The Erythrocyte Sedimentation Rate (ESR) in Veterinary Medicine: A Focused Review in Dogs and Cats
Simple Summary
Abstract
1. Introduction
2. The Erythrocyte Sedimentation Rate
3. Methods for Measuring the Erythrocyte Sedimentation Rate
4. Erythrocyte Sedimentation Rate in Human Medicine
5. The Erythrocyte Sedimentation Rate in Veterinary Medicine
6. Application of ESR in Dogs
6.1. ESR Values in Healthy Dogs
6.2. Application of ESR in Canine Infectious Diseases
Type of Study (Enrolled Dogs) | Pathogen | Main Laboratory Results (ESR Values in mm/h) | ESR Method | Ref. |
---|---|---|---|---|
Case report (n = 1) | Leptospira icterohaemorrhagiae | Anemia and high ESR value (80) | N.R. | [74] |
Prospective controlled (n = 36 sick; n = 12 controls) | Dogs seropositive to Leptospira spp. | Higher ESR (34.7 ± 26.9) §^ | N.R. | [63] |
Case report (n = 1) | Anaplasma phagocytophilum | Thrombocytopenia and very high ESR (83) | N.R. | [76] |
Experimental infection (n = 34) | Erlichia canis | Thrombocytopenia followed by anemia. High ESR (50) in the acute phase; gradual normalization after treatment ^ | Wintrobe | [83] |
Review (n = 2) | E. canis | High ESR values, along with hypergammaglobulinemia, hypoalbuminemia, and pancytopenia, in a dog with a febrile peak (64) and in a dog with chronic recurrent epistaxis (42) | Wintrobe | [75] |
Experimental infection (n = 14) | E. canis | Infection-induced CBC changes and high ESR (N.R.) in 6 dogs | Wintrobe | [84] |
Observational controlled (n = 17 infected; n = 11 controls) | E. canis | Anemia, thrombocytopenia, lymphocytosis, monocytosis, and high ESR (58.7) and CRP ^ | Westergren | [40] |
Observational multicentric (n = 32) | E. canis | No increase in ESR (26.8 ± 23) § compared with the reference range ^ | N.R. | [71] |
Experimental controlled infection (n = 26 infected; n = 6 controls) | Rickettsia rickettsii | High ESR, especially in dogs receiving the two highest infective doses | Wintrobe | [85] |
Type of Study Enrolled Dogs) | Pathogen | Main Laboratory Results (ESR Values in mm/h) | ESR Method | Ref |
---|---|---|---|---|
Observational controlled (n = 50 sick; n = 20 controls) | Babesia spp. | Increase in CRP, SAA, HPT, and ESR ^. Positive correlation of ESR with CRP and SAA. ESR decreased after imidocarb treatment but with significantly higher values compared with healthy dogs receiving the same drug. | Westergren | [61] |
Observational cases series (n = 6) | Babesia gibsoni | Various clinical pathological abnormalities including high ESR (31.13 ± 1.10) § | N.R. | [81] |
Retrospective case series (n = 21) | Babesia spp. | CBC abnormalities and increased ESR | N.R. | [77] |
Case–control series (n = 50 infected; n = 50 controls) | Babesia spp. | Higher ESR in infected dogs (21.8 ± 4.3) §^ | N.R. | [41] |
Observational controlled (n = 15 sick; n = 15 controls) | Babesia spp. | Higher ESR in dogs with hemoglobinuria (24.63 ± 4.25) # and oliguria/anuria (28.35 ± 5.81) #^ | N.R. | [70] |
Observational controlled (n = 36 infected; n = 22 controls) | Leishmania infantum | Higher ESR in dogs with active leishmaniosis (23.1 ± 16.6) § compared to seropositive dogs (9.5 ± 3.3) § and controls ^. ESR correlates with fibrinogen, globulin, CRP, Hb, HPT, A/G, and Hct. | MINI-PET | [45] |
