Effect of Bovine Colostrum on Canine Immune Health
Simple Summary
Abstract
1. Introduction
2. Bovine Colostrum Composition
2.1. Proteins
2.1.1. Whey Protein
α-Lactalbumin
β-Lactoglobulin
Lactoferrin
Immunoglobulins
Cytokines
Enzymes, Growth Factors, and Others
2.1.2. Casein
2.2. Carbohydrates
2.3. Fat
2.4. Vitamins
2.5. Minerals
3. Characteristics of Canine Immune System
4. Bovine Colostrum for Canine Growth and Immunity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Composition, structure, and digestive dynamics of milk from different species—A review. Front. Nutr. 2020, 7, 577759. [Google Scholar] [CrossRef]
- Playford, R.J.; Weiser, M.J. Bovine colostrum: Its constituents and uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Sneddon, N.W.; Goi, A.; Visentin, G.; Mammi, L.M.E.; Savarino, E.V.; Zingone, F.; Formigoni, A.; Penasa, M.; De Marchi, M. Invited review: Bovine colostrum, a promising ingredient for humans and animals-Properties, processing technologies, and uses. J. Dairy Sci. 2023, 106, 5197–5217. [Google Scholar] [CrossRef]
- Arslan, A.; Duman, H.; Kaplan, M.; Uzkuç, H.; Bayraktar, A.; Ertürk, M.; Alkan, M.; Frese, S.A.; Duar, R.M.; Henrick, B.M.; et al. Determining total protein and bioactive protein concentrations in bovine colostrum. J. Vis. Exp. 2021, 178, e63001. [Google Scholar] [CrossRef] [PubMed]
- Kakazu, E.; Kanno, N.; Ueno, Y.; Shimosegawa, T. Extracellular branched-chain amino acids, especially valine, regulate maturation and function of monocyte-derived dendritic cells. J. Immunol. 2007, 179, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Anthony, J.C.; Anthony, T.G.; Kimball, S.R.; Jefferson, L.S. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J. Nutr. 2001, 131, 856S–860S. [Google Scholar] [CrossRef] [PubMed]
- Ananieva, E.A.; Powell, J.D.; Hutson, S.M. Leucine metabolism in T cell activation: mTOR signaling and beyond. Adv. Nutr. 2016, 7, 798S–805S. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, Z.; Lin, S.; Xia, J.; Zhong, Z.; Xie, Z.; Xing, Y.; Qie, J.; Jiao, M.; Li, Y.; et al. Leucine-tRNA-synthase-2-expressing B cells contribute to colorectal cancer immunoevasion. Immunity 2022, 55, 1067–1081. [Google Scholar] [CrossRef]
- Manfroi, B.; Fillatreau, S. Regulatory B cells gain muscles with a leucine-rich diet. Immunity 2022, 55, 970–972. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Mao, X.; Chen, D.; Yu, B.; Yang, Q. Isoleucine plays an important role for maintaining immune function. Curr. Protein Pept. Sci. 2019, 20, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Gu, C.; Ren, M.; Chen, D.; Yu, B.; He, J.; Yu, J.; Zheng, P.; Luo, J.; Luo, Y.; et al. L-Isoleucine administration alleviates rotavirus infection and immune response in the weaned piglet model. Front. Immunol. 2018, 9, 1654. [Google Scholar] [CrossRef]
- Mosallanejad, B.; Shapouri, M.R.S.; Avizeh, R.; Pourmahdi, M. Antigenic detection of canine rotavirus group A in diarrheic dogs in Ahvaz district, Southwestern Iran. Comp. Clin. Path. 2015, 24, 899–902. [Google Scholar] [CrossRef] [PubMed]
- Grimble, R.F. The effects of sulfur amino acid intake on immune function in humans. J. Nutr. 2006, 136 (Suppl. S6), 1660S–1665S. [Google Scholar] [CrossRef] [PubMed]
