Linking Animal Feed Formulation to Milk Quantity, Quality, and Animal Health Through Data-Driven Decision-Making
Simple Summary
Abstract
1. Introduction
Materials and Methods
2. Foundation for Data-Driven Feed Formulation
Methods | Data/Metrics Used for Milk Yield Optimization | Key Findings | Source | |
---|---|---|---|---|
Regression analysis, Multivariate analysis, Genomic analysis | Feed intake, Milk yield, body weight, and energy efficiency. | Feed efficiency was highly correlated with milk yield. Cows with higher milk production per unit of feed intake were more efficient. | [23] | |
t-tests to compare productive performance parameters | Pure and Graded Siri cattle milk yield, lactation length, dry periods | Significant differences in lactation performance, with graded cows showing higher milk yields. | [24] | |
Two-way ANOVA | Milk Yield, Milk Composition, Feed Intake | The use of these strains promoted a significant increase in milk production and overall production efficiency. | [25] | |
Linear mixed effects model | Milk Yield and Supplemented Feed Intake | Cows showed improved milk yield with specific dietary supplements. | [26,27] | |
SAS MIXED procedure | Temperature Humidity Index (THI), Feed Intake, Digestive efficiency, Milk yield and compositions | Complete confinement enhanced milk production and feed efficiency. | [28] | |
PROC MIXED analysis of milking schedules | Milk yield, composition, dry matter intake, energy balance, and reproductive metrics. | Cows on the high-energy diet had a higher milk yield than those on the standard diet. | [29] | |
Decision tree analysis | Age, lactation length, calving season, and milk yield | The lactation length was the most significant factor affecting milk yield, followed by parity, age, and calving season. | [18] | |
Partial Least Squares-Discriminant analysis | Dairy Herd Improvement data (Milk yield and milk composition) | A higher average milk yield compared to Pure Holstein. | [30] | |
One-way ANOVA and Principal component analysis | Pasture intake, grazing behavior, feed quality | Daily milk yield was highest in cows fed with soya hulls and beet pulp, while protein and fat content varied across groups. | [31] | |
One-way ANOVA | Physiological parameters, body characteristics, lactation stage, Milk composition, yield, and Temperature. | Milk yield decreased significantly under high THI conditions, with a drop of 14% when THI moved from low to high levels. | [32] | |
GLM procedure of SAS and Duncan test | Feed Intake, Milk Yield, and milk production efficiency (MPE) | Supplements improved milk production efficiency, with higher MPE values indicating better nutrient absorption from dry matter intake. However, the feed supplements had no significant effect on milk quality. | [33] | |
Two-way ANOVA Model, Tukey’s Test | Milk Yield and Milk Composition | Milk yield was highest in the sixth parity hybrids during the summer. | [34] | |
One-way analysis of variance (ANOVA) | Body weight, Nutrients intake, Milk yield, Milk composition, Feed conversion efficiency, and Cost of feeding | Supplementation with fibrolytic enzymes improved feed efficiency and milk yield in early lactation cows. | [35] | |
General linear model (GLM) procedure | Milk yield, Feed Intake | Goats fed with Asperozym-supplemented rations had the highest average daily fat-corrected milk yield. | [36] | |
PROC MIXED procedure | Milk yield and milk composition data (fat, protein, dry matter, lactose, and somatic cell count) | Factors like farm management practices, birth season, and lactation stage notably influenced milk yield and composition variability. | [37] | |
Post-hoc analysis | Milk yield, milk composition, feed intake, and digestibility | Goats fed with the formaldehyde-treated sesame meal diet had the highest milk yield | [38] | |