Observational controlled (n = 43 sick; n = 25 seropositive) | L. infantum | Higher ESR (39) ° in sick dogs. ESR correlates with fibrinogen, Hct, albumin, iron, A/G, and nonsegmented neutrophils. | MINI-PET | [50] |
Case report (n = 1) | Trypanosoma spp. | High ESR (32) and low Hb and Hct | Wintrobe | [78] |
Case report (n = 1) | Trypanosoma spp. | Anemia and high ESR (51) | N.R. | [86] |
Case report (n = 1) | Trypanosoma evansi | Anemia and high ESR (N.R.) | N.R. | [79] |
Observational controlled (n = 8 sick; n = 22 controls) | Trypanosoma congolense | Higher ESR (9.63 ± 3.35) §^ and prolonged capillary refill time, bleeding time, clotting time, and prothrombin time. | Westergren | [66] |
Observational controlled (n = 47 infected/coinfected; n = 22 controls) | Dirofilaria immitis, L. infantum | Higher ESR (12.5) ° in dogs with D. immitis infection (29 also seropositive for L. infantum) ^. Higher ESR values (46) ° in 8 dogs with dual infection and clinical leishmaniosis. ESR correlates with other inflammatory markers. | MINI-PET | [49] |
Observational controlled (n = 21 infected; n = 33 controls) | D. immitis | Higher ESR (36.75 ± 21.22) §^ | Westergren | [56] |
Observational controlled (n = 36 microfilaremic; n = 15 controls) | Dirofilaria repens | Higher ESR in dogs with mild (n = 12; 14.08 ± 2.77) §, moderate (n = 12; 29.42 ± 3.46) §, and severe (n = 12; 30.25 ± 6.54) § microfilaremia ^ along with other CBC changes | Wintrobe | [58] |
Observational controlled (n = 10 microfilaremic; n = 5 controls) | Acanthocheilon-ema reconditum | Higher ESR (3.73 ± 0.16) §^ along with moderate macrocytic anemia, thrombocytosis, and biochemical changes | N.R. | [60] |
Experimental controlled infestation (n = 15 sick; n = 4 controls) | Sarcoptes scabiei var. canis | Progressive reduction in RBC, Hb, and Hct and increase in WBC, neutrophils, and ESR (8.5 ± 12.5) §. Normalization of ESR in four weeks post-treatment (2.1 ± 5.0) §. | N.R. | [57] |
6.3. Application of ESR in Canine Renal and Urinary Tract Disorders
Type of Study (Enrolled Dogs) | Diagnosis | Main Laboratory Results (ESR Values in mm/h) | ESR Method | Ref |
---|---|---|---|---|
Prospective experimental (n = 22) | Acute and chronic nephritis | Anemia and high ESR (N.R.) generally one week after the experimental induction or renal damage. Progressive decrease in the following weeks | Westergren | [98] |
Retrospective (n = 79 sick, n = 21 healthy) | Pyometra-associated nephritis | Higher ESR (28.2 ± 33.2 §) ^. Reduction in ESR (24.8 ± 20.8) § in 30 bitches after surgery | N.R. | [55] |
Retrospective (n = 44) | Renal amyloidosis | High ESR in 30/32 dogs (N.R.), some dogs with anemia | N.R. | [99] |
Retrospective (n = 20) | Renal amyloidosis and thrombosis | High ESR (N.R.) in 12/20 dogs | N.R. | [100] |
Case report (n = 1) | End stage CKD | Azotemia, anemia, and high ESR (45) | N.R. | [94] |
Case report (n = 1) | CKD | Anemia and high ESR (32) before the hemodialysis in comparison to two post-treatment (18) | N.R. | [69] |
Prospective (n = 25) | CKD and urinary disorders | High ESR values (N.R.) | MINI-PET | [51] |
6.4. Application of ESR in Canine Orthopedic Disorders
Type of Study (Enrolled Dogs) | Diagnosis | Main Laboratory Results (ESR Values in mm/h) | ESR Method | Ref |
