Rodents of Northwestern Iran. Arch. Razi Inst. 2024, 79, 120–128. [Google Scholar] [CrossRef]
- Waindok, P.; Özbakış-Beceriklisoy, G.; Janecek-Erfurth, E.; Springer, A.; Pfeffer, M.; Leschnik, M.; Strube, C. Parasites in brains of wild rodents (Arvicolinae and Murinae) in the city of Leipzig, Germany. Int. J. Parasitol. Parasites Wildl. 2019, 10, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Jahan, N.A.; Lindsey, L.L.; Larsen, P.A. The Role of Peridomestic Rodents as Reservoirs for Zoonotic Foodborne Pathogens. Vector Borne Zoonotic Dis. 2021, 21, 133–148. [Google Scholar] [CrossRef]
- Mendoza, H.; López-Pérez, A.M.; Rubio, A.V.; Barrón-Rodríguez, J.J.; Mazari-Hiriart, M.; Pontifes, P.A.; Dirzo, R.; Suzán, G. Association between anthropization and rodent reservoirs of zoonotic pathogens in Northwestern Mexico. PLoS ONE 2024, 19, e0298976. [Google Scholar] [CrossRef]
- Flegr, J. Host Manipulation by Toxoplasma gondii. In Encyclopedia of Parasitology; Mehlhorn, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1291–1296. [Google Scholar] [CrossRef]
- Galeh, T.M.; Sarvi, S.; Montazeri, M.; Moosazadeh, M.; Nakhaei, M.; Shariatzadeh, S.A.; Daryani, A. Global Status of Toxoplasma gondii Seroprevalence in Rodents: A Systematic Review and Meta-Analysis. Front. Vet. Sci. 2020, 7, 461. [Google Scholar] [CrossRef]
- Ijaz, M.; Khan, A.U.; Ullah, S.; Khan, A.; Ibenmoussa, S.; Sitotaw, B.; Dawoud, T.M.; Khan, A.; Iqbal, F. Toxoplasma gondii infection affects the complete blood count and disturbs the markers of oxidative stress from the vital organs of wild rodents. Sci. Rep. 2024, 14, 22716. [Google Scholar] [CrossRef]
- Nicolle, C.; Manceaux, L. Sur un protozoaire nouveau du Gondi. Comptes Rendus Séances L’académie Sci. 1909, 148, 369–372. [Google Scholar]
- Ivovic, V.; Potusek, S.; Buzan, E. Prevalence and genotype identification of Toxoplasma gondii in suburban rodents collected at waste disposal sites. Parasite 2019, 26, 27. [Google Scholar] [CrossRef]
- Bastien, M.; Vaniscotte, A.; Combes, B.; Umhang, G.; Germain, E.; Gouley, V.; Pierlet, A.; Quintaine, T.; Forin-Wiart, M.A.; Villena, I.; et al. High density of fox and cat faeces in kitchen gardens and resulting rodent exposure to Echinococcus multilocularis and Toxoplasma gondii. Folia Parasitol. 2018, 65, 002. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Murata, F.H.A.; Cerqueira-Cézar, C.K.; Kwok, O.C.H.; Su, C. Epidemiological Significance of Toxoplasma gondii Infections in Wild Rodents: 2009-2020. J. Parasitol. 2021, 107, 182–204. [Google Scholar] [CrossRef]
- Franco-Paredes, C.; Villamil-Gómez, W.E.; Schultz, J.; Henao-Martínez, A.F.; Parra-Henao, G.; Rassi, A., Jr.; Rodríguez-Morales, A.J.; Suarez, J.A. A deadly feast: Elucidating the burden of orally acquired acute Chagas disease in Latin America-Public health and travel medicine importance. Travel. Med. Infect. Dis. 2020, 36, 101565. [Google Scholar] [CrossRef] [PubMed]
- Madigan, R.; Majoy, S.; Ritter, K.; Luis Concepción, J.; Márquez, M.E.; Silva, S.C.; Zao, C.L.; Pérez Alvarez, A.; Rodriguez-Morales, A.J.; Mogollón-Mendoza, A.C.; et al. Investigation of a combination of amiodarone and itraconazole for treatment of American trypanosomiasis (Chagas disease) in dogs. J. Am. Vet. Med. Assoc. 2019, 255, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Botto-Mahan, C.; Rojo, G.; Sandoval-Rodríguez, A.; Peña, F.; Ortiz, S.; Solari, A. Temporal variation in Trypanosoma cruzi lineages from the native rodent Octodon degus in semiarid Chile. Acta Trop. 2015, 151, 178–181. [Google Scholar] [CrossRef]
- Hernández-Cortazar, I.; Cecilia Amaya Guardia, K.; Torres-Castro, M.; Acosta-Viana, K.; Guzmán-Marín, E.; Israel Chan-Pérez, J.; Ortega-Pacheco, A.; Rodríguez-Vivas, R.I.; Medina-Pinto, R.; Jiménez-Coello, M. Frequency of Trypanosoma cruzi Infection in Synanthropic and Wild Rodents Captured in a Rural Community in Southeast of Mexico. Vet. Med. Int. 2018, 2018, 8059613. [Google Scholar] [CrossRef]
- Brigada, A.M.; Doña, R.; Caviedes-Vidal, E.; Moretti, E.; Basso, B. American tripanosomiasis: A study on the prevalence of Trypanosoma cruzi and Trypanosoma cruzi-like organisms in wild rodents in San Luis province, Argentina. Rev. Soc. Bras. Med. Trop. 2010, 43, 249–253. [Google Scholar] [CrossRef]
- Yefi-Quinteros, E.; Muñoz-San Martín, C.; Bacigalupo, A.; Correa, J.P.; Cattan, P.E. Trypanosoma cruzi load in synanthropic rodents from rural areas in Chile. Parasit. Vectors 2018, 11, 171. [Google Scholar] [CrossRef]
- Ghersi, B.M.; Peterson, A.C.; Gibson, N.L.; Dash, A.; Elmayan, A.; Schwartzenburg, H.; Tu, W.; Riegel, C.; Herrera, C.; Blum, M.J. In the heart of the city: Trypanosoma cruzi infection prevalence in rodents across New Orleans. Parasit. Vectors 2020, 13, 577. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, A.P.; Muñoz-Maceda, A.; Ghersi, B.M.; De La Puente, M.; Zariquiey, C.; Cavero, N.; Murillo, Y.; Sebastian, M.; Ibañez, Y.; Parker, P.G.; et al. Diversity and prevalence of zoonotic infections at the animal-human interface of primate trafficking in Peru. PLoS ONE 2024, 19, e0287893. [Google Scholar] [CrossRef]
- Cardenas, R.; Sandoval, C.M.; Rodriguez-Morales, A.J.; Bendezu, H.; Gonzalez, A.; Briceno, A.; De-La-Paz-Pineda, J.; Rojas, E.M.; Scorza, J.V. Epidemiology of American tegumentary leishmaniasis in domestic dogs in an endemic zone of western Venezuela. Bull. Soc. Pathol. Exot. 2006, 99, 355–358. [Google Scholar] [PubMed]
- Cardenas, R.; Sandoval, C.M.; Rodriguez-Morales, A.J.; Franco-Paredes, C. Impact of climate variability in the occurrence of leishmaniasis in northeastern Colombia. Am. J. Trop. Med. Hyg. 2006, 75, 273–277. [Google Scholar] [CrossRef]
- Gutierrez-Ocampo, E.; Villamizar-Pena, R.; Cortes-Bonilla, I.; Garcia-Zuluaga, L.M.; Holguin-Rivera, Y.; Ospina-Arzuaga, H.D.; Cardona-Trujllo, M.C.; Trejos-Mendoza, A.E.; Perez-Vargas, S.; Arteaga-Livias, K.; et al. Human visceral leishmaniasis prevalence by different diagnostic methods in Latin America: A systematic review and meta-analysis. Infez. Med. 2021, 29, 199–208. [Google Scholar]
- Paniz-Mondolfi, A.E.; Talhari, C.; Garcia Bustos, M.F.; Rosales, T.; Villamil-Gomez, W.E.; Marquez, M.; Perez Alvarez, A.M.; Talamo Sanchez, A.I.; Rodriguez-Morales, A.J. American cutaneous leishmaniasis in infancy and childhood. Int. J. Dermatol. 2017, 56, 1328–1341. [Google Scholar] [CrossRef]
- Alvaro, A.; Cattaneo, G.M.; Bigoni, F.; Sanchez-Ruiz, L.; Mendoza-Roldan, J.A.; Otranto, D.; Varotto-Boccazzi, I.; Gabrieli, P.; Bandi, C.; Epis, S. Sand Fly Fauna and Prevalence of Leishmania spp. in a Newly Investigated Area of Northern Italy: Emerging Epidemiological Scenarios? Transbound. Emerg. Dis. 2025, 2025, 4426385. [Google Scholar] [CrossRef]
- Kalantari, M.; Azizi, K.; Asgari, Q.; Yousefi, M. Rare detection of dermal Leishmania infantum in two pediatric patients with cutaneous Leishmaniasis (CL) in southern Iran. Parasite Epidemiol. Control 2025, 30, e00452. [Google Scholar] [CrossRef] [PubMed]
- Yektaeian, N.; Dousti, M.; Hatam, G. The prevalence of Leishmania RNA virus in cutaneous Leishmaniasis: A meta-analysis and systematic review. BMC Infect. Dis. 2025, 25, 1026. [Google Scholar] [CrossRef]
- Kassahun, A.; Sadlova, J.; Dvorak, V.; Kostalova, T.; Rohousova, I.; Frynta, D.; Aghova, T.; Yasur-Landau, D.; Lemma, W.; Hailu, A.; et al. Detection of Leishmania donovani and L. tropica in Ethiopian wild rodents. Acta Trop. 2015, 145, 39–44. [Google Scholar] [CrossRef]
- Kato, H. Epidemiology of Leishmaniasis: Risk factors for its pathology and infection. Parasitol. Int. 2025, 105, 102999. [Google Scholar] [CrossRef]
- Galán-Puchades, M.T.; Gómez-Samblás, M.; Suárez-Morán, J.M.; Osuna, A.; Sanxis-Furió, J.; Pascual, J.; Bueno-Marí, R.; Franco, S.; Peracho, V.; Montalvo, T.; et al. Leishmaniasis in Norway Rats in Sewers, Barcelona, Spain. Emerg. Infect. Dis. 2019, 25, 1222–1224. [Google Scholar] [CrossRef] [PubMed]
- Chaves, L.F.; Hernandez, M.J.; Dobson, A.P.; Pascual, M. Sources and sinks: Revisiting the criteria for identifying reservoirs for American cutaneous Leishmaniasis. Trends Parasitol. 2007, 23, 311–316. [Google Scholar] [CrossRef]
- Gradoni, L.; Pozio, E.; Gramiccia, M.; Maroli, M.; Bettini, S. Leishmaniasis in Tuscany (Italy): VII. Studies on the role of the black rat, Rattus rattus, in the epidemiology of visceral Leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 1983, 77, 427–431. [Google Scholar] [CrossRef]