Mixed linear model -PROC GLIMMIX | Milk yield, milk composition (e.g., fat, protein, total solids), and mineral profiles | The inclusion of 40% artichoke by-product silage in the diet did not negatively affect milk yield. | [39] | |
Nested ANOVA, Bayes factor analysis | Milk yield, Feed Supplementation Intake | The antioxidant-supplemented group showed a significant improvement in average daily milk yield. | [40] | |
Stratified Sampling | Strata weights, Milk yield | Diseases like milk fever significantly reduce daily milk yield. | [41] | |
Real-coded hybrid genetic algorithm (RGA) combined with Linear Programming (LP) | Body Weight, Feed Cost, Milk Yield, Fat percentage, Feed intake, and Nutrient requirement values | RGA can effectively optimize feed formulations to minimize costs while maintaining milk yield. | [42] | |
Unpaired t-tests | milk yield, calf birth weight | The mother’s nutritional intake primarily influenced milk yield and early calf growth during pregnancy. | [43] | |
Stepwise Regression analysis | Climatic data, Daily Milk Yield | Milk production peaks in cooler months, indicating seasonal feeding adjustments. | [19] | |
ANOVA, Regression analysis, F-tests | Milk yield, body weight, and hump weight | Fermentable carbohydrates in excess compromised milk yield while promoting weight gain and hump size. | [44] | |
Dairy Animal Species | ||||
Cows | ||||
Crossbred Cattle | ||||
Goats | ||||
Buffaloes | ||||
Reindeer | ||||
Triple-Bred Cattle | ||||
She-camel |
2.1. Nutritional Data Collection for Data-Driven Feed Formulation
2.2. A Framework for Data-Driven Decision-Making in Feed Formulations
3. Data-Driven Analytical Techniques and Tools in Feed Formulation
3.1. Machine Learning and Predictive Analytics in Feed Optimization
3.2. Optimization Algorithms for Cost-Effective and Nutritious Feed
3.3. Multivariate Analysis and Data Synthesis
3.4. Decision Support Systems for Enhancing Milk Production and Feed Nutritional Composition
4. Challenges and Limitations in Data-Driven Feed Formulation for Milk Production
4.1. Data Quality and Standardization
4.2. Challenges in Measuring Critical Metrics
4.3. Technological Barriers, Resistance to Change, and Socio-Political Dynamics
5. Future Outlook for Data-Driven Feed Formulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akintan, O.; Gebremedhin, K.G.; Uyeh, D.D. Animal Feed Formulation—Connecting Technologies to Build a Resilient and Sustainable System. Animals 2024, 14, 1497. [Google Scholar] [CrossRef] [PubMed]
- Dey, A. Ration Balancing for Sustainable Animal Production: Resources and Methodology. J. Nutr. Biol. 2018, 4, 278–281. [Google Scholar] [CrossRef]
- Auldist, M.J.; Greenwood, J.S.; Wright, M.M.; Hannah, M.C.; Williams, R.R.; Moate, P.J.; Wales, W.J. Incorporating Mixed Rations and Formulated Grain Mixes Into the Diet of Grazing Cows: Effects on Milk Composition and Coagulation Properties, and the Yield and Quality of Cheddar Cheese. J. Dairy Sci. 2016, 99, 4196–4205. [Google Scholar] [CrossRef] [PubMed]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; Tobin, J.T.; Fenelon, M.A.; O’Callaghan, T.F. The “Grass-Fed” Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef] [PubMed]
- Bragaglio, A.; Braghieri, A.; Napolitano, F.; De Rosa, G.; Riviezzi, A.M.; Surianello, F.; Pacelli, C. Omega-3 Supplementation, Milk Quality and Cow Immune-Competence. Ital. J. Agron. 2015, 10, 9–14. [Google Scholar] [CrossRef]
- Sonea, C. Optimizing Animal Nutrition and Sustainability Through Precision Feeding: A Mini Review of Emerging Strategies and Technologies. Ann. Valahia Univ. Târgovişte Agric. 2023, 15, 7–11. [Google Scholar] [CrossRef]
- Mollica, M.P.; Trinchese, G.; Cimmino, F.; Penna, E.; Cavaliere, G.; Tudisco, R.; Musco, N.; Manca, C.; Catapano, A.; Monda, M.; et al. Milk Fatty Acid Profiles in Different Animal Species: Focus on the Potential Effect of Selected PUFAs on Metabolism and Brain Functions. Nutrients 2021, 13, 1111. [Google Scholar] [CrossRef] [PubMed]