---|---|---|---|---|
Observational (n = 4) | Arthritis and degenerative joint disease | High ESR in one dog with arthritis (41); lower ESR (2–5) in 3 dogs with a degenerative joint disease | N.R. | [106] |
Observational (n = 30) | Rheumatoid arthritis | High ESR (N.R.) in 24/30 cases | N.R. | [107] |
Experimental (n = 43 sick; n = 30 controls) | Osteoarthritis | High ESR (N.R.) at 30, 60, and 120 min | N.R. | [108] |
Review (n = N.R.) | Osteoarthritis | ESR is a useful diagnostic test, quick and simple to detect the presence of inflammation | Westergren | [64] |
Observational longitudinal (n = 10) | Knee osteoarthritis | Increased ESR (N.R.) over time as a prognostic marker | Wintrobe | [39] |
Observational Longitudinal (n = 30) | Fracture repair with antibiotics (Gr I); without antibiotics (Gr II) | High ESR in 24 dogs before surgery (Gr I = 8.05 ± 0.30; Gr II = 8.33 ± 0.56); 7 days post-surgery (Gr I = 8.26 ± 0.17; Gr II = 10.13 ± 0.73); up to 60 days post-surgery (Gr I = 4.5 ± 0.23 to 3.17 ± 0.35; Gr II = 6.67 ± 0.41 to 3.57 ± 0.56) | Wintrobe | [109] |
Observational longitudinal (n = 6 experimental Gr I, n = 6 experimental Gr II, and n = 6 controls Gr III) | Fractures of tubular bones of various etiology | Higher ESR ^^ 10 days post-surgery (Gr I = 14.67, Gr II = 10.67, Gr III = 11.17). Progressive decrease at 20 (Gr I = 12.50, Gr II = 6.67, and Gr III = 12.17) and 30 days post-surgery (Gr I = 67, Gr II = 3.50, and Gr III = 7.33) | Panchenkov | [110] |
6.5. Application of ESR in Miscellaneous Disorders
7. Application of ESR in Cats
7.1. ESR Values in Healthy Cats
7.2. Application of ESR in Feline Diseases
Type of Study (Enrolled Cats) | Diagnosis | Main Laboratory Results (ESR Values in mm/h) | ESR Method | Ref |
---|---|---|---|---|
Case report (n = 1) | Membranous glomerulonephritis | Very high ESR value (74) | N.R. | [114] |
Prospective experimental (n = 32 sick; N = 10 controls) | CKD | ESR similar in IRIS stage 2 cats (35) ° and in controls (30) °; high ESR in IRIS stage 3 (64) ° and stage 4 (56) ° cats | MINI-PET | [46] |
Prospective (n = 7) | FeLV infection | High ESR in 5 infected cats (range 23–53) | N.R. | [119] |
Prospective (n = 30) | FCV infection | High ESR (15.77 ± 0.22) § in 27/30 FCV-positive cats | N.R. | [120] |
Prospective (3 treatment groups of 10 cats) | Purulent mastitis | Higher ESR values before treatment in each group (20.6 ± 2.1 vs. 7.8 ± 1.89; 19.3 ± 2.11 vs. 3.8 ± 1.15; 21 ± 1.9 vs. 3.4 ± 1.4) § | N.R. | [115] |
Prospective (n = 12 sick; n = 11 controls) | Acute bacterial cholangiohepatitis | High ESR in 2 treatment groups (17.8 ± 3.50; 23.4 ± 3.90) §. Decrease after treatment (9.0 ± 1.29; 6.6 ± 1.02, respectively) § | N.R. | [116] |
Prospective (n = 35 sick; n = 10 controls) | FIV and/or Leishmania infantum infections | Higher ESR in Leishmania (29.5, 10–61) ç, FIV (55.5, 13–66) ç, and coinfected (45, 15–71) ç cats | MINI-PET | [52] |
Prospective cohort (n = 143 sick; n = 57 controls) | Various diseases | Higher ESR (29) ° in sick cats. ESR positively correlated with fibrinogen. The highest ESR (47) ° in acute-on-chronic diseases compared with acute (16) ° and chronic (14) ° | MINI-PET | [117] |