- Correa, L.O.; Jordan, M.S.; Carty, S.A. DNA Methylation in T-cell development and differentiation. Crit. Rev. Immunol. 2020, 40, 135–156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Iwata, S.; Hajime, M.; Ohkubo, N.; Todoroki, Y.; Miyata, H.; Ueno, M.; Hao, H.; Zhang, T.; Fan, J.; et al. Methionine commits cells to differentiate into plasmablasts through epigenetic regulation of BTB and CNC Homolog 2 by the Methyltransferase EZH2. Arthritis Rheumatol. 2020, 72, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Apetoh, L.; Quintana, F.J.; Pot, C.; Joller, N.; Xiao, S.; Kumar, D.; Burns, E.J.; Sherr, D.H.; Weiner, H.L.; Kuchroo, V.K.; et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 2010, 11, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, B.; Chaudhry, A.; Yewdell, W.T.; Angeletti, D.; Yen, W.F.; Wheatley, A.K.; Bradfield, C.A.; McDermott, A.B.; Yewdell, J.W.; Rudensky, A.Y.; et al. The aryl hydrocarbon receptor controls cell-fate decisions in B cells. J. Exp. Med. 2017, 214, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Linehan, K.; Ross, R.P.; Stanton, C. Bovine colostrum for veterinary and human health applications: A critical review. Annu. Rev. Food Sci. Technol. 2023, 14, 387–410. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, P.L.H.; Fox, P.F. (Eds.) Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th ed.; Springer: Boston, MA, USA, 2013. [Google Scholar]
- Håkansson, A.; Svensson, M.; Mossberg, A.K.; Sabharwal, H.; Linse, S.; Lazou, I.; Lönnerdal, B.; Svanborg, C. A folding variant of alpha-lactalbumin with bactericidal activity against Streptococcus pneumoniae. Mol. Microbiol. 2000, 35, 589–600. [Google Scholar] [CrossRef]
- Chatterton, D.E.; Nguyen, D.N.; Bering, S.B.; Sangild, P.T. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int. J. Biochem. Cell Biol. 2013, 45, 1730–1747. [Google Scholar] [CrossRef] [PubMed]
- Godovac-Zimmermann, J.; Krause, I.; Baranyi, M.; Fischer-Frühholz, S.; Juszczak, J.; Erhardt, G.; Buchberger, J.; Klostermeyer, H. Isolation and rapid sequence characterization of two novel bovine beta-lactoglobulins I and J. J. Protein. Chem. 1996, 15, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Shiell, B.; Wan, J.; Coventry, M.J.; Michalski, W.P.; Leeb, A.; Roginski, H. The molecular characterization and antimicrobial properties of amidated bovine β-Lactoglobulin. Int. Dairy J. 2007, 17, 1450–1459. [Google Scholar] [CrossRef]
- Oevermann, A.; Engels, M.; Thomas, U.; Pellegrini, A. The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification. Antivir. Res. 2003, 59, 23–33. [Google Scholar] [CrossRef]
- Biziulevicius, G.A.; Kislukhina, O.V.; Kazlauskaite, J.; Zukaite, V. Food-protein enzymatic hydrolysates possess both antimicrobial and immunostimulatory activities: A “cause and effect” theory of bifunctionality. FEMS Immunol. Med. Microbiol. 2006, 46, 131–138. [Google Scholar] [CrossRef]
- Ouwehand, C.; Salminen, S.J.; Skurnik, M.; Conway, P.L. Inhibition of pathogen adhesion by β-lactoglobulin. Int. Dairy J. 1997, 7, 685–692. [Google Scholar] [CrossRef]
- Steijns, J.M.; van Hooijdonk, A.C.M. Occurrence, structure, biochemical properties and technological characteristics of Lactoferrin. Br. J. Nutr. 2000, 84, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Timilsena, Y.P.; Blanch, E.; Adhikari, B. Lactoferrin: Structure, function, denaturation and digestion. Crit. Rev. Food Sci. Nutr. 2019, 59, 580–596. [Google Scholar] [CrossRef]
- Legrand, D.; Pierce, A.; Elass, E.; Carpentier, M.; Mariller, C.; Mazurier, J. Lactoferrin structure and functions. Adv. Exp. Med. Biol. 2008, 606, 163–194. [Google Scholar] [PubMed]