- Pecka-Kiełb, E.; Zachwieja, A.; Wojtas, E.; Zawadzki, W. Influence of Nutrition on the Quality of Colostrum and Milk of Ruminants. Mljekarstvo 2018, 68, 169–181. [Google Scholar] [CrossRef]
- Onyegeme-Okerenta, B.M.; Amadi, B.; Wegwu, M.O. Use of Livestock and Plant Agro-Waste in the Production of Organic Feed and Its Effect on the Physiology of Albino Wistar Rats. J. Appl. Sci. Environ. Manag. 2021, 25, 303–310. [Google Scholar] [CrossRef]
- de Almeida, M.A.; Neto, M.G.; Junior, M.J.D.A.F.; Pinto, M.F.; de Freitas Bueno, L.G. Nonlinear Feed Formulation for Broiler. Int. J. Innov. Educ. Res. 2020, 8, 262–275. [Google Scholar] [CrossRef]
- Li, J.; Kebreab, E.; You, F.; Fadel, J.G.; Hansen, T.L.; VanKerkhove, C.; Reed, K.F. The Application of Nonlinear Programming on Ration Formulation for Dairy Cattle. J. Dairy Sci. 2022, 105, 2180–2189. [Google Scholar] [CrossRef]
- Mulyaningrum, S.R.H. Evaluation of Local Ingredient Formulated Diet for Golden Rabbitfish, Siganus guttatus Grow-Out. E3s Web Conf. 2023, 442, 02035. [Google Scholar] [CrossRef]
- Mmanda, F.P.; Lindberg, J.E.; Haldén, A.N.; Mtolera, M.S.P.; Kitula, R.A.; Lundh, T. Digestibility of Local Feed Ingredients in Tilapia Oreochromis Niloticus Juveniles, Determined on Faeces Collected by Siphoning or Stripping. Fishes 2020, 5, 32. [Google Scholar] [CrossRef]
- Onomu, A.J. The Role of Functional Feed Additives in Enhancing Aquaculture Sustainability. Fishes 2024, 9, 167. [Google Scholar] [CrossRef]
- Usigbe, M.; Asem-Hiablie, S.; Uyeh, D.; Iyiola, O.; Park, T.; Mallipeddi, R. Enhancing Resilience in Agricultural Production Systems with AI-Based Technologies. Environ. Dev. Sustain. 2023, 26, 21955–21983. [Google Scholar] [CrossRef]
- Bortacki, P.; Kujawiak, R.; Czerniawska-Piątkowska, E.; Kirdar, S.S.; Wójcik, J.; Grzesiak, W. Impact of Milking Frequency on Yield, Chemical Composition and Quality of Milk in High Producing Dairy Herd. Mljekarstvo 2017, 67, 226–230. [Google Scholar] [CrossRef]
- Sharma, R.; Chaudhary, J.K.; Hada, R.; Gaur, P.; Singh, N.; Tolenkhomba, T.C.; Sharma, S. Decision Tree for 305-Day Milk Yield in Cross-Bred Cattle. Asian J. Agric. Ext. Econ. Sociol. 2023, 42, 107–113. [Google Scholar] [CrossRef]
- Parmar, M.; Shah, S.V.; Darji, V.B. Effect of Climatic Factors on Milk Production of Triple Crossbred (Holstein Friesian 25% X Jersey 25% Kankrej 50%) Cows. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2822–2829. [Google Scholar] [CrossRef]
- Ronquillo, M.G.; Ángeles-Hernández, J.C. Antibiotic and Synthetic Growth Promoters in Animal Diets: Review of Impact and Analytical Methods. Food Control 2017, 72, 255–267. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Wilkinson, J.M.; Garnsworthy, P.C. Impact of Diet and Fertility on Greenhouse Gas Emissions and Nitrogen Efficiency of Milk Production. Livestock 2017, 22, 140–144. [Google Scholar] [CrossRef]
- Avondo, M.; Pagano, R.I.; De Angelis, A.; Pennisi, P. Diet Choice by Goats as Effect of Milk Production Level During Late Lactation. Animal 2013, 7, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- VandeHaar, M.J.; Armentano, L.E.; Weigel, K.A.; Spurlock, D.M.; Tempelman, R.J.; Veerkamp, R.F. Harnessing the Genetics of the Modern Dairy Cow to Continue Improvements in Feed Efficiency. J. Dairy Sci. 2016, 99, 4941–4954. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Tiwari, R.; Dutt, T. Productive and Reproductive Performance of Siri Cattle Under Field Condition in West Bengal. Indian J. Anim. Sci. 2021, 90, 1528–1530. [Google Scholar] [CrossRef]
- Krunglevičiūtė, V.; Želvytė, R.; Monkevičienė, I.; Kantautaitė, J.; Stankevičius, R.; Ružauskas, M.; Bartkienė, E. Applicability of Pediococcus Strains for Fermentation of Cereal Bran and Its Influence on the Milk Yield of Dairy Cattle. Zemdirb.-Agric. 2017, 104, 63–70. [Google Scholar] [CrossRef]