- Travi, B.L.; Arteaga, L.T.; Leon, A.P.; Adler, G.H. Susceptibility of spiny rats (Proechimys semispinosus) to Leishmania (Viannia) panamensis and Leishmania (Leishmania) chagasi. Mem. Inst. Oswaldo Cruz 2002, 97, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.S.; Courtenay, O.; Brito, M.E.; Carvalho, F.G.; Carvalho, A.W.; Soares, F.; Carvalho, S.M.; Costa, P.L.; Zampieri, R.; Floeter-Winter, L.M.; et al. Infectiousness of Sylvatic and Synanthropic Small Rodents Implicates a Multi-host Reservoir of Leishmania (Viannia) braziliensis. PLoS Negl. Trop. Dis. 2015, 9, e0004137. [Google Scholar] [CrossRef] [PubMed]
- Sadlova, J.; Vojtkova, B.; Lestinova, T.; Becvar, T.; Frynta, D.; Benallal, K.E.; Mekarnia, N.; Harrat, Z.; Volf, P. Infectiousness of Asymptomatic Meriones shawi, Reservoir Host of Leishmania major. Pathogens 2023, 12, 614. [Google Scholar] [CrossRef]
- Tsakmakidis, Ι.; Angelopoulou, K.; Dovas, C.I.; Dokianakis, Ε.; Tamvakis, A.; Symeonidou, I.; Antoniou, Μ.; Diakou, A. Leishmania infection in rodents in Greece. Trop. Med. Int. Health 2017, 22, 1523–1532. [Google Scholar] [CrossRef]
- Marinho-Júnior, J.F.; Monteiro, J.; Sales de Carvalho, A.W.; de Carvalho, F.G.; de Paiva Cavalcanti, M.; Shaw, J.; Courtenay, O.; Brandão-Filho, S.P. High levels of infectiousness of asymptomatic Leishmania (Viannia) braziliensis infections in wild rodents highlights their importance in the epidemiology of American Tegumentary Leishmaniasis in Brazil. PLoS Negl. Trop. Dis. 2023, 17, e0010996. [Google Scholar] [CrossRef]
- Durán, C.; Hidalgo, G.; Aguilera, W.; Rodriguez-Morales, A.J.; Albano, C.; Cortez, J.; Jiménez, S.; Díaz, M.; Incani, R.N. Giardia lamblia infection is associated with lower body mass index values. J. Infect. Dev. Ctries. 2010, 4, 417–418. [Google Scholar] [CrossRef]
- Escobedo, A.A.; Rodriguez-Morales, A.J.; Trujillo, A.M.; Sánchez-Duque, J.A. Introductory Chapter: Giardiasis-Still a Globally Relevant Protozoan and Zoonotic Disease. In Giardiasis; Rodriguez-Morales, A.J., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Rodríguez-Morales, A.J.; Granados-Álvarez, S.; Escudero-Quintero, H.; Vera-Polania, F.; Mondragon-Cardona, A.; Díaz-Quijano, F.A.; Sosa-Valencia, L.; Lozada-Riascos, C.O.; Escobedo, A.A.; Liseth, O.; et al. Estimating and mapping the incidence of giardiasis in Colombia, 2009–2013. Int. J. Infect. Dis. 2016, 49, 204–209. [Google Scholar] [CrossRef]
- Ramírez-Ocampo, S.; Cotte-Alzate, J.D.; Escobedo, Á.A.; Rodríguez-Morales, A.J. Prevalence of zoonotic and non-zoonotic genotypes of Giardia intestinalis in cats: A systematic review and meta-analysis. Infez. Med. 2017, 25, 326–338. [Google Scholar] [PubMed]
- Rodriguez-Morales, A.J.; Franco-Paredes, C. Giardia infections. In Encyclopedia of Global Health; Zhang, Y., Ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008; Volume 4, p. 739. [Google Scholar]
- Tuska-Szalay, B.; Sipos, D.; Czabán, D.; Kalmár, Z.; Keve, G.; Szekeres, S.; Kelemen, B.S.; Sándor, A.D.; Hornok, S. Pet and wild rodents as hosts of Giardia duodenalis in Central Europe, Hungary. Acta Vet. Hung. 2025, 73, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Zheng, W.B.; Ma, J.G.; Yao, Q.X.; Zou, Y.; Bubu, C.J.; Zhao, Q.; Zhu, X.Q. Occurrence and multilocus genotyping of Giardia intestinalis assemblage C and D in farmed raccoon dogs, Nyctereutes procyonoides, in China. Parasit. Vectors 2016, 9, 471. [Google Scholar] [CrossRef]
- Asghari, A.; Motazedian, M.H.; Asgari, Q.; Shamsi, L.; Sarkari, B.; Shahabi, S.; Mohammadi-Ghalehbin, B. Occurrence, genetic characterization, and zoonotic importance of Giardia duodenalis in various species of rodents (Mus musculus, Rattus norvegicus, and Rattus rattus). Comp. Immunol. Microbiol. Infect. Dis. 2022, 85, 101812. [Google Scholar] [CrossRef]
- Egan, S.; Barbosa, A.D.; Feng, Y.; Xiao, L.; Ryan, U. Critters and contamination: Zoonotic protozoans in urban rodents and water quality. Water Res. 2024, 251, 121165. [Google Scholar] [CrossRef]
- Islam, M.M.; Farag, E.; Hassan, M.M.; Enan, K.A.; Mohammadi, A.; Aldiqs, A.K.; Alhussain, H.; Al Musalmani, E.; Al-Zeyara, A.A.; Al-Romaihi, H.; et al. Rodent-borne parasites in Qatar: A possible risk at the human-animal-ecosystem interface. One Health 2024, 18, 100708. [Google Scholar] [CrossRef]
- Ryan, U.; Zahedi, A. Molecular epidemiology of giardiasis from a veterinary perspective. Adv. Parasitol. 2019, 106, 209–254. [Google Scholar] [CrossRef] [PubMed]
- Hatam-Nahavandi, K.; Ahmadpour, E.; Badri, M.; Eslahi, A.V.; Anvari, D.; Carmena, D.; Xiao, L. Global prevalence of Giardia infection in nonhuman mammalian hosts: A systematic review and meta-analysis of five million animals. PLoS Negl. Trop. Dis. 2025, 19, e0013021. [Google Scholar] [CrossRef]
- Coelho, C.H.; Durigan, M.; Leal, D.A.G.; Schneider, A.B.; Franco, R.M.B.; Singer, S.M. Giardiasis as a neglected disease in Brazil: Systematic review of 20 years of publications. PLoS Negl. Trop. Dis. 2017, 11, e0006005. [Google Scholar] [CrossRef]
- Roshidi, N.; Mohd Hassan, N.H.; Abdul Hadi, A.; Arifin, N. Current state of infection and prevalence of Giardiasis in Malaysia: A review of 20 years of research. PeerJ 2021, 9, e12483. [Google Scholar] [CrossRef] [PubMed]
- Tsui, C.K.; Miller, R.; Uyaguari-Diaz, M.; Tang, P.; Chauve, C.; Hsiao, W.; Isaac-Renton, J.; Prystajecky, N. Beaver Fever: Whole-Genome Characterization of Waterborne Outbreak and Sporadic Isolates To Study the Zoonotic Transmission of Giardiasis. mSphere 2018, 3, e00090-18. [Google Scholar] [CrossRef] [PubMed]
- Fayer, R.; Morgan, U.; Upton, S.J. Epidemiology of Cryptosporidium: Transmission, detection and identification. Int. J. Parasitol. 2000, 30, 1305–1322. [Google Scholar] [CrossRef]
- Xiao, L.; Fayer, R.; Ryan, U.; Upton, S.J. Cryptosporidium taxonomy: Recent advances and implications for public health. Clin. Microbiol. Rev. 2004, 17, 72–97. [Google Scholar] [CrossRef] [PubMed]
- Silva-Ramos, C.R.; Noriega, J.; Fajardo, R.F.; Chala-Quintero, S.M.; Del Pilar Pulido-Villamarín, A.; Pérez-Torres, J.; Castañeda-Salazar, R.; Cuervo, C. Molecular Detection and Genotyping of Cryptosporidium spp. Isolates from Bats in Colombia. Acta Parasitol. 2023, 68, 676–682. [Google Scholar] [CrossRef]
- Triviño-Valencia, J.; Nati-Castillo, A.; Cabeza, N.Y.; Lora-Suarez, F.; Gómez-Marín, J. Molecular confirmation of Cryptosporidium and Cyclospora species in children with acute diarrhoea in Quindio region, Colombia. Gut Pathog. 2025, 17, 14. [Google Scholar] [CrossRef]
- Jones, K.R.; Tardieu, L. Giardia and Cryptosporidium in Neo-Tropical Rodents and Marsupials: Is There Any Zoonotic Potential? Life 2021, 11, 256. [Google Scholar] [CrossRef]
- Zhang, K.; Fu, Y.; Li, J.; Zhang, L. Public health and ecological significance of rodents in Cryptosporidium infections. One Health 2022, 14, 100364. [Google Scholar] [CrossRef]
- Carrera-Játiva, P.D.; Acosta-Jamett, G.; Muñoz, P. Molecular detection of Cryptosporidium parvum in wild rodents (Phyllotis darwini) inhabiting protected and rural transitional areas in north-central Chile. Int. J. Parasitol. Parasites Wildl. 2024, 24, 100971. [Google Scholar] [CrossRef]
- Hancke, D.; Suárez, O.V. A review of the diversity of Cryptosporidium in Rattus norvegicus, R. rattus and Mus musculus: What we know and challenges for the future. Acta Trop. 2022, 226, 106244. [Google Scholar] [CrossRef]
- Ayinmode, A.B.; Obebe, O.O.; Falohun, O.O. Molecular detection of Cryptosporidium species in street-sampled dog faeces in Ibadan, Nigeria. Vet. Parasitol. Reg. Stud. Rep. 2018, 14, 54–58. [Google Scholar] [CrossRef] [PubMed]
- García-Livia, K.; Martín-Alonso, A.; Foronda, P. Diversity of Cryptosporidium spp. in wild rodents from the Canary Islands, Spain. Parasit. Vectors 2020, 13, 445. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.K.; Low, V.L.; Ng, W.H.; Ibrahim, J.; Wang, D.; Tan, C.H.; Chellappan, S.; Lim, Y.A.L. Occurrence of zoonotic Cryptosporidium and Giardia duodenalis species/genotypes in urban rodents. Parasitol. Int. 2019, 69, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, A.; Olfatifar, M.; Foroutan, M.; Bahadory, S.; Malih, N.; Norouzi, M. Global prevalence of Cryptosporidium infection in rodents: A systematic review and meta-analysis. Prev. Vet. Med. 2020, 182, 105119. [Google Scholar] [CrossRef]