- Zimecki, M.; Artym, J.; Kocieba, M.; Kruzel, M.L. Effects of lactoferrin on elicitation of the antigen-specific cellular and humoral cutaneous response in mice. Postepy. Hig. Med. Dosw. 2012, 66, 16–22. [Google Scholar] [CrossRef]
- Ulfman, L.H.; Leusen, J.H.W.; Savelkoul, H.F.J.; Warner, J.O.; van Neerven, R.J.J. Effects of bovine immunoglobulins on immune function, allergy, and infection. Front. Nutr. 2018, 5, 52. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.E. Passive immunity and immunoglobulin diversity. In Indigenous Antimicrobial Agents of Milk. Recent Developments, FIL-IDF; Secretariat General: Uppsala, Sweden, 1994; pp. 14–50. [Google Scholar]
- Staak, C. Bovine colostrum and protection of young animals. Berl. Munch. Tierarztl. Wochenschr. 1992, 105, 219–224. [Google Scholar] [PubMed]
- Giffard, C.J.; Seino, M.M.; Markwell, P.J.; Bektash, R.M. Benefits of bovine colostrum on fecal quality in recently weaned puppies. J. Nutr. 2004, 134, 2126S. [Google Scholar] [CrossRef]
- Hagiwara, K.; Kataoka, S.; Yamanaka, H.; Kirisawa, R.; Iwai, H. Detection of cytokines in bovine colostrum. Vet. Immunol. Immunopathol. 2000, 76, 183–190. [Google Scholar] [CrossRef]
- Yamanaka, H.; Hagiwara, K.; Kirisawa, R.; Iwai, H. Proinflammatory cytokines in bovine colostrum potentiate the mitogenic response of peripheral blood mononuclear cells from newborn calves through IL-2 and CD25 expression. Microbiol. Immunol. 2003, 47, 461–468. [Google Scholar] [CrossRef]
- Shing, C.M.; Peake, J.M.; Suzuki, K.; Jenkins, D.G.; Coombes, J.S. Bovine colostrum modulates cytokine production in human peripheral blood mononuclear cells stimulated with lipopolysaccharide and phytohemagglutinin. J. Interferon Cytokine Res. 2009, 29, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Grigalevičiūtė, R.; Matusevičius, P.; Plančiūnienė, R.; Stankevičius, R.; Radzevičiūtė-Valčiukė, E.; Balevičiūtė, A.; Želvys, A.; Zinkevičienė, A.; Zigmantaitė, V.; Kučinskas, A.; et al. Understanding the immunomodulatory effects of bovine colostrum: Insights into IL-6/IL-10 axis-mediated inflammatory control. Vet. Sci. 2023, 10, 519. [Google Scholar] [CrossRef] [PubMed]
- Seifu, E.; Buys, E.M.; Donkin, E.F. Significance of the lactoperoxidase system in the dairy industry and its potential applications: A review. Trends Food Sci. Technol. 2005, 16, 137–145. [Google Scholar] [CrossRef]
- Nawaz, N.; Wen, S.; Wang, F.; Nawaz, S.; Raza, J.; Iftikhar, M.; Usman, M. Lysozyme and its application as antibacterial agent in food industry. Molecules 2022, 27, 6305. [Google Scholar] [CrossRef]
- Ellison, R.T., 3rd; Giehl, T.J. Killing of gram-negative bacteria by lactoferrin and lysozyme. J. Clin. Investig. 1991, 88, 1080–1091. [Google Scholar] [CrossRef]
- Godden, S.M.; Lombard, J.E.; Woolums, A.R. Colostrum management for dairy calves. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 535–556. [Google Scholar] [CrossRef]
- Donovan, S.M.; Odle, J. Growth factors in milk as mediators of infant development. Annu. Rev. Nutr. 1994, 14, 147–167. [Google Scholar] [CrossRef] [PubMed]
- Pakkanen, R. Determination of transforming growth factor-beta 2 (TGF-beta 2) in bovine colostrum samples. J. Immunoass. 1998, 19, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.A.; Biirk, R.R. Isolation and characterization of milk growth factor, a transforming-growth-factor-beta 2-related polypeptide, from bovine milk. Eur. J. Biochem. 1991, 197, 353–358. [Google Scholar] [CrossRef]