- Ousseini, M. Effect of Supplementation With Concentrate and Groundnut Haulm in Diets on Milk Yield of Dairy Azawak Cows. Int. J. Sci. Res. Manag. 2023, 11, 461–474. [Google Scholar] [CrossRef]
- Twesigye, G.; Ssemakula, E.; Bahame, B.D. Adoption of Supplementary Feeding in Smallholder Dairy Cattle Production in Mbarara District. Am. J. Agric. 2022, 4, 58–88. [Google Scholar] [CrossRef]
- Méndez, M.N.; Swanepoel, N.; Robinson, P.H.; Pons, V.; Jasinsky, A.; Adrien, M.d.L.; Chilibroste, P. Behavior, Intake, Digestion and Milk Yield of Early Lactation Holstein Dairy Cows with Two Levels of Environmental Exposure and Feeding Strategy. Animals 2024, 14, 1905. [Google Scholar] [CrossRef]
- Boujenane, I. Effects of Milking Frequency on Milk Production and Composition of Holstein Cows during Their First Three Lactations. Iran. J. Appl. Anim. Sci. 2019, 9, 25–29. [Google Scholar]
- Chang, H.; Wang, X.; Zeng, H.; Zhai, Y.; Huang, N.; Wang, C.; Zhou, H. Comparison of Ruminal Microbiota, Metabolomics, and Milk Performance Between Montbéliarde×Holstein and Holstein Cattle. Front. Vet. Sci. 2023, 10, 1178093. [Google Scholar] [CrossRef]
- O’Callaghan, T.F.; Mannion, D.; Apopei, D.; McCarthy, N.A.; Hogan, S.A.; Kilcawley, K.N.; Egan, M. Influence of Supplemental Feed Choice for Pasture-Based Cows on the Fatty Acid and Volatile Profile of Milk. Foods 2019, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Osei-Amponsah, R.; Dunshea, F.R.; Leury, B.J.; Cheng, L.; Cullen, B.; Joy, A.; Abhijith, A.; Zhang, M.H.; Chauhan, S.S. Heat Stress Impacts on Lactating Cows Grazing Australian Summer Pastures on an Automatic Robotic Dairy. Animals 2020, 10, 869. [Google Scholar] [CrossRef]
- Martono, S.; Negara, W.; Gopar, R.A.; Rofiq, M.N. Combination Effect of Feed Supplements on Milk Yield and Milk Quality of Dairy Cattle. J. Adv. Agric. Technol. 2016, 3, 136–139. [Google Scholar] [CrossRef]
- Barsila, S.R. Effect of Parity in Different Grazing Seasons on Milk Yield and Composition of Cattle × Yak Hybrids in the Himalayan Alpines. J. Appl. Anim. Res. 2019, 47, 591–596. [Google Scholar] [CrossRef]
- Lunagariya, P.M.; Gupta, R.; Mehta, B.M.; Hadiya, K.K. Effect of Exogenous Fibrolytic Enzymes in Total Mixed Ration on Milk Yield, Composition, Feed Efficiency in Holstein Friesian Crossbred Cows. Indian J. Anim. Sci. 2019, 89, 876–880. [Google Scholar] [CrossRef]
- Aboul-Fotouh, G.E.; El-Garhy, G.M.; El-Mola, A.M.A.; Mousa, G.A.; Azzaz, H.H. Effect of Using Some Fibrolytic Enzymes in the Ration on Lactating Goats Performanc. Egypt. J. Nutr. Feed. 2017, 20, 1–9. [Google Scholar] [CrossRef]
- Salama, A.A.K.; Such, X.; Caja, G.; Rovai, M.; Casals, R.; Albanell, E.; Marín, M.P.; Martí, A. Effects of Once Versus Twice Daily Milking Throughout Lactation on Milk Yield and Milk Composition in Dairy Goats. J. Dairy Sci. 2003, 86, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Firozi, F.; Dayani, O.; Tahmasbi, R.; Tajaddini, M.A. Feed Intake and Milk Yield and Composition of Lactating Dairy Goats in Response to Partial Substitution of Soybean Meal for Formaldehyde-Treated Sesame Meal in the Diet. Arch. Anim. Nutr. 2023, 77, 290–307. [Google Scholar] [CrossRef] [PubMed]
- Monllor, P.; Zemzmi, J.; Muelas, R.; Roca, A.; Sendra, E.; Romero, G.; Díaz, J.R. Long-Term Feeding of Dairy Goats with 40% Artichoke by-Product Silage Preserves Milk Yield, Nutritional Composition and Animal Health Status. Animals 2023, 13, 3585. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, C.; Bernabucci, U.; Basiricò, L. Effect of Antioxidant Supplementation on Milk Yield and Quality in Italian Mediterranean Lactating Buffaloes. Animals 2022, 12, 1903. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.B.; Verma, M.R. Estimation of Reduction in Milk Yield Due to Different Diseases in Buffaloes by Using Sampling Methodology. Indian J. Anim. Sci. 2020, 90, 521–524. [Google Scholar] [CrossRef]