- El-Alfy, E.S.; Nishikawa, Y. Cryptosporidium species and cryptosporidiosis in Japan: A literature review and insights into the role played by animals in its transmission. J. Vet. Med. Sci. 2020, 82, 1051–1067. [Google Scholar] [CrossRef]
- Golomazou, E.; Malandrakis, E.E.; Panagiotaki, P.; Karanis, P. Cryptosporidium in fish: Implications for aquaculture and beyond. Water Res. 2021, 201, 117357. [Google Scholar] [CrossRef]
- Golomazou, E.; Mamedova, S.; Eslahi, A.V.; Karanis, P. Cryptosporidium and agriculture: A review. Sci. Total Environ. 2024, 916, 170057. [Google Scholar] [CrossRef]
- García-Livia, K.; Fernández-Álvarez, Á.; Feliu, C.; Miquel, J.; Quilichini, Y.; Foronda, P. Cryptosporidium spp. in wild murids (Rodentia) from Corsica, France. Parasitol. Res. 2022, 121, 345–354. [Google Scholar] [CrossRef]
- Li, X.; Atwill, E.R. Diverse Genotypes and Species of Cryptosporidium in Wild Rodent Species from the West Coast of the USA and Implications for Raw Produce Safety and Microbial Water Quality. Microorganisms 2021, 9, 867. [Google Scholar] [CrossRef] [PubMed]
- Modarelli, J.J.; Westrich, B.J.; Milholland, M.; Tietjen, M.; Castro-Arellano, I.; Medina, R.F.; Esteve-Gasent, M.D. Prevalence of protozoan parasites in small and medium mammals in Texas, USA. Int. J. Parasitol. Parasites Wildl. 2020, 11, 229–234. [Google Scholar] [CrossRef]
- Rocco, J.M.; Regan, K.M.; Larkin, J.L.; Eichelberger, C.; Wisgo, J.; Nealen, P.M.; Irani, V.R. Higher Prevalence of Babesia microti than Borrelia burgdorferi in Small Mammal Species in Central Pennsylvania, United States. Vector Borne Zoonotic Dis. 2020, 20, 151–154. [Google Scholar] [CrossRef]
- Blaňarová, L.; Stanko, M.; Miklisová, D.; Víchová, B.; Mošanský, L.; Kraljik, J.; Bona, M.; Derdáková, M. Presence of Candidatus Neoehrlichia mikurensis and Babesia microti in rodents and two tick species (Ixodes ricinus and Ixodes trianguliceps) in Slovakia. Ticks Tick. Borne Dis. 2016, 7, 319–326. [Google Scholar] [CrossRef]
- Tufts, D.M.; Diuk-Wasser, M.A. Transplacental transmission of tick-borne Babesia microti in its natural host Peromyscus leucopus. Parasit. Vectors 2018, 11, 286. [Google Scholar] [CrossRef]
- Ren, F.; Liu, Y.; Niu, J.; Song, Y.; Cheng, H.; Zhao, C.; Cui, J.; Chen, Y.; Bai, Y.; Rao, H.; et al. Prevalence and genetic diversity of Babesia microti in rodents from central and southern Shanxi, China. Parasit. Vectors 2025, 18, 236. [Google Scholar] [CrossRef]
- Lau, Y.L.; Jamaiah, I.; Rohela, M.; Fong, M.Y.; Siti, C.O.; Siti, F.A. Molecular detection of Entamoeba histolytica and Entamoeba dispar infection among wild rats in Kuala Lumpur, Malaysia. Trop. Biomed. 2014, 31, 721–727. [Google Scholar]
- Neal, R.A. Entamoeba histolytica in wild rats caught in London. J. Hyg. 1948, 46, 90–93. [Google Scholar] [CrossRef]
- Mendoza Cavazos, C.; Heredia, M.Y.; Owens, L.A.; Knoll, L.J. Using Entamoeba muris To Model Fecal-Oral Transmission of Entamoeba in Mice. mBio 2023, 14, e0300822. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cui, Z.; Li, X.; Zhang, L. Review of zoonotic amebiasis: Epidemiology, clinical signs, diagnosis, treatment, prevention and control. Res. Vet. Sci. 2021, 136, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Ogola, J.G.; Alburkat, H.; Masika, M.; Korhonen, E.; Uusitalo, R.; Nyaga, P.; Anzala, O.; Vapalahti, O.; Sironen, T.; Forbes, K.M. Seroevidence of Zoonotic Viruses in Rodents and Humans in Kibera Informal Settlement, Nairobi, Kenya. Vector Borne Zoonotic Dis. 2021, 21, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Makouloutou-Nzassi, P.; Nze-Nkogue, C.; Makanga, B.K.; Longo-Pendy, N.M.; Bourobou, J.A.B.; Nso, B.; Akomo-Okoue, E.F.; Mbazoghe-Engo, C.C.; Bangueboussa, F.; Sevidzem, S.L.; et al. Occurrence of multiple infections of rodents with parasites and bacteria in the Sibang Arboretum, Libreville, Gabon. Vet. World 2024, 17, 2506–2516. [Google Scholar] [CrossRef] [PubMed]
- Shehata, A.A.; Parvin, R.; Tasnim, S.; Duarte, P.M.; Rodriguez-Morales, A.J.; Basiouni, S. The Hidden Threat: Rodent-Borne Viruses and Their Impact on Public Health. Viruses 2025, 17, 809. [Google Scholar] [CrossRef] [PubMed]
- Quintero, K.; Durán, C.; Duri, D.; Medina, F.; Garcia, J.; Hidalgo, G.; Nakal, S.; Echeverria-Ortega, M.; Albano, C.; Incani, R.N.; et al. Household social determinants of ascariasis and trichuriasis in North Central Venezuela. Int. Health 2012, 4, 103–110. [Google Scholar] [CrossRef]
- Fitte, B.; Robles, M.R.; Dellarupe, A.; Unzaga, J.M.; Navone, G.T. Hymenolepis diminuta and Rodentolepis nana (Hymenolepididae: Cyclophyllidea) in urban rodents of Gran La Plata: Association with socio-environmental conditions. J. Helminthol. 2018, 92, 549–553. [Google Scholar] [CrossRef]
- Lambert, R. Parasitology: Identification of Helminths; Butter-Worth & Co., Ltd.: London, UK, 1969; pp. vii + 64. [Google Scholar]
- Ito, A.; Budke, C.M. Perspectives on intestinal tapeworm infections: An evaluation of direct and indirect life-cycles with a special emphasis on species of Hymenolepis. Curr. Res. Parasitol. Vector Borne Dis. 2021, 1, 100023. [Google Scholar] [CrossRef]
- Panti-May, J.A.; Rodríguez-Vivas, R.I.; García-Prieto, L.; Servián, A.; Costa, F. Worldwide overview of human infections with Hymenolepis diminuta. Parasitol. Res. 2020, 119, 1997–2004. [Google Scholar] [CrossRef]
- Mane, P.; Sangwan, J. Hymenolepis diminuta infection in a young boy from rural part of Northern India. J. Family Med. Prim. Care 2016, 5, 166–167. [Google Scholar] [CrossRef]
- Horáková, B.; Čadková, Z.; Száková, J.; Jankovská, I. The identification of risk and essential elements along the strobila of the rat tapeworm Hymenolepis diminuta. J. Helminthol. 2017, 91, 555–560. [Google Scholar] [CrossRef]
- Islam, M.M.; Farag, E.; Hassan, M.M.; Bansal, D.; Awaidy, S.A.; Abubakar, A.; Al-Rumaihi, H.; Mkhize-Kwitshana, Z. Helminth Parasites among Rodents in the Middle East Countries: A Systematic Review and Meta-Analysis. Animals 2020, 10, 2342. [Google Scholar] [CrossRef]
- Fitte, B.; Cavia, R.; Robles, M.D.R.; Dellarupe, A.; Unzaga, J.M.; Navone, G.T. Predictors of parasite and pathogen infections in urban rodents of central Argentina. J. Helminthol. 2021, 95, e71. [Google Scholar] [CrossRef]
- Galán-Puchades, M.T.; Sanxis-Furió, J.; Pascual, J.; Bueno-Marí, R.; Franco, S.; Peracho, V.; Montalvo, T.; Fuentes, M.V. First survey on zoonotic helminthosis in urban brown rats (Rattus norvegicus) in Spain and associated public health considerations. Vet. Parasitol. 2018, 259, 49–52. [Google Scholar] [CrossRef]
- Brar, S.K.; Singla, N.; Singla, L.D. Comparative Comprehensive Analysis on Natural Infections of Hymenolepis diminuta and Hymenolepis Nana in Commensal Rodents. Helminthologia 2021, 58, 248–262. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, W.; Zhang, Y.; Liu, A. Prevalence of Hymenolepis Nana and H. diminuta from Brown Rats (Rattus norvegicus) in Heilongjiang Province, China. Korean J. Parasitol. 2017, 55, 351–355. [Google Scholar] [CrossRef]
- Coello Peralta, R.D.; Salazar Mazamba, M.L.; Pazmiño Gómez, B.J.; Cushicóndor Collaguazo, D.M.; Gómez Landires, E.A.; Ramallo, G. Hymenolepiasis Caused by Hymenolepis Nana in Humans and Natural Infection in Rodents in a Marginal Urban Sector of Guayaquil, Ecuador. Am. J. Case Rep. 2023, 24, e939476. [Google Scholar] [CrossRef]
- Haldeman, M.S.; Nolan, M.S.; Ng’habi, K.R.N. Human hookworm infection: Is effective control possible? A review of hookworm control efforts and future directions. Acta Trop. 2020, 201, 105214. [Google Scholar] [CrossRef]
- Bilska-Zając, E.; Korpysa-Dzirba, W.; Bełcik, A.; Karamon, J.; Sroka, J.; Cencek, T. Scheme of Effective Epidemiological Investigations in Trichinella Outbreaks on Pig Farms. Foods 2023, 12, 1320. [Google Scholar] [CrossRef]
- Echeverry, D.M.; Henríquez, A.; Oyarzún-Ruiz, P.; Silva-de la Fuente, M.C.; Ortega, R.; Sandoval, D.; Landaeta-Aqueveque, C. First record of Trichinella in Leopardus guigna (Carnivora, Felidae) and Galictis cuja (Carnivora, Mustelidae): New hosts in Chile. PeerJ 2021, 9, e11601. [Google Scholar] [CrossRef]
- Akibekov, O.S.; Syzdykova, A.S.; Lider, L.A.; Zhumalin, A.K.; Zhagipar, F.S.; Gajimuradova, A.M.; Borovikov, S.N.; Suranshiyev, Z.A.; Ashimov, S.A. Trichinellosis dissemination among wild carnivores in the Republic of Kazakhstan: A 10-year study. Vet. World 2023, 16, 1840–1848. [Google Scholar] [CrossRef]