Prospective (n = 30 sick; n = 6 controls) | Intestinal dysbiosis | High ESR in compensated (7.13 ± 0.52) §, subcompensated (15.62 ± 0.88) §, and decompensated dybiosis (24.26 ± 1.71) § | N.R. | [121] |
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jou, J.M.C. 49—Erythrocyte Sedimentation Rate (ESR). In Laboratory Hematology Practice, 1st ed.; Kottke-Marchand, K., Davis, B.H., Eds.; Wiley-Blackwell Ltd.: Chichester, West Sussex, UK, 2012; pp. 638–646. [Google Scholar]
- Tishkowshi, K.; Gupta, V. Erythrocyte Sedimentation Rate; StatPearls: Tampa, FL, USA, 2023. [Google Scholar]
- Grzybowski, A.; Sak, J. A short history of the discovery of the erythrocyte sedimentation rate. Int. J. Lab. Hematol. 2012, 34, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Oka, S. A physical theory of erythrocyte sedimentation. Biorheology 1985, 22, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Stokes, G.G. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Philos. Soc. 1851, 9, 1–86. [Google Scholar]
- Fabry, T.L. Mechanism of Erythrocyte Aggregation and Sedimentation. Blood 1987, 70, 1572–1576. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.; Pospisil, Z. The mechanism of erythrocyte sedimentation in Westergren’s examination. Biorheology 1992, 29, 261–271. [Google Scholar] [CrossRef]
- ICSH. Reference Method for the Erythrocyte Sedimentation Rate (ESR) Test on Human Blood. Br. J. Haematol. 1973, 24, 671–673. [Google Scholar] [CrossRef]
- ICSH. Recommendation for Measurement of Erythrocyte Sedimentation Rate of Human Blood. Am. J. Clin. Pathol. 1977, 68, 505–507. [Google Scholar] [CrossRef]
- ICSH. Laboratory Techniques Guidelines on selection of laboratory tests for monitoring the acute phase response. J. Clin. Pathol. 1988, 41, 1203–1212. [Google Scholar] [CrossRef]
- ICSH. Recommendations for measurement of erythrocyte sedimentation rate. J. Clin. Pathol. 1993, 46, 198–203, Erratum in J. Clin. Pathol. 1993, 46, 488. [Google Scholar]
- Jou, J.M.; Lewis, S.M. ICSH review of the measurement of the erythocyte sedimentation rate. Int. J. Lab. Hematol. 2011, 33, 125–132. [Google Scholar] [CrossRef]
- Kratz, A.; Plebani, M. ICSH recommendations for modified and alternate methods measuring the erythrocyte sedimentation rate. Int. J. Lab. Hematol. 2017, 39, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, D.; Sykes, J. Westergren and Wintrobe methods of estimating ESR compared. Br. Med. J. 1951, 2, 1496–1497. [Google Scholar] [CrossRef] [PubMed]
- Bull, B.S.; Brecher, G. An Evaluation of the relative merits of the Wintrobe and Westergren sedimentation methods, including hematocrit correction. Am. J. Clin. Pathol. 1974, 62, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Moseley, D.L.; Bull, B.S. A comparison of the Wintrobe, the Westergren and the ZSR erythrocyte sedimentation rate (ESR) methods to a candidate reference method. Clin. Lab. Haematol. 1982, 4, 169–178. [Google Scholar] [CrossRef]
- Thompson, G.R. Westergren versus Wintrobe. J. R. Army Med. Corps 1960, 106, 119–121. [Google Scholar]
- Vlislo, V.V.; Fedoruk, R.S. Laboratorni metody doslidzhen u biolohii, tvarynnytstvi ta veterynarniy medytsyni [Laboratory methods of research in biology, animal husbandry and veterinary medicine]. Lviv 2012. [Google Scholar]