- Kuntal, R.S.; Gupta, R.; Rajendran, D.; Patil, V. Application of Real Coded Genetic Algorithm (RGA) to Find Least Cost Feedstuffs for Dairy Cattle during Pregnancy. Asian J. Anim. Vet. Adv. 2016, 11, 594–607. [Google Scholar] [CrossRef]
- Rognmo, A.; Markussen, K.A.; Jacobsen, E.; Grav, H.J.; Blix, A.S. Effects of Improved Nutrition in Pregnant Reindeer on Milk Quality, Calf Birth Weight, Growth, and Mortality. Rangifer 1983, 3, 10–18. [Google Scholar] [CrossRef]
- Laameche, F.; Chehma, A.; Faye, B. Effect of Diet Supply on Milk Production and Weight Performances of She-Camels. Trop. Anim. Health Prod. 2021, 53, 464. [Google Scholar] [CrossRef] [PubMed]
- Mishu, M.; Nath, S.; Sohidullah, M.; Hossain, M. Advancement of Animal and Poultry Nutrition: Harnessing the Power of CRISPR-Cas Genome Editing Technology. J. Adv. Vet. Anim. Res. 2024, 11, 483. [Google Scholar] [CrossRef] [PubMed]
- Yeo, H.C.; Park, S.-Y.; Tan, T.R.M.; Lee, D.-Y. Combined Multivariate Statistical and Flux Balance Analyses Uncover Media Bottlenecks to the Growth and Productivity of Chinese Hamster Ovary Cell Cultures. Biotechnol. Bioeng. 2022, 119, 1740–1754. [Google Scholar] [CrossRef]
- Asikin, N.; Jayanegara, A.; Ridla, M.; Samsudin, A.A. The Potential of Tropical Grass as a Feed in Ruminant by Using an in Vitro Gas Production. MATEC Web Conf. 2018, 197, 06005. [Google Scholar] [CrossRef]
- Sarker, P.K. Microorganisms in Fish Feeds, Technological Innovations, and Key Strategies for Sustainable Aquaculture. Microorganisms 2023, 11, 439. [Google Scholar] [CrossRef] [PubMed]
- Widyanti, O.N.; Sukmawati, A.; Dirdjosuparto, S. Strategies for the Fulfillment of Animal Nutritionist Competency Needs at Feedloters in Indonesia. Bul. Peternak. 2019, 43, 79–85. [Google Scholar] [CrossRef]
- Mayulu, H. Role of Animal Husbandry Nutrition Science on Feed, Food and environment Safety. Tech. BioChemMed 2023, 6, 12–21. [Google Scholar] [CrossRef]
- Richards, S.; VanLeeuwen, J.A.; Shepelo, G.; Gitau, G.K.; Kamunde, C.; Uehlinger, F.D.; Wichtel, J. Associations of Farm Management Practices with Annual Milk Sales on Smallholder Dairy Farms in Kenya. Vet. World 2015, 8, 88–96. [Google Scholar] [CrossRef]
- Bellingeri, A.; Gallo, A.; Liang, D.; Masoero, F.; Cabrera, V.E. Development of a Linear Programming Model for the Optimal of Nutritional Resources in a Dairy Herd. J. Dairy Sci. 2020, 103, 10898–10916. [Google Scholar] [CrossRef] [PubMed]
- Stanton, C.; Mills, S.; Ryan, A.; Di Gioia, D.; Ross, R.P. Influence of Pasture Feeding on Milk and Meat Products in terms of Human Health and Product Quality. Ir. J. Agric. Food Res. 2021, 59, 292–302. [Google Scholar] [CrossRef]
- Mandinach, E.B.; Jackson, S. Transforming Teaching and Learning Through Data-Driven Decision Making; Corwin Press: Thousand Oaks, CA, USA, 2012. [Google Scholar]
- Cabrera, V.E. Invited Review: Helping Dairy Farmers to Improve Economic Utilizing Data-Driving Decision Support Tools. Animal 2018, 12, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Rowley, J. The Wisdom Hierarchy: Representations of the DIKW Hierarchy. J. Inf. Sci. 2007, 33, 163–180. [Google Scholar] [CrossRef]
- Wanapat, M.; Foiklang, S.; Sukjai, S.; Tamkhonburi, P.; Gunun, N.; Gunun, P.; Phesatcha, K.; Norrapoke, T.; Kang, S. Feeding Tropical Dairy Cattle With Local Protein and Energy Sources for Sustainable Production. J. Appl. Anim. Res. 2017, 46, 232–236. [Google Scholar] [CrossRef]
- Patel, P.C.; Sabapara, G.P. Knowledge Level of Improved Dairy Husbandry Practices in Tribal Areas of Southern Gujarat. Indian J. Anim. Prod. Manag. 2023, 37, 32–38. [Google Scholar] [CrossRef]
- Alqaisi, O.; Schlecht, E. Feeding Models to Optimize Dairy Feed Rations in View of Feed Availability, Feed Prices and Milk Production Scenarios. Sustainability 2021, 13, 215. [Google Scholar] [CrossRef]