- Rossi, L.; Interisano, M.; Deksne, G.; Pozio, E. The subnivium, a haven for Trichinella larvae in host carcasses. Int. J. Parasitol. Parasites Wildl. 2019, 8, 229–233. [Google Scholar] [CrossRef]
- Espinoza-Rojas, H.; Lobos-Chávez, F.; Silva-de la Fuente, M.C.; Echeverry, D.M.; Muñoz-Galaz, J.; Yáñez-Crisóstomo, C.; Oyarzún-Ruiz, P.; Ortega, R.; Sandoval, D.; Henríquez, A.; et al. Survey of Trichinella in American minks (Neovison vison Schreber, 1777) and wild rodents (Muridae and Cricetidae) in Chile. Zoonoses Public Health 2021, 68, 842–848. [Google Scholar] [CrossRef]
- Garbarino, C.; Interisano, M.; Chiatante, A.; Marucci, G.; Merli, E.; Arrigoni, N.; Cammi, G.; Ricchi, M.; Tonanzi, D.; Tamba, M.; et al. Trichinella spiralis a new alien parasite in Italy and the increased risk of infection for domestic and wild swine. Vet. Parasitol. 2017, 246, 1–4. [Google Scholar] [CrossRef]
- Crisóstomo-Jorquera, V.; Landaeta-Aqueveque, C. The genus Trichinella and its presence in wildlife worldwide: A review. Transbound. Emerg. Dis. 2022, 69, e1269–e1279. [Google Scholar] [CrossRef]
- Malone, C.J.; Oksanen, A.; Mukaratirwa, S.; Sharma, R.; Jenkins, E. From wildlife to humans: The global distribution of Trichinella species and genotypes in wildlife and wildlife-associated human trichinellosis. Int. J. Parasitol. Parasites Wildl. 2024, 24, 100934. [Google Scholar] [CrossRef]
- Diaz, J.H.; Warren, R.J.; Oster, M.J. The Disease Ecology, Epidemiology, Clinical Manifestations, and Management of Trichinellosis Linked to Consumption of Wild Animal Meat. Wilderness Environ. Med. 2020, 31, 235–244. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Wang, Z.Q.; Cui, J. Epidemiology of trichinellosis in the People’s Republic of China during 2009–2020. Acta Trop. 2022, 229, 106388. [Google Scholar] [CrossRef]
- Galán-Puchades, M.T.; Gómez-Samblás, M.; Osuna, A.; Sáez-Durán, S.; Bueno-Marí, R.; Fuentes, M.V. Update on the First Finding of the Rat Lungworm, Angiostrongylus cantonensis, in Rattus spp. in Continental Europe, Valencia, Spain, 2022. Pathogens 2023, 12, 567. [Google Scholar] [CrossRef]
- Gottdenker, N.L.; Nascimento Ramos, R.A.; Hakimi, H.; McHale, B.; Rivera, S.; Miller, B.M.; Howerth, E.W.; Burrell, C.E.; Stilwell, J.M.; McManamon, R.; et al. Angiostrongylus cantonensis Infection in Brown Rats (Rattus norvegicus), Atlanta, Georgia, USA, 2019–2022. Emerg. Infect. Dis. 2023, 29, 2167–2170. [Google Scholar] [CrossRef]
- Flerlage, T.; Qvarnstrom, Y.; Noh, J.; Devincenzo, J.P.; Madni, A.; Bagga, B.; Hysmith, N.D. Angiostrongylus cantonensis Eosinophilic Meningitis in an Infant, Tennessee, USA. Emerg. Infect. Dis. 2017, 23, 1756–1758. [Google Scholar] [CrossRef]
- Lv, S.; Zhou, X.N.; Andrews, J.R. Eosinophilic Meningitis Caused by Angiostrongylus cantonensis. ACS Chem. Neurosci. 2017, 8, 1815–1816. [Google Scholar] [CrossRef]
- Foronda, P.; López-González, M.; Miquel, J.; Torres, J.; Segovia, M.; Abreu-Acosta, N.; Casanova, J.C.; Valladares, B.; Mas-Coma, S.; Bargues, M.D.; et al. Finding of Parastrongylus cantonensis (Chen, 1935) in Rattus Rattus in Tenerife, Canary Islands (Spain). Acta Trop. 2010, 114, 123–127. [Google Scholar] [CrossRef]
- Martin-Alonso, A.; Abreu-Yanes, E.; Feliu, C.; Mas-Coma, S.; Bargues, M.D.; Valladares, B.; Foronda, P. Intermediate hosts of Angiostrongylus cantonensis in Tenerife, Spain. PLoS ONE 2015, 10, e0120686. [Google Scholar] [CrossRef]
- Paredes-Esquivel, C.; Foronda, P.; Dunavan, C.P.; Cowie, R.H. Neuroangiostrongyliasis: Rat Lungworm Invades Europe. Am. J. Trop. Med. Hyg. 2023, 108, 857. [Google Scholar] [CrossRef]
- Segeritz, L.; Cardona, A.; Taubert, A.; Hermosilla, C.; Ruiz, A. Autochthonous Angiostrongylus cantonensis, Angiostrongylus vasorum and Aelurostrongylus abstrusus infections in native terrestrial gastropods from the Macaronesian Archipelago of Spain. Parasitol. Res. 2021, 120, 2671–2680. [Google Scholar] [CrossRef]
- de Almeida, L.R.; de Souza Joaquim, J.; Botelho, L.M.; Vidigal, T.; Ecco, R.; de Souza Trindade, G.; Paglia, A.P.; Pereira, C.A.J.; Dos Santos Lima, W. Parasitism in Rattus Rattus and sympatric Achatina fulica by Angiostrongylus cantonensis in an urban park in southeast Brazil. Parasitol. Res. 2023, 122, 347–352. [Google Scholar] [CrossRef]
- Hancke, D.; Guzman, N.; Tripodi, M.; Muschetto, E.; Suárez, O.V. Reaching new lands: Updating the distribution of Angiostrongylus cantonensis in South America with the first record in Argentina. Zoonoses Public Health 2024, 71, 748–754. [Google Scholar] [CrossRef]
- Souza, F.N.; Aguiar Santos, M.; Almeida Alves, D.; Cecília Vieira de Melo, L.; Jessé Gonçalves da Mota, D.; Cristina Pertile, A.; Gava, R.; Luiz Silva Pinto, P.; Eyre, M.T.; Graco Zeppelini, C.; et al. Angiostrongylus cantonensis in urban populations of terrestrial gastropods and rats in an impoverished region of Brazil. Parasitology 2021, 148, 994–1002. [Google Scholar] [CrossRef]
- Chaudhari, J.P.; Shenoy, A.S.; Goel, N.A. Eosinophilic meningitis due to A. Cantonensis revealed at autopsy. Indian. J. Pathol. Microbiol. 2022, 65, 420–421. [Google Scholar] [CrossRef]
- Liu, E.W.; Schwartz, B.S.; Hysmith, N.D.; DeVincenzo, J.P.; Larson, D.T.; Maves, R.C.; Palazzi, D.L.; Meyer, C.; Custodio, H.T.; Braza, M.M.; et al. Rat Lungworm Infection Associated with Central Nervous System Disease-Eight U.S. States, January 2011-January 2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 825–828. [Google Scholar] [CrossRef]
- Rivory, P.; Lee, R.; Šlapeta, J. Rat Lungworm (Angiostrongylus cantonensis) active larval emergence from deceased bubble pond snails (Bullastra lessoni) into water. Parasitology 2023, 150, 700–704. [Google Scholar] [CrossRef]
- Martin-Carrillo, N.; Baz-González, E.; García-Livia, K.; Amaro-Ramos, V.; Abreu-Acosta, N.; Miquel, J.; Abreu-Yanes, E.; Pino-Vera, R.; Feliu, C.; Foronda, P. Data on New Intermediate and Accidental Hosts Naturally Infected with Angiostrongylus cantonensis in La Gomera and Gran Canaria (Canary Islands, Spain). Animals 2023, 13, 1969. [Google Scholar] [CrossRef]
- Underwood, E.B.; Walker, M.J.; Darden, T.L.; Kingsley-Smith, P.R. Frequency of Occurrence of the Rat Lungworm Parasite in the Invasive Island Apple Snail in South Carolina, USA. J. Aquat. Anim. Health 2019, 31, 168–172. [Google Scholar] [CrossRef]
- Bolukbas, C.S.; Demirtas, S.; Gurler, A.T.; Inal, S.; Acici, M.; Umur, S. Molecular characterization of Calodium hepaticum in grey dwarf hamster (Cricetulus migratorius). Parasitol. Int. 2020, 78, 102133. [Google Scholar] [CrossRef]
- Miterpáková, M.; Hurníková, Z.; Komorová, P.; Stanko, M.; Chovancová, G.; Syrota, Y. Micromammals as a reservoir for the zoonotic nematode Calodium hepaticum (syn. Capillaria hepatica) in recreational areas of Slovakia. Curr. Res. Parasitol. Vector Borne Dis. 2024, 6, 100214. [Google Scholar] [CrossRef]
- Dini, F.M.; Caffara, M.; Magri, A.; Cantori, A.; Luci, V.; Monno, A.; Galuppi, R. Sentinels in the shadows: Exploring Toxoplasma gondii and other Sarcocystidae parasites in synanthropic rodents and their public health implications. Int. J. Parasitol. Parasites Wildl. 2024, 24, 100939. [Google Scholar] [CrossRef]
- Gravinatti, M.L.; Barbosa, C.M.; Soares, R.M.; Gregori, F. Synanthropic rodents as virus reservoirs and transmitters. Rev. Soc. Bras. Med. Trop. 2020, 53, e20190486. [Google Scholar] [CrossRef]
- Dubey, A.; Bagchi, A.; Sharma, D.; Dey, A.; Nandy, K.; Sharma, R. Hepatic Capillariasis-Drug Targets. Infect. Disord. Drug Targets 2018, 18, 3–10. [Google Scholar] [CrossRef]
- Abalaka, S.E.; Ejeh, S.A. Histopathological evaluation of Capillaria hepatica (Bancroft, 1893) in Cricetomys gambianus (Waterhouse, 1840). J. Parasit. Dis. 2025, 49, 186–192. [Google Scholar] [CrossRef]
- Al-Sabi, M.N.S.; Chriél, M.; Hansen, M.S.; Enemark, H.L. Baylisascaris procyonis in wild raccoons (Procyon lotor) in Denmark. Vet. Parasitol. Reg. Stud. Rep. 2015, 1–2, 55–58. [Google Scholar] [CrossRef]
- Ogdee, J.L.; Henke, S.E.; Wester, D.B.; Fedynich, A.M. Permeability and Viability of Baylisascaris procyonis Eggs in Southern Texas Soils. J. Parasitol. 2016, 102, 608–612. [Google Scholar] [CrossRef]
- Sapp, S.G.; Weinstein, S.B.; McMahan, C.S.; Yabsley, M.J. Variable Infection Dynamics in Four Peromyscus Species Following Experimental Inoculation with Baylisascaris procyonis. J. Parasitol. 2016, 102, 538–544. [Google Scholar] [CrossRef]