- Playford, R.J.; Woodman, A.C.; Vesey, D.; Deprez, P.H.; Calam, J.; Watanapa, P.; Williamson, R.C.N.; Clark, P. Effect of luminal growth factor preservation on intestinal growth. Lancet 1993, 341, 843–848. [Google Scholar] [CrossRef]
- Kimura, T.; Murakawa, Y.; Ohno, M.; Ohtani, S.; Higaki, K. Gastrointestinal absorption of recombinant human insulin-like growth factor-I in rats. J. Pharmacol. Exp. Ther. 1997, 283, 611–618. [Google Scholar] [CrossRef]
- Pessi, T.; Isolauri, E.; Sütas, Y.; Kankaanranta, H.; Moilanen, E.; Hurme, M. Suppression of T-cell activation by Lactobacillus rhamnosus GG-degraded bovine casein. Int. Immunopharmacol. 2001, 1, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhya, A.; Noronha, N.; Bahar, B.; Ryan, M.T.; Murray, B.A.; Kelly, P.M.; O’Loughlin, I.B.; O’Doherty, J.V.; Sweeney, T. Anti-inflammatory effects of a casein hydrolysate and its peptide-enriched fractions on TNFα-challenged Caco-2 cells and LPS-challenged porcine colonic explants. Food. Sci. Nutr. 2014, 2, 712–723. [Google Scholar] [CrossRef]
- Kanwar, J.; Kanwar, R.; Sun, X.; Punj, V.; Matta, H.; Morley, S.; Parratt, A.; Puri, M.; Sehgal, R. Molecular and biotechnological advances in milk proteins in relation to human health. Curr. Protein. Pept. Sci. 2009, 10, 308–338. [Google Scholar] [CrossRef] [PubMed]
- Kehoe, S.I.; Jayarao, B.M.; Heinrichs, A.J. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J. Dairy Sci. 2007, 90, 4108–4116. [Google Scholar] [CrossRef]
- Claeys, W.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Paasela, M.; Kolho, K.L.; Vaarala, O.; Honkanen, J. Lactose inhibits regulatory T-cell-mediated suppression of effector T-cell interferon-γ and IL-17 production. Br. J. Nutr. 2014, 112, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Bagwe, S.; Tharappel, L.J.P.; Kaur, G.; Buttar, H.S. Bovine colostrum: An emerging nutraceutical. J. Complement. Integr. Med. 2015, 12, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Ten Bruggencate, S.J.; Bovee-Oudenhoven, I.M.; Feitsma, A.L.; van Hoffen, E.; Schoterman, M.H. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 2014, 72, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, A.M.; Barile, D. Bovine milk as a source of functional oligosaccharides for improving human health. Adv. Nutr. 2011, 2, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Trompette, A.; Gollwitzer, E.S.; Yadava, K.; Sichelstiel, A.K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L.P.; Harris, N.L.; et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Rostami, S.M.; Bénet, T.; Spears, J.; Reynolds, A.; Satyaraj, E.; Sprenger, N.; Austin, S. Milk oligosaccharides over time of lactation from different dog breeds. PLoS ONE 2014, 9, e99824. [Google Scholar]
- Contarini, G.; Povolo, M.; Pelizzola, V.; Monti, L.; Bruni, A.; Passolungo, L.; Abeni, F.; Degano, L. Bovine colostrum: Changes in lipid constituents in the first 5 days after parturition. J. Dairy Sci. 2014, 97, 5065–5072. [Google Scholar] [CrossRef]
- O’Callaghan, T.F.; O’Donovan, M.; Murphy, J.P.; Sugrue, K.; Mannion, D.; McCarthy, W.P.; Timlin, M.; Kilcawley, K.N.; Hickey, R.M.; Tobin, J.T. Evolution of the bovine milk fatty acid profile—From colostrum to milk five days post parturition. Int. Dairy J. 2020, 104, 8721–8731. [Google Scholar] [CrossRef]