- Thangaraj, A.; Patricia, A.; Samarasinghe, S. Modelling a Multi Agent System for Dairy Farms for Integrated Decision Making. In Proceedings of the 22nd International Congress on Modelling and Simulation, Hobart, TAS, Australia, 3–8 December 2017. [Google Scholar]
- Cockburn, M. Review: Application and Prospective Discussion of Machine Learning for the Management of Dairy Farms. Animals 2020, 10, 1690. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Barański, M.; Seal, C.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.D.; et al. Higher PUFA and n-3 PUFA, Conjugated Linoleic Acid, α-Tocopherol and Iron, but Lower Iodine and Selenium Concentrations in Organic Milk: A Systematic Literature Review and Meta- and Redundancy Analyses. Br. J. Nutr. 2016, 115, 1043–1060. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.T.; Fouchereau, R.; Frénod, E.; Gerard, C.; Sincholle, V. Comparison of Forecast Models of Production of Dairy Cows Combining Animal and Diet Parameters. Comput. Electron. Agric. 2020, 170, 105258. [Google Scholar] [CrossRef]
- Becker, C.A.; Aghalari, A.; Marufuzzaman, M.; Stone, A.E. Predicting Dairy Cattle Heat Stress Using Machine Learning Techniques. J. Dairy Sci. 2021, 104, 501–524. [Google Scholar] [CrossRef] [PubMed]
- Gorczyca, M.T.; Gebremedhin, K.G. Ranking of Environmental Heat Stressors for Dairy Cows Using Machine Learning Algorithms. Comput. Electron. Agric. 2020, 168, 105124. [Google Scholar] [CrossRef]
- Ebrahimie, E.; Ebrahimi, F.; Ebrahimi, M.; Tomlinson, S.; Petrovski, K.R. A Large-Scale Study of Indicators of Sub-Clinical Mastitis in Dairy Cattle by Attribute Weighting Analysis of Milk Composition Features: Highlighting the Predictive Power of Lactose and Electrical Conductivity. J. Dairy Res. 2018, 85, 193–200. [Google Scholar] [CrossRef]
- Patil, V.; Gupta, R.; Rajendran, D.; Kuntal, R.S.; Chanda, M. Stochastic Programming Model in Least Cost Feed Formulation for lactating Cattle. Indones. J. Agric. Res. 2023, 5, 231–248. [Google Scholar] [CrossRef]
- Zhao, X.; Xiong, A.; Yu, S.; Wang, L.; Wang, J.; Zhao, Y.; Jiang, L. Establishment of Flavonoid Fingerprint of TMR Diet and optimization Factor Analysis Strategy and In Vitro Fermentation Based on Spectrum–Effect Relationship. Fermentation 2023, 9, 571. [Google Scholar] [CrossRef]
- Metwally, M.M. Broiler Chicken Feeds Cost Optimization Using Linear Programming under Egyptian Conditions. Acta Sci. Vet. Sci. 2023, 5, 53–63. [Google Scholar] [CrossRef]
- Duguma, B.; Janssens, G.P.J. Assessment of Feed Resources, Feeding Practices and Coping to Feed Scarcity by Smallholder Urban Dairy producers in Jimma Town, Ethiopia. Springerplus 2016, 5, 717. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, K.; Kiani, A.; Khalid Omer, A.; Parnoon, K.; Massahi, T. Importance of Rigorous and Ongoing Monitoring of Animal Feed and Storage Conditions to Mitigate Aflatoxin M1 in Dairy Products in Iran: A Health Policy Brief. J. Health Rep. Technol. 2024, 10, e146654. [Google Scholar] [CrossRef]
- Sundekilde, U.K.; Gustavsson, F.; Poulsen, N.A.; Glantz, M.; Paulsson, M.; Larsen, L.B.; Bertram, H.C. Association between the Bovine Milk Metabolome And-Induced Coagulation Properties of Milk. J. Dairy Sci. 2014, 97, 6076–6084. [Google Scholar] [CrossRef] [PubMed]
- Botton, F.S.; Alessio, D.R.M.; Busanello, M.; Schneider, C.L.C.; Stroeher, F.H.; Haygert-Velho, I.M.P. Relationship of Total Bacterial and Somatic Cell Counts with milk Production and Composition—Multivariate Analysis. Acta Sci. 2018, 41, 42568. [Google Scholar] [CrossRef]
- Macciotta, N.P.P.; Cecchinato, A.; Mele, M.; Bittante, G. Use of Multivariate Factor Analysis to Define New Indicator for Milk Composition and Coagulation Properties in Brown Swiss Cows. J. Dairy Sci. 2012, 95, 7346–7354. [Google Scholar] [CrossRef]