- Weinstein, S.B. Introduced Rats and an Endemic Roundworm: Does Rattus Rattus Contribute to Baylisascaris procyonis Transmission in California? J. Parasitol. 2017, 103, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Sapp, S.G.H.; Elsemore, D.A.; Hanna, R.; Yabsley, M.J. Experimental comparison of Baylisascaris procyonis definitive host competence between domestic dogs and raccoons (Procyon lotor). Parasitology 2020, 147, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- Umhang, G.; Frantz, A.C.; Ferté, H.; Fournier Chambrillon, C.; Gautrelet, M.; Gritti, T.; Thenon, N.; Le Loc’h, G.; Isère-Laoué, E.; Egal, F.; et al. Surveys on Baylisascaris procyonis in two of the three French wild raccoon populations. Int. J. Parasitol. Parasites Wildl. 2024, 23, 100928. [Google Scholar] [CrossRef]
- Straif-Bourgeois, S.; Cloherty, E.; Balsamo, G.; Gee, L.; Riegel, C. Prevalence of Baylisascaris procyonis in Raccoons Trapped in New Orleans, Louisiana, 2014-2017. Vector Borne Zoonotic Dis. 2020, 20, 22–26. [Google Scholar] [CrossRef]
- Dzikowiec, M.; Góralska, K.; Błaszkowska, J. Neuroinvasions caused by parasites. Ann. Parasitol. 2017, 63, 243–253. [Google Scholar]
- Hoberg, E.P.; Burek-Huntington, K.; Beckmen, K.; Camp, L.E.; Nadler, S.A. Transuterine infection by Baylisascaris transfuga: Neurological migration and fatal debilitation in sibling moose calves (Alces alces gigas) from Alaska. Int. J. Parasitol. Parasites Wildl. 2018, 7, 280–288. [Google Scholar] [CrossRef]
- Rentería-Solís, Z.; Birka, S.; Schmäschke, R.; Król, N.; Obiegala, A. First detection of Baylisascaris procyonis in wild Raccoons (Procyon lotor) from Leipzig, Saxony, Eastern Germany. Parasitol. Res. 2018, 117, 3289–3292. [Google Scholar] [CrossRef]
- Umhang, G.; Possenti, A.; Colamesta, V.; d’Aguanno, S.; La Torre, G.; Boué, F.; Casulli, A. A systematic review and meta-analysis on anthelmintic control programs for Echinococcus multilocularis in wild and domestic carnivores. Food Waterborne Parasitol. 2019, 15, e00042. [Google Scholar] [CrossRef]
- Khan, A.; Ahmed, H.; Sohail, A.; Alam, F.; Simsek, S. A mathematical modelling approach for treatment and control of Echinococcus multilocularis. Parasitology 2020, 147, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Beerli, O.; Guerra, D.; Baltrunaite, L.; Deplazes, P.; Hegglin, D. Microtus arvalis and Arvicola scherman: Key Players in the Echinococcus multilocularis Life Cycle. Front. Vet. Sci. 2017, 4, 216. [Google Scholar] [CrossRef]
- Salvatore Andrea, C.; Lucia, C.; Chiara, R.; Emily Louise, P.; Federica, O.; Graziana, D.R.; Carlo Vittorio, C.; Adriano, C.; Heidi Christine, H.; Alessandro, M. Chasing intermediate hosts of Echinococcus multilocularis at the southern edge of its European distribution using red fox stomach content analysis. Int. J. Parasitol. Parasites Wildl. 2025, 27, 101095. [Google Scholar] [CrossRef]
- Miller, A.L.; Olsson, G.E.; Sollenberg, S.; Walburg, M.R.; Skarin, M.; Höglund, J. Transmission ecology of taeniid larval cestodes in rodents in Sweden, a low endemic area for Echinococcus multilocularis. Parasitology 2017, 144, 1041–1051. [Google Scholar] [CrossRef]
- Raoul, F.; Hegglin, D.; Giraudoux, P. Trophic ecology, behaviour and host population dynamics in Echinococcus multilocularis transmission. Vet. Parasitol. 2015, 213, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Avcioglu, H.; Guven, E.; Balkaya, I.; Kirman, R.; Bia, M.M.; Gulbeyen, H.; Kurt, A.; Yaya, S.; Demirtas, S. First detection of Echinococcus multilocularis in rodent intermediate hosts in Turkey. Parasitology 2017, 144, 1821–1827. [Google Scholar] [CrossRef] [PubMed]
- Umhang, G.; Demerson, J.M.; Legras, L.; Boucher, J.M.; Peytavin de Garam, C.; Bastid, V.; Vannard, E.; Pinot, A.; Giraudoux, P.; Boué, F. Rodent control programmes can integrate Echinococcus multilocularis surveillance by facilitating parasite genotyping: The case of Arvicola terrestris voles screening in France. Parasitol. Res. 2021, 120, 1903–1908. [Google Scholar] [CrossRef]
- Bland, D.M.; Jarrett, C.O.; Bosio, C.F.; Hinnebusch, B.J. Infectious blood source alters early foregut infection and regurgitative transmission of Yersinia pestis by rodent fleas. PLoS Pathog. 2018, 14, e1006859. [Google Scholar] [CrossRef]
- Lemon, A.; Cherzan, N.; Vadyvaloo, V. Influence of Temperature on Development of Yersinia pestis Foregut Blockage in Xenopsylla cheopis (Siphonaptera: Pulicidae) and Oropsylla montana (Siphonaptera: Ceratophyllidae). J. Med. Entomol. 2020, 57, 1997–2007. [Google Scholar] [CrossRef]
- Rodriguez-Morales, A.J.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E. Is Plague Globally Reemerging? Infectio 2019, 23, 7–9. [Google Scholar] [CrossRef]
- Blanton, L.S. Murine Typhus: A Review of a Reemerging Flea-Borne Rickettsiosis with Potential for Neurologic Manifestations and Sequalae. Infect. Dis. Rep. 2023, 15, 700–716. [Google Scholar] [CrossRef]
- Caravedo Martinez, M.A.; Ramírez-Hernández, A.; Blanton, L.S. Manifestations and Management of Flea-Borne Rickettsioses. Res. Rep. Trop. Med. 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- McKee, C.D.; Osikowicz, L.M.; Schwedhelm, T.R.; Maes, S.E.; Enscore, R.E.; Gage, K.L.; Kosoy, M.Y. Acquisition of Bartonella elizabethae by Experimentally Exposed Oriental Rat Fleas (Xenopsylla cheopis; Siphonaptera, Pulicidae) and Excretion of Bartonella DNA in Flea Feces. J. Med. Entomol. 2018, 55, 1292–1298. [Google Scholar] [CrossRef]
- Rahelinirina, S.; Razafiarimanga, Z.N.; Rajerison, M.; Djedanem, M.; Handschumacher, P.; Jambou, R. Impact of Sanitation on Rodent Pullulation and Plague Status in an Informal Settlement on the Outskirts of Mahajanga (Madagascar). Pathogens 2024, 13, 918. [Google Scholar] [CrossRef] [PubMed]
- Rasoamalala, F.; Gostic, K.; Parany, M.J.; Rahelinirina, S.; Rahajandraibe, S.; Gorgé, O.; Valade, E.; Harimalala, M.; Rajerison, M.; Ramasindrazana, B. Population dynamics of plague vector fleas in an endemic focus: Implications for plague surveillance. J. Med. Entomol. 2024, 61, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Eneku, W.; Erima, B.; Byaruhanga Maranda, A.; Cleary Gillian, N.; Atim, G.; Tugume, T.; Ukuli Aquino, Q.; Kibuuka, H.; Mworozi, E.; Douglas, C.; et al. Molecular detection and characterization of Rickettsia felis, R. asembonensis, and Yersinia pestis from peri-domestic fleas in Uganda. Infect. Ecol. Epidemiol. 2025, 15, 2473159. [Google Scholar] [CrossRef]
- Clancy, B.M.; Theriault, B.R.; Schoenberger, J.M.; Bowers, C.J.; Mitchell, C.M.; Langan, G.P.; Ostdiek, A.M.; Luchins, K.R. Identification and Control of an Ornithonyssus Bacoti Infestation in a Rodent Vivarium by Using Molecular Diagnostic Techniques. Comp. Med. 2022, 72, 113–121. [Google Scholar] [CrossRef]
- Yin, P.W.; Guo, X.G.; Jin, D.C.; Fan, R.; Zhao, C.F.; Zhang, Z.W.; Huang, X.B.; Mao, K.Y. Distribution and Host Selection of Tropical Rat Mite, Ornithonyssus bacoti, in Yunnan Province of Southwest China. Animals 2021, 11, 110. [Google Scholar] [CrossRef]
- Islam, M.M.; Farag, E.; Eltom, K.; Hassan, M.M.; Bansal, D.; Schaffner, F.; Medlock, J.M.; Al-Romaihi, H.; Mkhize-Kwitshana, Z. Rodent Ectoparasites in the Middle East: A Systematic Review and Meta-Analysis. Pathogens 2021, 10, 139. [Google Scholar] [CrossRef]
- Sarathep, P.; Phonkaew, W. A lost world disease: Copra itch outbreak caused by Tyrophagus longior mite. IDCases 2018, 12, 58–63. [Google Scholar] [CrossRef]
- Thomas, C.; Castillo Valladares, H.; Berger, T.G.; Chang, A.Y. Scabies, Bedbug, and Body Lice Infestations: A Review. JAMA 2024, 332, 1189–1199. [Google Scholar] [CrossRef]
- Eikenbary, B.; Devaraju, P.; Chakkravarthi, A.; Sihag, K.K.; Nathan, T.; Thangaraj, G.; Srinivasan, L.; Kumar, A. A molecular survey of zoonotic pathogens of public health importance in rodents/shrews and their ectoparasites trapped in Puducherry, India. Trans. R. Soc. Trop. Med. Hyg. 2024, 118, 616–624. [Google Scholar] [CrossRef]
- Moraga-Fernández, A.; Muñoz-Hernández, C.; Sánchez-Sánchez, M.; Fernández de Mera, I.G.; de la Fuente, J. Exploring the diversity of tick-borne pathogens: The case of bacteria (Anaplasma, Rickettsia, Coxiella and Borrelia) protozoa (Babesia and Theileria) and viruses (Orthonairovirus, tick-borne encephalitis virus and louping ill virus) in the European continent. Vet. Microbiol. 2023, 286, 109892. [Google Scholar] [CrossRef]