- Panchenkov, T.P. Opredelenie uskoreniya osedaniya eritrocitov pri pomoshchi mikrokapillyara (Establishment of the erythrocyte sedimentation rate through the microcapillary). Vrach Delo (Medical Affairs) 1924, 16–17, 695–697. [Google Scholar]
- Simonyan, G.A.; Khisamutdinova, F.F. Veterinarnaya Gematologiya. Vet. Hematol. 1995, 256. [Google Scholar]
- Horton, S.; Fleming, K.A. The top 25 laboratory tests by volume and revenue in five different countries. Am. J. Clin. Pathol. 2019, 151, 446–451. [Google Scholar] [CrossRef]
- Baskurt, O.K.; Meiselman, H.J. Erythrocyte aggregation: Basic aspects and clinical importance. Clin. Hemorheol. Microcirc. 2013, 53, 23–37. [Google Scholar] [CrossRef]
- Bochen, K.; Krasowska, A. Erythrocyte sedimentation rate-an old marker with new applications. J. Pre Clin. Clin. Res. 2011, 5, 50–55. [Google Scholar]
- Olshaker, J.S.; Jerrard, D.A. The erythrocyte sedimentation rate. J. Emerg. Med. 1997, 15, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Brigden, M.L. Clinical utility of the erythrocyte sedimentation rate. Am. Fam. Physician 1999, 60, 1443–1450. [Google Scholar] [PubMed]
- Aytekin, M. The Current Use and the Evolution of Erythrocyte Sedimentation Rate Measurement. Middle Black Sea J. Health Sci. 2018, 4, 17–23. [Google Scholar] [CrossRef]
- Higuchi, M.; Watanabe, N. Determination of the erythrocyte sedimentation rate using the hematocrit-corrected aggregation index and mean corpuscular volume. J. Clin. Lab. Anal. 2023, 37, e24877. [Google Scholar] [CrossRef]
- Fuster, Ó.; Vayá, A. Is erythrocyte sedimentation rate a useful inflammatory marker independently of the hematocrit? Comparison results with plasma viscosity. Clin. Hemorheol. Microcirc. 2014, 58, 381–384. [Google Scholar] [CrossRef]
- Borawski, J.; Mysliwiec, M. The hematocrit-corrected erythrocyte sedimentation rate can be useful in diagnosing inflammation in hemodialysis patients. Nephron 2001, 89, 381–383. [Google Scholar] [CrossRef]
- Pawlotsky, Y.; Goasguen, J. Σ ESR An Erythrocyte Sedimentation Rate Adjusted for the Hematocrit and Hemoglobin Concentration. Am. J. Clin. Pathol. 2004, 122, 802–810. [Google Scholar] [CrossRef]
- Caglayan, O.; Buyukkocak, U. The decrease in erythrocyte sedimentation rate related to general anesthesia. Clin. Hemorheol. Microcirc. 2006, 35, 459–462. [Google Scholar]
- Caglayan, O.; Buyukkocak, U. The effects of the non-volatile anaesthetic agents, propofol and thiopental, on erythrocyte sedimentation rate. Ups. J. Med. Sci. 2007, 112, 335–337. [Google Scholar] [CrossRef]
- Simms, B.T. Erythrocyte sedimentation studies in dogs. J. Am. Vet. Med. Ass. 1940, 96, 77–80. [Google Scholar]
- Frank, D.W. The Influence of Selected Factors on ESR in the Dog and Cat. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 1966. [Google Scholar]
- Osbaldison, G.W. Erythrocyte sedimentation rate studies in sheep, dog, and horse. Cornell Vet. 1971, 61, 386–399. [Google Scholar]
- Jain, N.C.; Kono, C.S. Erythrocyte sedimentation rate in the dog and cat: Comparison of two methods and influence of packed cell volume, temperature and storage of blood. J. Small Anim. Pract. 1975, 16, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Schalm, O.W.; Jain, N.C. Veterinary Hematology, 3rd ed.; Lea and Febiger Publication: Philadelphia, PA, USA, 1975; p. 807. [Google Scholar]