- Sales-Campos, H.; de Souza, R.P.; Peghini, C.B.; da Silva, S.J.; Cardoso, R.C. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar] [PubMed]
- Arslan, A.; Kaplan, M.; Duman, H.; Bayraktar, A.; Ertürk, M.; Henrick, B.M.; Frese, S.A.; Karav, S. Bovine colostrum and its potential for human health and nutrition. Front. Nutr. 2021, 8, 651721. [Google Scholar] [CrossRef] [PubMed]
- Fuller, K.L.; Kuhlenschmidt, T.B.; Kuhlenschmidt, M.S.; Jiménez-Flores, R.; Donovan, S.M. Milk fat globule membrane isolated from buttermilk or whey cream and their lipid components inhibit infectivity of rotavirus in vitro. J. Dairy Sci. 2013, 96, 3488–3497. [Google Scholar] [CrossRef]
- Ten Bruggencate, S.J.; Frederiksen, P.D.; Pedersen, S.M.; Floris-Vollenbroek, E.G.; Lucas-van de Bos, E.; van Hoffen, E.; Wejse, P.L. Dietary milk-fat-globule membrane affects resistance to diarrheagenic Escherichia coli in healthy adults in a randomized, placebo-controlled, double-blind study. J. Nutr. 2016, 146, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Cleminson, J.S.; Zalewski, S.P.; Embleton, N.D. Nutrition in the preterm infant: What’s new? Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 220–225. [Google Scholar] [PubMed]
- Indyk, H.E.; Woollard, D.C. The endogenous vitamin K1 content of bovine milk: Temporal influence of season and lactation. Food. Chem. 1995, 54, 403–407. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Li, S.F.; Wu, D.; Wang, Y.; Chen, J.; Duan, L.; Li, S.; Li, Y.Y. Vitamin K: Infection, inflammation, and auto-immunity. J. Inflamm. Res. 2024, 17, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Vig, M.; Kinet, J.P. Calcium signaling in immune cells. Nat. Immunol. 2009, 10, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Heyer, C.M.E.; Weiss, E.; Schmucker, S.; Rodehutscord, M.; Hoelzle, L.E.; Mosenthin, R.; Stefanski, V. The impact of phosphorus on the immune system and the intestinal microbiota with special focus on the pig. Nutr. Res. Rev. 2015, 28, 67–82. [Google Scholar] [CrossRef]
- Creevy, K.E.; Grady, J.; Little, S.E.; Moore, G.E.; Strickler, B.G.; Thompson, S.; Webb, J.A. 2019 AAHA canine life stage guidelines. J. Am. Anim. Hosp. Assoc. 2019, 55, 267–290. [Google Scholar] [CrossRef]
- Pereira, M.; Valério-Bolas, A.; Saraiva-Marques, C.; Alexandre-Pires, G.; Pereira da Fonseca, I.; Santos-Gomes, G. Development of dog immune system: From in uterus to elderly. Vet. Sci. 2019, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Mila, H.; Feugier, A.; Grellet, A.; Anne, J.; Gonnier, M.; Martin, M.; Rossig, L.; Chastant-Maillard, S. Inadequate passive immune transfer in puppies: Definition, risk factors and prevention in a large multi-breed kennel. Prev. Vet. Med. 2014, 116, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Puppel, K.; Gołębiewski, M.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Solarczyk, P.; Łukasiewicz, M.; Balcerak, M.; Przysucha, T. Composition and factors affecting quality of bovine colostrum: A review. Animals 2019, 9, 1070. [Google Scholar] [CrossRef] [PubMed]
- Evermann, J.F.; Wills, T.B. Immunologic development and immunization. Small Anim. Pediatr. 2010, 104–112. [Google Scholar] [CrossRef]
- Rossi, L.; Lumbreras, A.E.V.; Vagni, S.; Dell’Anno, M.; Bontempo, A. Nutritional and functional properties of colostrum in puppies and kittens. Animals 2021, 11, 3260. [Google Scholar] [CrossRef]