- Sargison, N.D.; Chaudhry, U.; Costa-Junior, L.; Kutcher, J.R.; Li, K.; Sargison, F.A.; Zahid, O. The diagnosis and vector potential of Ornithonyssus Bacoti tropical rat mites in northern Europe. Vet. Parasitol. Reg. Stud. Rep. 2025, 58, 101204. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, Y.; Fang, J.; Wang, J.; Zhou, Y. A rapid diagnosis and treatment of Ornithonyssus Bacoti infection. Parasitol. Res. 2023, 122, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.S.; Kahl, O.; Lane, R.S.; Levin, M.L.; Tsao, J.I. Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick. Borne Dis. 2016, 7, 992–1003. [Google Scholar] [CrossRef]
- Larson, R.T.; Lee, X.; Zembsch, T.; Bron, G.M.; Paskewitz, S.M. Immature Ixodes scapularis (Acari: Ixodidae) Collected from Peromyscus leucopus (Rodentia: Cricetidae) and Peromyscus maniculatus (Rodentia: Cricetidae) Nests in Northern Wisconsin. J. Med. Entomol. 2020, 57, 304–307. [Google Scholar] [CrossRef]
- Asman, M.; Witecka, J.; Solarz, K.; Zwonik, A.; Szilman, P. Occurrence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in Ixodes ricinus ticks collected from selected areas of Opolskie Province in south-west Poland. Ann. Agric. Environ. Med. 2019, 26, 544–547. [Google Scholar] [CrossRef]
- Werden, L.; Lindsay, L.R.; Barker, I.K.; Bowman, J.; Gonzales, E.K.; Jardine, C.M. Prevalence of Anaplasma phagocytophilum and Babesia microti in Ixodes scapularis from a Newly Established Lyme Disease Endemic Area, the Thousand Islands Region of Ontario, Canada. Vector Borne Zoonotic Dis. 2015, 15, 627–629. [Google Scholar] [CrossRef]
- Acosta-España, J.D.; Herrera-Yela, A.; Altamirano-Jara, J.B.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. The epidemiology and clinical manifestations of anaplasmosis in humans: A systematic review of case reports. J. Infect. Public Health 2025, 18, 102765. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Aldana, D.K.; Castaño-Betancourt, K.J.; Ortega-Martínez, J.M.; Ulloque-Badaracco, J.R.; Hernandez-Bustamante, E.A.; Benites-Zapata, V.A.; Rodriguez-Morales, A.J. Prevalence of zoonotic and non-zoonotic Rickettsia in horses: A systematic review and meta-analysis. New Microbes New Infect. 2023, 51, 101068. [Google Scholar] [CrossRef]
- Bonilla-Aldana, D.K.; Gutiérrez-Grajales, E.J.; Martínez-Arboleda, J.P.; Reina-Mora, M.A.; Trejos-Mendoza, A.E.; Pérez-Vargas, S.; Valencia-Mejía, L.; Marín-Arboleda, L.F.; Osorio-Navia, D.; Chacón-Peña, M.; et al. Seroprevalence canine survey for selected vector-borne pathogens and its relationship with poverty in metropolitan Pereira, Colombia, 2020. Parasite Epidemiol. Control 2022, 17, e00249. [Google Scholar] [CrossRef] [PubMed]
- Cayol, C.; Koskela, E.; Mappes, T.; Siukkola, A.; Kallio, E.R. Temporal dynamics of the tick Ixodes ricinus in northern Europe: Epidemiological implications. Parasit. Vectors 2017, 10, 166. [Google Scholar] [CrossRef]
- Karbowiak, G.; Biernat, B. The role of particular tick developmental stages in the circulation of tick-borne pathogens affecting humans in Central Europe. 2. Tick-borne encephalitis virus. Ann. Parasitol. 2016, 62, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Eisen, L. Control of ixodid ticks and prevention of tick-borne diseases in the United States: The prospect of a new Lyme disease vaccine and the continuing problem with tick exposure on residential properties. Ticks Tick. Borne Dis. 2021, 12, 101649. [Google Scholar] [CrossRef]
- Eisen, L.; Dolan, M.C. Evidence for Personal Protective Measures to Reduce Human Contact With Blacklegged Ticks and for Environmentally Based Control Methods to Suppress Host-Seeking Blacklegged Ticks and Reduce Infection with Lyme Disease Spirochetes in Tick Vectors and Rodent Reservoirs. J. Med. Entomol. 2016, 53, 1063–1092. [Google Scholar] [CrossRef] [PubMed]
- Cafiso, A.; Olivieri, E.; Floriano, A.M.; Chiappa, G.; Serra, V.; Sassera, D.; Bazzocchi, C. Investigation of Tick-Borne Pathogens in Ixodes ricinus in a Peri-Urban Park in Lombardy (Italy) Reveals the Presence of Emerging Pathogens. Pathogens 2021, 10, 732. [Google Scholar] [CrossRef]
- Vikentjeva, M.; Geller, J.; Bragina, O. Ticks and Tick-Borne Pathogens in Popular Recreational Areas in Tallinn, Estonia: The Underestimated Risk of Tick-Borne Diseases. Microorganisms 2024, 12, 1918. [Google Scholar] [CrossRef]
- Flores-Pérez, N.; Kulkarni, P.; Uhart, M.; Pandit, P.S. Climate Change Impact on Human-Rodent Interfaces: Modeling Junin Virus Reservoir Shifts. Ecohealth, 2025; in press. [Google Scholar] [CrossRef]
- Gutiérrez-Tapia, P.; Palma, R.E. Integrating phylogeography and species distribution models: Cryptic distributional responses to past climate change in an endemic rodent from the central Chile hotspot. Divers. Distrib. 2016, 22, 638–650. [Google Scholar] [CrossRef]
- Kunwar, B.; Baral, S.; Jeong, Y.H.; Park, S.M.; Choi, S.H.; Oh, H.S. Predicting the Potential Distribution of a Rodent Pest, Brown Rat (Rattus norvegicus), Associated With Changes in Climate and Land Cover in South Korea. Ecol. Evol. 2024, 14, e70573. [Google Scholar] [CrossRef]
- Young, H.S.; McCauley, D.J.; Dirzo, R.; Nunn, C.L.; Campana, M.G.; Agwanda, B.; Otarola-Castillo, E.R.; Castillo, E.R.; Pringle, R.M.; Veblen, K.E.; et al. Interacting effects of land use and climate on rodent-borne pathogens in central Kenya. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160116. [Google Scholar] [CrossRef]
- Ecke, F.; Han, B.A.; Hörnfeldt, B.; Khalil, H.; Magnusson, M.; Singh, N.J.; Ostfeld, R.S. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nat. Commun. 2022, 13, 7532. [Google Scholar] [CrossRef] [PubMed]
- Mistrick, J.; Kipp, E.J.; Weinberg, S.I.; Adams, C.C.; Larsen, P.A.; Craft, M.E. Microbiome diversity and zoonotic bacterial pathogen prevalence in Peromyscus mice from agricultural landscapes and synanthropic habitat. Mol. Ecol. 2024, 33, e17309. [Google Scholar] [CrossRef]
- Nunes, D.O.; Fehlberg, H.F.; Carneiro, L.O.; Oliveira, K.M.M.; Bovendorp, R.S.; Ribeiro, C.M.; Albuquerque, G.R.; Oliveira, T.; Sevá, A.D.P. Synanthropic Rodents as Bioindicator of Human Pathogens in a Tourist Area of Brazil. Ecohealth 2025, 22, 55–68. [Google Scholar] [CrossRef]
- Sánchez-Soto, M.F.; Gaona, O.; Vigueras-Galván, A.L.; Suzán, G.; Falcón, L.I.; Vázquez-Domínguez, E. Prevalence and transmission of the most relevant zoonotic and vector-borne pathogens in the Yucatan peninsula: A review. PLoS Negl. Trop. Dis. 2024, 18, e0012286. [Google Scholar] [CrossRef]
- Antúnez, M.P.; Marín Montesinos, J.C.; Corduneanu, A.; Obregón, D.; Moutailler, S.; Cabezas-Cruz, A. Tick-borne viruses and their risk to public health in the Caribbean: Spotlight on bats as reservoirs in Cuba. Heliyon 2024, 10, e26118. [Google Scholar] [CrossRef]
- Harrison, A.; Robb, G.N.; Alagaili, A.N.; Hastriter, M.W.; Apanaskevich, D.A.; Ueckermann, E.A.; Bennett, N.C. Ectoparasite fauna of rodents collected from two wildlife research centres in Saudi Arabia with discussion on the implications for disease transmission. Acta Trop. 2015, 147, 1–5. [Google Scholar] [CrossRef]
- Wang, H.R.; Liu, T.; Gao, X.; Wang, H.B.; Xiao, J.H. Impact of climate change on the global circulation of West Nile virus and adaptation responses: A scoping review. Infect. Dis. Poverty 2024, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Esson, C.; Samelius, G.; Strand, T.M.; Lundkvist, Å.; Michaux, J.R.; Råsbäck, T.; Wahab, T.; Mijiddorj, T.N.; Berger, L.; Skerratt, L.F.; et al. The prevalence of rodent-borne zoonotic pathogens in the South Gobi desert region of Mongolia. Infect. Ecol. Epidemiol. 2023, 13, 2270258. [Google Scholar] [CrossRef] [PubMed]
- Nazari, N.; Shojaee, S.; Mohebali, M.; Teimouri, A.; Ghadiri, K.; Raeghi, S.; Shiee, M.R.; Azarakhsh, Y.; Bozorgomid, A. Toxoplasma gondii And Neospora caninum In Brain Tissue Of Rodents In North-West Iran. Vet. Med. 2019, 10, 223–227. [Google Scholar] [CrossRef]
- Acosta-Espana, J.D.; Romero-Alvarez, D.; Luna, C.; Rodriguez-Morales, A.J. Infectious disease outbreaks in the wake of natural flood disasters: Global patterns and local implications. Infez. Med. 2024, 32, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Patwary, M.M.; Rodriguez-Morales, A.J. Deadly Flood and Landslides amid COVID-19 Crisis: A Public Health Concern for the World’s Largest Refugee Camp in Bangladesh. Prehosp Disaster Med. 2022, 37, 292–293. [Google Scholar] [CrossRef]