- Coles, E.H. Veterinary Clinical Pathology, 4 th ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1986; pp. 17–19. [Google Scholar]
- Ajadi, R.A.; Adebiyi, A.A. Erythrocyte sedimentation rates and leukogram changes in canine model of osteoarthritis. Niger. J. Physiol. Sci. 2018, 33, 105–108. [Google Scholar]
- Asawapattanakul, T.; Pintapagung, T. Erythrocyte sedimentation rate, C-reactive protein, and interleukin-6 as inflammatory biomarkers in dogs naturally infected with Ehrlichia canis. Vet. World 2021, 14, 2325–2331. [Google Scholar] [CrossRef]
- Dubova, O.A.; Feshchenko, D.V. Disseminated intravascular coagulation syndrome as a complication in acute spontaneous canine babesiosis. Maced. Vet. Rev. 2020, 43, 141–149. [Google Scholar] [CrossRef]
- Khan, S.A.; Epstein, J.H. Hematology and serum chemistry reference values of stray dogs in Bangladesh. Open Vet. J. 2011, 1, 13–20. [Google Scholar] [CrossRef]
- Militello, C.; Pasquini, A. The Canine Erythrocyte Sedimentation Rate (ESR): Evaluation of a Point-of-Care Testing Device (MINIPET DIESSE). Vet. Med. Int. 2020, 6, 3146845. [Google Scholar] [CrossRef]
- Gori, E.; Pasquini, A. Effect of time and storage temperature on canine and feline erythrocyte sedimentation rate. MethodsX 2022, 9, 101934. [Google Scholar] [CrossRef]
- Cavalera, M.A.; Gernone, F. Erythrocyte sedimentation rate in canine leishmaniosis diagnosis: A new resource. Front. Vet. Sci. 2022, 9, 949372. [Google Scholar] [CrossRef]
- Uva, A.; Cavalera, M.A. Inflammatory Status and Chronic Kidney Disease in Cats: Old and New Inflammatory Markers—A Pilot Prospective Study. Animals 2023, 13, 3674. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, C.; Grassi, A. Analytical Validation of MINI-PET as Point-of-Care for Erythrocyte Sedimentation Rate Measure in Horses. Vet. Med. Int. 2023, 2023, 9965095. [Google Scholar] [CrossRef] [PubMed]
- Gori, E.; Pierini, A. The erythrocyte sedimentation rate (ESR) in canine inflammation. Vet. J. 2023, 294, 105949. [Google Scholar] [CrossRef] [PubMed]
- Cavalera, M.A.; Gusatoaia, O. Erythrocyte sedimentation rate in heartworm naturally infected dogs ‘with or without’ Leishmania infantum seropositivity: An observational prospective study. Front. Vet. Sci. 2024, 11, 1371690. [Google Scholar] [CrossRef]
- Lubas, G.; Paltrinieri, S. Clinical and Clinico-Pathological Observations of the Erythrocyte Sedimentation Rate in Dogs Affected by Leishmaniosis and Other Inflammatory Diseases. Animals 2024, 14, 1013. [Google Scholar] [CrossRef]
- Paltrinieri, S.; Ferrari, R.; Scavone, D.; Pieroni, C.; Diamanti, D.; Tagliasacchi, F. Increased Erythrocyte Sedimentation Rate in Dogs: Frequency in Routine Clinical Practice and Association with Hematological Changes. Animals 2024, 14, 1409. [Google Scholar] [CrossRef]
- Donato, G.; Caspanello, T. The erythrocyte sedimentation rate and other markers of inflammation in cats tested for Leishmania infantum and feline immunodeficiency virus antibodies. Parasit. Vectors 2024, 17, 324. [Google Scholar] [CrossRef]
- Friedrichs, K.R.; Harr, K.E. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef]