- Alonge, S.; Aiudi, G.; Lacalandra, G.M.; Leoci, R.; Melandri, M. Pre- and Probiotics to increase the immune power of colostrum in dogs. Front. Vet. Sci. 2020, 7, 570414. [Google Scholar] [CrossRef]
- Harvey, N.D. How old is my dog? Identification of rational age groupings in pet dogs based upon normative age-linked processes. Front. Vet. Sci. 2021, 8, 643085. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ma, J.; Hogan, A.N.; Fong, S.; Licon, K.; Tsui, B.; Kreisberg, J.F.; Adams, P.D.; Carvunis, A.R.; Bannasch, D.L.; et al. Quantitative translation of dog-to-human aging by conserved remodeling of the DNA methylome. Cell Syst. 2020, 11, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Dall’Ara, P.; Lauzi, S.; Turin, L.; Castaldelli, G.; Servida, F.; Filipe, J. Effect of aging on the immune response to core vaccines in senior and geriatric dogs. Vet. Sci. 2023, 10, 412. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dong, C.; Han, Y.; Gu, Z.; Sun, C. Immunosenescence, aging and successful aging. Front. Immunol. 2022, 13, 942796. [Google Scholar] [CrossRef] [PubMed]
- Teissier, T.; Boulanger, E.; Cox, L.S. Interconnections between inflammageing and immunosenescence during ageing. Cells 2022, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Blount, D.G.; Pritchard, D.I.; Heaton, P.R. Age-related alterations to immune parameters in Labrador Retriever dogs. Vet. Immunol. Immunopathol. 2005, 108, 399–407. [Google Scholar] [CrossRef]
- Greeley, E.H.; Kealy, R.D.; Ballam, J.M.; Lawler, D.F.; Segre, M. The influence of age on the canine immune system. Vet. Immunol. Immunopathol. 1996, 55, 1–10. [Google Scholar] [CrossRef]
- Yamauchi, A.; Yoshimoto, S.; Kudo, A.; Takagi, S. Negative influence of aging on differentiation and proliferation of CD8+ T-Cells in dogs. Vet. Sci. 2023, 10, 541. [Google Scholar] [CrossRef]
- HogenEsch, H.; Thompson, S. Effect of ageing on the immune response of dogs to vaccines. J. Comp. Pathol. 2010, 142 (Suppl. S1), S74–S77. [Google Scholar] [CrossRef]
- Cairangzhuoma; Yamamoto, M.; Muranishi, H.; Inagaki, M.; Uchida, K.; Yamashita, K.; Saito, S.; Yabe, T.; Kanamaru, Y. Skimmed, sterilized, and concentrated bovine late colostrum promotes both prevention and recovery from intestinal tissue damage in mice. J. Dairy Sci. 2013, 96, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Hałasa, M.; Maciejewska, D.; Baśkiewicz-Hałasa, M.; Machaliński, B.; Safranow, K.; Stachowska, E. Oral supplementation with bovine colostrum decreases intestinal permeability and stool concentrations of Zonulin in athletes. Nutrients 2017, 9, 370. [Google Scholar] [CrossRef] [PubMed]
- Satyaraj, E.; Reynolds, A.; Pelker, R.; Labuda, J.; Zhang, P.; Sun, P. Supplementation of diets with bovine colostrum influences immune function in dogs. Br. J. Nutr. 2013, 110, 2216–2221. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, B.; Tomela, K.; Olejnik-Schmidt, A.; Mackiewicz, A.; Schmidt, M. Secretory IgA in intestinal mucosal secretions as an adaptive barrier against microbial cells. Int. J. Mol. Sci. 2020, 21, 9254. [Google Scholar] [CrossRef] [PubMed]
- Dequenne, M.; Robaye, V.; Dotreppe, O.; Neizer, C.; Delhalle, L.; Thonart, P.; Bertrand, C.; Robert, B.; Moinet, B.; Diez, M. A supplement of bovine colostrum and probiotics increased protein digestibility in dogs but did not influence microbiome. In Proceedings of the 18th Congress of the European Society of Veterinary and Comparative Nutrition, Utrecht, The Netherlands, 11–13 September 2014; pp. 11–13. [Google Scholar]