- Sutiningsih, D.; Sari, D.P.; Permatasari, C.D.; Azzahra, N.A.; Rodriguez-Morales, A.J.; Yuliawati, S.; Maharani, N.E. Geospatial Analysis of Abiotic and Biotic Conditions Associated with Leptospirosis in the Klaten Regency, Central Java, Indonesia. Trop. Med. Infect. Dis. 2024, 9, 225. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Aldana, D.K.; Suarez, J.A.; Franco-Paredes, C.; Vilcarromero, S.; Mattar, S.; Gomez-Marin, J.E.; Villamil-Gomez, W.E.; Ruiz-Saenz, J.; Cardona-Ospina, J.A.; Idarraga-Bedoya, S.E.; et al. Brazil burning! What is the potential impact of the Amazon wildfires on vector-borne and zoonotic emerging diseases?—A statement from an international experts meeting. Travel. Med. Infect. Dis. 2019, 31, 101474. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, J.; Menéndez Orellana, A.E.; Kilian, W.; Moryl, A.; Cielecka, N.; Michałowska, K.; Policht-Latawiec, A.; Michalski, A.; Bednarek, A.; Włóka, A. Between flood and drought: How cities are facing water surplus and scarcity. J. Environ. Manage 2023, 345, 118557. [Google Scholar] [CrossRef]
- Kiefer, E.M.; Felton, D. A Review of Climate-Driven Threats to Recreational Water Users in Hawaii. Wilderness Environ. Med. 2025, 36, 61–66. [Google Scholar] [CrossRef]
- Mirsaeidi, M.; Motahari, H.; Taghizadeh Khamesi, M.; Sharifi, A.; Campos, M.; Schraufnagel, D.E. Climate Change and Respiratory Infections. Ann. Am. Thorac. Soc. 2016, 13, 1223–1230. [Google Scholar] [CrossRef]
- Bron, G.M.; Malavé, C.M.; Boulerice, J.T.; Osorio, J.E.; Rocke, T.E. Plague-Positive Mouse Fleas on Mice Before Plague Induced Die-Offs in Black-Tailed and White-Tailed Prairie Dogs. Vector Borne Zoonotic Dis. 2019, 19, 486–493. [Google Scholar] [CrossRef]
- Mojahed, N.; Mohammadkhani, M.A.; Mohamadkhani, A. Climate Crises and Developing Vector-Borne Diseases: A Narrative Review. Iran. J. Public Health 2022, 51, 2664–2673. [Google Scholar] [CrossRef]
- Douglas, K.O.; Payne, K.; Sabino-Santos, G., Jr.; Agard, J. Influence of Climatic Factors on Human Hantavirus Infections in Latin America and the Caribbean: A Systematic Review. Pathogens 2021, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Nimo-Paintsil, S.C.; Fichet-Calvet, E.; Borremans, B.; Letizia, A.G.; Mohareb, E.; Bonney, J.H.K.; Obiri-Danso, K.; Ampofo, W.K.; Schoepp, R.J.; Kronmann, K.C. Rodent-borne infections in rural Ghanaian farming communities. PLoS ONE 2019, 14, e0215224. [Google Scholar] [CrossRef]
- Rabiee, M.H.; Mahmoudi, A.; Siahsarvie, R.; Kryštufek, B.; Mostafavi, E. Rodent-borne diseases and their public health importance in Iran. PLoS Negl. Trop. Dis. 2018, 12, e0006256. [Google Scholar] [CrossRef]
- Mawanda, P.; Rwego, I.; Kisakye, J.J.; Sheil, D. Rodents as potential hosts and reservoirs of parasites along the edge of a Central African forest: Bwindi impenetrable national park, South Western Uganda. Afr. Health Sci. 2020, 20, 1168–1178. [Google Scholar] [CrossRef]
- Sanker, V.; Vellekkat, F.; Dave, T. Nipah Virus Outbreaks in Kerala: An Impending Doom? Health Sci. Rep. 2024, 7, e70195. [Google Scholar] [CrossRef]
- Tambo, E.; Adetunde, O.T.; Olalubi, O.A. Re-emerging Lassa fever outbreaks in Nigeria: Re-enforcing “One Health” community surveillance and emergency response practice. Infect. Dis. Poverty 2018, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, W.; Lv, C. Modern technologies and solutions to enhance surveillance and response systems for emerging zoonotic diseases. Sci. One Health 2024, 3, 100061. [Google Scholar] [CrossRef] [PubMed]
- Dutto, M.; Di Domenico, D.; Rubbiani, M. Use of anticoagulant rodenticides in outdoor urban areas: Considerations and proposals for the protection of public health and non-target species. Ann. Ig. 2018, 30, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Krijger, I.M.; Gort, G.; Belmain, S.R.; Groot Koerkamp, P.W.G.; Shafali, R.B.; Meerburg, B.G. Efficacy of Management and Monitoring Methods to Prevent Post-Harvest Losses Caused by Rodents. Animals 2020, 10, 1612. [Google Scholar] [CrossRef]
- Rahelinirina, S.; Scobie, K.; Ramasindrazana, B.; Andrianaivoarimanana, V.; Rasoamalala, F.; Randriantseheno, L.N.; Rakotoniaina, J.S.; Gorgé, O.; Lambin, X.; Valade, E.; et al. Rodent control to fight plague: Field assessment of methods based on rat density reduction. Integr. Zool. 2021, 16, 868–885. [Google Scholar] [CrossRef]
- Akello, W. Climate Change and Veterinary Medicine: A Call to Action for a Healthier Planet. F1000Res 2024, 13, 1360. [Google Scholar] [CrossRef]
- Roberts, C.M.; O’Leary, B.C.; Hawkins, J.P. Climate change mitigation and nature conservation both require higher protected area targets. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190121. [Google Scholar] [CrossRef]
- Rupasinghe, R.; Chomel, B.B.; Martínez-López, B. Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends. Acta Trop. 2022, 226, 106225. [Google Scholar] [CrossRef] [PubMed]
- Assis, V.R.; Cifarelli, G.; Brehm, A.M.; Orrock, J.L.; Martin, L.B. Congeneric Rodents Differ in Immune Gene Expression: Implications for Host Competence for Tick-Borne Pathogens. J. Exp. Zool. A Ecol. Integr. Physiol. 2025, 343, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, S.; Freund, R.; Pehl, H.; Rodgers, A.; Venegas, T. Rodent species as possible reservoirs of Borrelia burgdorferi in a prairie ecosystem. Ticks Tick. Borne Dis. 2019, 10, 1162–1167. [Google Scholar] [CrossRef]
- Bourgeois, J.S.; You, S.S.; Clendenen, L.H.; Shrestha, M.; Petnicki-Ocwieja, T.; Telford, S.R., 3rd; Hu, L.T. Comparative reservoir competence of Peromyscus leucopus, C57BL/6J, and C3H/HeN for Borrelia burgdorferi B31. Appl. Environ. Microbiol. 2024, 90, e0082224. [Google Scholar] [CrossRef]
- Dumas, A.; Bouchard, C.; Dibernardo, A.; Drapeau, P.; Lindsay, L.R.; Ogden, N.H.; Leighton, P.A. Transmission patterns of tick-borne pathogens among birds and rodents in a forested park in southeastern Canada. PLoS ONE 2022, 17, e0266527. [Google Scholar] [CrossRef]
- Johnson, T.L.; Graham, C.B.; Hojgaard, A.; Breuner, N.E.; Maes, S.E.; Boegler, K.A.; Replogle, A.J.; Kingry, L.C.; Petersen, J.M.; Eisen, L.; et al. Isolation of the Lyme Disease Spirochete Borrelia mayonii from Naturally Infected Rodents in Minnesota. J. Med. Entomol. 2017, 54, 1088–1092. [Google Scholar] [CrossRef]
- You, S.S.; Shrestha, M.; Bourgeois, J.S.; Clendenen, L.H.; Leimer, N.; Lewis, K.; Telford, S.R.; Hu, L.T. Hygromycin A treatment of Borrelia burgdorferi-infected Peromyscus leucopus suggests potential as a reservoir-targeted antibiotic. J. Infect. Dis. 2025; in press. [Google Scholar] [CrossRef]
- Ahmed, A.; Mohamed, N.S.; Siddig, E.E. Diversity and distribution of viral zoonosis in Africa. Virology 2025, 610, 110621. [Google Scholar] [CrossRef]
- Clow, K.M.; Leighton, P.A.; Pearl, D.L.; Jardine, C.M. A framework for adaptive surveillance of emerging tick-borne zoonoses. One Health 2019, 7, 100083. [Google Scholar] [CrossRef] [PubMed]
- Nnadozie, C.F.; Odume, O.N. Trends and geographic distribution of bacterial zoonoses in veterinary cases in the Eastern Cape: A ten-year retrospective analysis. J. Infect. Public Health 2025, 18, 102738. [Google Scholar] [CrossRef]
- Herrera-Mares, A.; Rico-Chávez, O.; Márquez-Hernández, R.I.; Fernández-González, A.M.; Chaves, A.; Guzmán-Cornejo, C.; Suzán, G. Anthropization and host habitat influence the abundance of Dermanyssoidea and Trombiculoidea in northwestern Mexico. Exp. Appl. Acarol. 2025, 94, 37. [Google Scholar] [CrossRef]
- Kaura, T.; Kaur, J.; Bisht, K.; Goel, S.; Lakshmi, P.; Grover, G.S.; Mewara, A.; Biswal, M. Vector and rodent surveillance for Orientia tsutsugamushi in north India. J. Vector Borne Dis. 2022, 59, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.T.; Krasnov, B.R.; Horak, I.G.; Ueckermann, E.A.; Matthee, S. Ectoparasites associated with the Bushveld gerbil (Gerbilliscus leucogaster) and the role of the host and habitat in shaping ectoparasite diversity and infestations. Parasitology 2023, 150, 792–804. [Google Scholar] [CrossRef]
- Memmott, K.; Murray, M.; Rutberg, A. Use of anticoagulant rodenticides by pest management professionals in Massachusetts, USA. Ecotoxicology 2017, 26, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Padhi, J.; Singh, S. Enhancing yield and economic benefits through sustainable pest management in Okra cultivation. Sci. Rep. 2024, 14, 22220. [Google Scholar] [CrossRef] [PubMed]