- Manca, M.G.; Serdino, J.; Gaspa, G.; Urgeghe, P.; Ibba, I.; Contu, M.; Fresi, P.; Macciotta, N.P.P. Derivation of Multivariate Indices of Milk Composition, Coagulation Properties, and Individual Cheese Yield in Dairy. J. Dairy Sci. 2016, 99, 4547–4557. [Google Scholar] [CrossRef]
- Julmohammad, N.; Suhaini, I.K.M.; Govindasamy, T.; Tan, E.; Soloi, S.; Julmohamad, N.; Akanda, M.J.H. Quantification of Adulterant Residues in UHT Milk Products ATR-FTIR Spectroscopy Coupled with Multivariate Analysis. J. Adv. Res. Des. 2024, 115, 1–13. [Google Scholar]
- Oyinbo, O.; Chamberlin, J.; Maertens, M. Design of Digital Agricultural Extension Tools: Perspectives From Extension Agents in Nigeria. J. Agric. Econ. 2020, 71, 798–815. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.A. Precision Agriculture Monitoring System Using Internet of Things (IoT). Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 2961–2970. [Google Scholar] [CrossRef]
- Bryant, J.; Ogle, G.; Marshall, P.R.; Glassey, C.B.; Lancaster, J.A.S.; García, S.C.; Holmes, C.W. Description and Evaluation of the Farmax Dairy Pro Decision Support Model. N. Z. J. Agric. Res. 2010, 53, 13–28. [Google Scholar] [CrossRef]
- Reed, K.F. The Ruminant Farm Systems Model: A Decision-Support Tool for Whole Farm Efficiency and Sustainability. In Proceedings of the American Association of Bovine Practitioners Conference Proceedings, Long Beach, CA, USA, 22-24 September 2022. [Google Scholar] [CrossRef]
- Baldin, M.; Breunig, T.M.; Cue, R.I.; Vries, A.D.; Doornink, M.; Drevenak, J.; Fourdraine, R.H.; George, R.; Goodling, R.C.; Greenfield, R.; et al. Integrated Decision Support Systems (IDSS) for Dairy Farming: A Discussion on How to Improve Their Sustained Adoption. Animals 2021, 11, 2025. [Google Scholar] [CrossRef]
- Cabrera, V.E. DairyMGT: A Suite of Decision Support Systems in Dairy Farm Management. Decis. Support Syst. 2012, 282. [Google Scholar] [CrossRef]
- Cabrera, V.E. Data-Driven Decision Support Tools in Dairy Herd Health; Burleigh Dodds Science: Cambridge, UK, 2021; pp. 101–118. [Google Scholar] [CrossRef]
- Saro, J. A Decision Support System Based on Disease Scoring Enables Dairy Farmers to Proactively Improve Herd Health. Czech J. Anim. Sci. 2024, 69, 165–177. [Google Scholar] [CrossRef]
- Chase, L.E.; Fortina, R. Environmental and Economic Responses to Precision Feed in Dairy Cattle Diets. Agriculture 2023, 13, 1032. [Google Scholar] [CrossRef]
- Liu, N.; Qi, J.; An, X.; Wang, Y. A Review on Information Technologies Applicable to Precision Farming: Focus on Behavior, Health Monitoring, and the precise Feeding of Dairy Cows. Agriculture 2023, 13, 1858. [Google Scholar] [CrossRef]
- Smith, W.B.; Galyean, M.L.; Kallenbach, R.L.; Greenwood, P.L.; Scholljegerdes, E.J. Understanding Intake on Pastures: How, Why, and a Way Forward. J. Anim. Sci. 2021, 99, skab062. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Pralle, R.S.; Bernstein, I.R.; VandeHaar, M.J.; Weigel, K.A.; Zhou, Z.; White, H.M. Circulating Metabolites Indicate Differences in High and Low Residual Feed Intake Holstein Dairy Cows. Metabolites 2021, 11, 868. [Google Scholar] [CrossRef]
- de Araújo Mota, G.; Santos, R.C.; dos Santos, J.A.; Lovatto, J.; Geisenhoff, L.O.; Machado, C.A.C.; de Carvalho, M.M.A.J. Smart Sensors and Internet of Things (IoT) for Sustainable Environmental and Agricultural Management. Rev. Cad. Pedag. 2023, 20, 2692–2714. [Google Scholar] [CrossRef]
- Lokman, M.L. LoRa Based IoT Enabled Sensor Networks for Plantations. J. Eng. Technol. Appl. Phys. 2024, 6, 16–24. [Google Scholar] [CrossRef]
- Grinter, L.N.; Campler, M.R.; Costa, J.H.C. Technical Note: Validation of a Behavior-Monitoring Collar’s Precision and Accuracy to Measure Rumination, Feeding, and Resting Time of Lactating Dairy Cows. J. Dairy Sci. 2019, 102, 3487–3494. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. Artificial Intelligence and Sensor Technologies in Dairy Export: Charting a Digital Transformation. Sensors 2023, 23, 7045. [Google Scholar] [CrossRef]