Bioactive Components | Effect on Immune System | References |
---|---|---|
α-lactalbumin | Antimicrobial and anti-inflammatory properties | [20,21] |
β-lactoglobulin | Antioxidant, antimicrobial activity, prevent pathogens’ attachment and colonization | [23,24,25,26] |
Lactoferrin | Antimicrobial, antiviral, antioxidant, anti-inflammatory, and modulation of immune responses | [29,30] |
Immunoglobulins | Passive immunity, build up barrier against pathogens, activate immune cells to initiate adaptive immunity, prevent infections from spreading to other parts and induce the generation of secretory IgA | [32,33,34] |
Cytokines | Immune regulation, activation, and recruitment, cellular signaling, and pathogen recognition, adaptive immunity | [36,37,38] |
Lactoperoxidase | Antibacterial, antimicrobial that inhibits bacterial metabolism | [39] |
Lysozyme | Antibacterial activity through enzymatic degradation of the cell wall component of the bacteria | [40,41] |
Trypsin inhibitor | Keeps the functionality of bioactive components from degradation in the gastrointestinal system, and make them available for absorption | [42] |
TGF-beta | Immune regulation, mediators of mucosal immunity | [44,45] |
Casein | Immune regulation and antibacterial activity | [48,49] |
Lactose | Immune modulation | [53] |
Oligosaccharides | Promote growth of beneficial intestinal flora, reduce binding of pathogenic microbiota to the gut epithelium, mucosal immunity | [56,57] |
Oleic acid | Anti-inflammatory | [61] |
Phospholipids | Anti-infective property, affect pathogen attachment and colonization | [64] |
Vitamin K | Beneficial effects on inflammation, autoimmunity, allergic reaction, metabolic disorders, intestinal microbiota modulation, and anti-aging | [67] |
Calcium | Modulate the survival and physical function of immune cells | [68] |
Phosphorus | Support bacteria reproduction and survival, maintain a stable microbial ecosystem providing anti-infectious benefit to the recipients | [69] |
Stages | Definition (Varying with Breed and Size) | Immune Characters |
---|---|---|
Puppy | Birth to cessation of rapid growth | Passive immunity from colostrum, functional but immature immune systems; onset of immunocompetence, balance Th1/Th2. |
Young adulthood | Transition from rapid growth stage to maturation | Immune system development and re-organization |
Mature adult | Completion of physical and social maturation | Immunocompetence |
Senior | 7 and 7+ years | Immunosenescence, impairment of cellular and humoral immunity, reduction in naïve T cells. |
End stage | Endpoint of life |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Satyaraj, E. Effect of Bovine Colostrum on Canine Immune Health. Animals 2025, 15, 185. https://doi.org/10.3390/ani15020185
Yu P, Satyaraj E. Effect of Bovine Colostrum on Canine Immune Health. Animals. 2025; 15(2):185. https://doi.org/10.3390/ani15020185
Chicago/Turabian StyleYu, Ping, and Ebenezer Satyaraj. 2025. "Effect of Bovine Colostrum on Canine Immune Health" Animals 15, no. 2: 185. https://doi.org/10.3390/ani15020185
APA StyleYu, P., & Satyaraj, E. (2025). Effect of Bovine Colostrum on Canine Immune Health. Animals, 15(2), 185. https://doi.org/10.3390/ani15020185