- Naveed, H.; Andoh, V.; Islam, W.; Chen, L.; Chen, K. Sustainable Pest Management in Date Palm Ecosystems: Unveiling the Ecological Dynamics of Red Palm Weevil (Coleoptera: Curculionidae) Infestations. Insects 2023, 14, 859. [Google Scholar] [CrossRef]
- Carpenter, A.; Waltenburg, M.A.; Hall, A.; Kile, J.; Killerby, M.; Knust, B.; Negron, M.; Nichols, M.; Wallace, R.M.; Behravesh, C.B.; et al. Vaccine Preventable Zoonotic Diseases: Challenges and Opportunities for Public Health Progress. Vaccines 2022, 10, 993. [Google Scholar] [CrossRef]
- Eads, D.A.; Biggins, D.E.; Wimsatt, J.; Eisen, R.J.; Hinnebusch, B.J.; Matchett, M.R.; Goldberg, A.R.; Livieri, T.M.; Hacker, G.M.; Novak, M.G.; et al. Exploring and Mitigating Plague for One Health Purposes. Curr. Trop. Med. Rep. 2022, 9, 169–184. [Google Scholar] [CrossRef]
- Osman, A.Y.; Mohamed, H.; Mumin, F.I.; Mahrous, H.; Saidouni, A.; Elmi, S.A.; Adawe, A.K.; Mo’allim, A.A.; Lubogo, M.; Malik, S.; et al. Prioritization of zoonoses for multisectoral, One Health collaboration in Somalia, 2023. One Health 2023, 17, 100634. [Google Scholar] [CrossRef]
Suborders | Contents |
---|---|
Anomaluromorpha | anomalures and springhares |
Castorimorpha | beavers and others |
Hystricomorpha | guinea pigs and others |
Myomorpha | mice and others |
Sciuromorpha | squirrels |
Parasite | Parasitological Features | Clinical Impacts | Forms of Transmission | Preventive Measures |
---|---|---|---|---|
Toxoplasma gondii | Intracellular protozoan; form tissue cysts | Toxoplasmosis is severe among immunocompromised individuals and pregnancy complications | Ingestion of oocysts in contaminated food, water, or cat faeces. Ingestion of tissue cysts in undercooked or raw meat from infected animals. | Proper cooking of meat; hygiene in handling cat faeces |
Trypanosoma cruzi | Flagellated protozoan; transmitted by triatomine bugs | Chagas disease, cardiomyopathy, and digestive disorders | Bite of an infected triatomine bug; contaminated food or transfusions | Vector control, improved housing, and screening |
Leishmania spp. | Flagellated protozoan; transmitted by sandflies | Leishmaniasis: cutaneous, mucosal, and visceral forms | Bite of infected sandflies | Use of insect repellent; vector control |
Giardia intestinalis | Flagellated protozoan; causes intestinal infection | Giardiasis: chronic diarrhea and malabsorption | Ingestion of cysts in contaminated water or food | Safe drinking water, proper sanitation |
Cryptosporidium spp. | Apicomplexan parasite; waterborne transmission | Cryptosporidiosis: severe diarrhea, especially in immunocompromised patients | Ingestion of oocysts in contaminated water or direct contact | Water treatment and sanitation |
Hymenolepis diminuta | Cestode; requires an intermediate arthropod host | Mild gastrointestinal symptoms | Ingestion of infected arthropods | Avoiding ingestion of contaminated arthropods |
Hymenolepis nana | Cestode; directly infective to humans | Gastrointestinal discomfort and autoinfection | Ingestion of eggs in contaminated food or autoinfection | Proper hygiene and sanitation |
Trichinella spiralis | Nematode; infects muscle tissue | Trichinellosis: muscle pain, fever, and organ damage | Consumption of undercooked infected meat | Cooking meat thoroughly |
Angiostrongylus cantonensis | Nematode; affects CNS | Eosinophilic meningitis; neurological symptoms | Ingestion of larvae in raw or undercooked snails and slugs | Avoiding raw snails/slugs; proper food handling |
Capillaria hepatica | Nematode; liver infection | Hepatic capillariasis; liver dysfunction | Ingestion of eggs from contaminated soil or food | Avoiding consumption of contaminated food |
Baylisascaris procyonis | Nematode; severe neurotropic potential | Neural larva migrans; severe neurological damage | Accidental ingestion of eggs from infected raccoons or rodents | Rodent control: avoiding contaminated environments |
Xenopsylla cheopis | Flea: vector of Yersinia pestis | Plague: bubonic, septicemic, and pneumonic forms | Bite of infected fleas | Flea control; rodent management |
Ornithonyssus bacoti | Mite: causes dermatitis | Mite dermatitis, skin irritation, and secondary infections | Direct contact with rodents or contaminated environments | Rodent control; personal protection |
Ixodes spp. | Tick: transmits bacterial and viral infections | Lyme disease and other tick-borne illnesses | Bite of infected ticks | Use of tick repellents; habitat control |
Country | Cases | Population Estimates * | Incidence Rate ** |
---|---|---|---|
Sudan | 3571 | 50,040,000 | 7.14 |
Ethiopia | 1482 | 128,690,000 | 1.15 |
Brazil | 1461 | 211,140,000 | 0.69 |
Kenya | 1252 | 55,340,000 | 2.26 |
South Sudan | 778 | 11,480,000 | 6.78 |
Somalia | 712 | 18,360,000 | 3.88 |
India | 538 | 1,438,000,000 | 0.04 |
Eritrea | 376 | 3,470,000 | 10.84 |
Yemen | 240 | 39,390,000 | 0.61 |
Uganda | 195 | 48,660,000 | 0.40 |
Country | 2018 | 2019 | 2020 | 2021 | 2022 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Number | Rate | Number | Rate | Number | Rate | Number | Rate | Number | Rate | |
Austria | 2 | 0.02 | 1 | 0.01 | 6 | 0.07 | 10 | 0.11 | 2 | 0.02 |
Belgium | 0 | NRC | NDR | NRC | NDR | NRC | 0 | NRC | 0 | NRC |
Bulgaria | 45 | 0.64 | 55 | 0.79 | 13 | 0.19 | 29 | 0.42 | 9 | 0.13 |
Croatia | 0 | 0.00 | 3 | 0.07 | 0 | 0.00 | 17 | 0.42 | NDR | NRC |
Cyprus | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Czechia | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Denmark | NDR | NRC | NDR | NRC | NDR | NRC | NDR | NRC | NDR | NRC |
Estonia | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 1 | 0.08 |
Finland | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
France | 0 | 0.00 | 2 | 0.00 | 1 | 0.00 | 2 | 0.00 | 15 | 0.02 |
Germany | 0 | 0.00 | 3 | 0.00 | 1 | 0.00 | 2 | 0.00 | 0 | 0.00 |
Greece | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Hungary | 2 | 0.02 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Iceland | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Ireland | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Italy | 2 | 0.00 | 10 | 0.02 | 79 | 0.13 | 0 | 0.00 | 4 | 0.01 |
Latvia | 1 | 0.05 | 1 | 0.05 | 1 | 0.05 | 7 | 0.37 | 3 | 0.16 |
Liechtenstein | NDR | NRC | NDR | NRC | NDR | NRC | 0 | 0.00 | 0 | 0.00 |
Lithuania | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 1 | 0.04 | 0 | 0.00 |
Luxembourg | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Malta | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Netherlands | 0 | 0.00 | 1 | 0.01 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Norway | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Poland | 2 | 0.01 | 2 | 0.01 | 11 | 0.03 | 2 | 0.01 | 1 | 0.00 |
Portugal | 0 | 0.00 | 1 | 0.01 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Romania | 10 | 0.05 | 6 | 0.03 | 4 | 0.02 | 6 | 0.03 | 4 | 0.02 |
Slovakia | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Slovenia | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Spain | 2 | 0.00 | 12 | 0.03 | 1 | NRC | 1 | NRC | 0 | 0.00 |
Sweden | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
EU/EEA (30 countries) | 66 | 0.02 | 97 | 0.02 | 117 | 0.03 | 77 | 0.02 | 39 | 0.01 |
United Kingdom | 0 | 0.00 | 0 | 0.00 | NA | NA | NA | NA | NA | NA |
EU/EEA (31 countries) | 66 | 0.01 | 97 | 0.02 | 117 | 0.03 | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Morales, A.J.; Shehata, A.A.; Parvin, R.; Tasnim, S.; Duarte, P.M.; Basiouni, S. Rodent-Borne Parasites and Human Disease: A Growing Public Health Concern. Animals 2025, 15, 2681. https://doi.org/10.3390/ani15182681
Rodriguez-Morales AJ, Shehata AA, Parvin R, Tasnim S, Duarte PM, Basiouni S. Rodent-Borne Parasites and Human Disease: A Growing Public Health Concern. Animals. 2025; 15(18):2681. https://doi.org/10.3390/ani15182681
Chicago/Turabian StyleRodriguez-Morales, Alfonso J., Awad A. Shehata, Rokshana Parvin, Shadia Tasnim, Phelipe Magalhães Duarte, and Shereen Basiouni. 2025. "Rodent-Borne Parasites and Human Disease: A Growing Public Health Concern" Animals 15, no. 18: 2681. https://doi.org/10.3390/ani15182681
APA StyleRodriguez-Morales, A. J., Shehata, A. A., Parvin, R., Tasnim, S., Duarte, P. M., & Basiouni, S. (2025). Rodent-Borne Parasites and Human Disease: A Growing Public Health Concern. Animals, 15(18), 2681. https://doi.org/10.3390/ani15182681