- Shivley, C.B.; Lombard, J.E.; Urie, N.J.; Weary, D.M.; von Keyserlingk, M.A.G. Management of Preweaned Bull Calves on Dairy Operations in the United States. J. Dairy Sci. 2019, 102, 4489–4497. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited Review: Enteric Methane in Dairy Cattle Production: Quantifying the Opportunities and Impact of Reducing Emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Gardezi, M.; Stock, R. Growing Algorithmic Governmentality: Interrogating the Social Construction of Trust in Precision Agriculture. J. Rural. Stud. 2021, 84, 1–11. [Google Scholar] [CrossRef]
- Shalloo, L.; O’ Donovan, M.; Leso, L.; Werner, J.; Ruelle, E.; Geoghegan, A.; Delaby, L.; O’Leary, N. Review: Grass-Based Dairy Systems, Data and Precision Technologies. Animal 2018, 12, s262–s271. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.; Costa, N.; Pereira, A. A Systematic Review of IoT Solutions for Smart Farming. Sensors 2020, 20, 4231. [Google Scholar] [CrossRef] [PubMed]
- Uyeh, D.D.; Pamulapati, T.; Mallipeddi, R.; Park, T.; Asem-Hiablie, S.; Woo, S.; Kim, J.; Kim, Y.; Ha, Y. Precision Animal Feed Formulation: An Evolutionary Multi-Objective Approach. Anim. Feed. Sci. Technol. 2019, 256, 114211. [Google Scholar] [CrossRef]
- Huang, Q.-C.; Qin, D.-G.; Tan, B.-P.; Du, T.; Yang, Y.-Z.; Yang, Q.-H.; Chi, S.-Y.; Dong, X.-H. The Optimal Dietary Protein Level of Juvenile Silver Sillago Sihama at Three Dietary Lipid Levels. Aquac. Res. 2020, 51, 816–827. [Google Scholar] [CrossRef]
- Kanza, S.; Bird, C.L.; Niranjan, M.; McNeill, W.; Frey, J.G. The AI for Scientific Discovery Network. Patterns 2021, 2, 100162. [Google Scholar] [CrossRef]
- Glencross, B.; Fracalossi, D.M.; Hua, K.; Izquierdo, M.; Mai, K.; Øverland, M.; Robb, D.; Roubach, R.; Schrama, J.; Small, B.; et al. Harvesting the Benefits of Nutritional Research to Address Challenges in the 21st Century. J. World Aquac. Soc. 2023, 54, 343–363. [Google Scholar] [CrossRef]
- Akhigbe, B.I.; Munir, K.; Akinade, O.; Akanbi, L.; Oyedele, L.O. IoT Technologies for Livestock Management: A Review of Present, Opportunities, and Future Trends. Big Data Cogn. Comput. 2021, 5, 10. [Google Scholar] [CrossRef]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Animal Nutrition in a 360-Degree View and a Framework for Future Work: Towards Sustainable Livestock Production. Anim. Prod. Sci. 2016, 56, 1561. [Google Scholar] [CrossRef]
- Bordier, M.; Delavenne, C.; Nguyen, D.T.T.; Goutard, F.L.; Hendrikx, P. One Health Surveillance: A Matrix to Evaluate Multisectoral. Front. Vet. Sci. 2019, 6, 109. [Google Scholar] [CrossRef]
- Basiricò, L.; Abeni, F.; De Palo, P. Editorial: Animal-Environment Interactions. Front. Anim. Sci. 2023, 4, 1221756. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akintan, O.A.; Gebremedhin, K.G.; Uyeh, D.D. Linking Animal Feed Formulation to Milk Quantity, Quality, and Animal Health Through Data-Driven Decision-Making. Animals 2025, 15, 162. https://doi.org/10.3390/ani15020162
Akintan OA, Gebremedhin KG, Uyeh DD. Linking Animal Feed Formulation to Milk Quantity, Quality, and Animal Health Through Data-Driven Decision-Making. Animals. 2025; 15(2):162. https://doi.org/10.3390/ani15020162
Chicago/Turabian StyleAkintan, Oreofeoluwa A., Kifle G. Gebremedhin, and Daniel Dooyum Uyeh. 2025. "Linking Animal Feed Formulation to Milk Quantity, Quality, and Animal Health Through Data-Driven Decision-Making" Animals 15, no. 2: 162. https://doi.org/10.3390/ani15020162
APA StyleAkintan, O. A., Gebremedhin, K. G., & Uyeh, D. D. (2025). Linking Animal Feed Formulation to Milk Quantity, Quality, and Animal Health Through Data-Driven Decision-Making. Animals, 15(2), 162. https://doi.org/10.3390/ani15020162