- Arnold, J.E.; Camus, M.S. SVCP Guidelines: Principles of Quality Assurance and Standards for Veterinary Clinical Pathology (version 3.0): Developed by the American Society for Veterinary Clinical Pathology’s (ASVCP) Quality Assurance and Laboratory Standards (QALS) Committee. Vet. Clin. Pathol. 2019, 48, 542–618. [Google Scholar]
- Asheim, A. Comparative pathophysiological aspects of the glomerulonephritis associated with pyometra in dogs. Acta Vet. Scand. 1964, 5, 188–207. [Google Scholar] [CrossRef]
- Sharma, M.C.; Pachauri, S.P. Blood cellular and biochemical studies in canine dirofilariasis. Vet. Res. Commun. 1981, 5, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Arlian, L.G.; Morgan, M.S. Some Effects of Sarcoptic Mange on Dogs. J. Parasitol. 1995, 81, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Radhika, R.; Subramanian, H. Haemogram of dogs infected with microfilaria of dirofilaria repens. J. Vet. Anim. Sci. 2001, 32, 1–4. [Google Scholar]
- Briend-Marchal, A.; Chapellier, P. Comparaison de l’hémogramme, de la vitesse de sédimentation, de la fibrinogénémie et des protéines sériques de chiens âgés (≥10 ans) et de chiens adultes (1 à 8 ans) en bonne santé. Rev. Med. Vet. 2003, 154, 629–632. [Google Scholar]
- Hashem, M.; Badawy, A. Hematological and biochemical studies on filariasis of dogs. Int. J. Vet. Med. 2007, 4. [Google Scholar]
- Matijatko, V.; Mrljak, V. Evidence of an acute phase response in dogs naturally infected with Babesia canis. Vet. Parasitol. 2007, 144, 242–250. [Google Scholar] [CrossRef]
- Andonova, M.; Dimitrova, D. Nonspecific defense mechanisms in dogs during experimental staphylococcal infection. Vet. Glasnik 2011, 65, 25–41. [Google Scholar] [CrossRef]
- Yogeshpriya, S.; Pillai, U.N. Haemato-Biochemical Changes and Serum C-Reactive Protein Concentration in Dogs with Acute Renal Failure. Shanlax Int. J. Vet. Sci. 2014, 1, 29–31. [Google Scholar]
- Bland, S.D. Canine osteoarthritis and treatments: A review. Vet. Sci. Dev. 2015, 5, 84–89. [Google Scholar] [CrossRef]
- Khaki, Z.; Masoudifard, M. Serum biochemical and hematological parameters in dogs with benign prostatic hyperplasia (BPH). Iran. J. Vet. Med. 2017, 11, 55–62. [Google Scholar]
- Obiorah, P.O.; Ugochukwu, I.C. Capillary refill time, bleeding time, clotting time, erythrocyte sedimentation rate and prothrombin time in natural cases of canine Trypanosoma congolense infection. Comp. Clin. Path 2017, 26, 175–179. [Google Scholar] [CrossRef]
- Tkacheva, Y.; Glazunova, L. Hematological changes in dogs and cats with Ectoparasitosis in Northern Trans-Urals. Adv. Eng. Res. 2018, 151, 742–746. [Google Scholar]
- Yogeshpriya, S.; Narayana Pillai, U. Clinico-Haemato-Biochemical Profile of Dogs with Urinary Tract Infection: A Retrospective Study of 32 Cases (2010-2012). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2797–2802. [Google Scholar] [CrossRef]
- Ghosh, C.K.; Mridha, F. Ameliorative effect of hemodialysis in a dog having chronic kidney disease. Pharma Innov. 2022, 11, 904–907. [Google Scholar]
- Dubova, O.A.; Feshchenko, D.V. Pathogenetic relationship between kidney pathologies and the microcirculatory capillary layer in dogs under the influence of Babesia canis. Regul. Mech. Biosyst. 2023, 14, 34–40. [Google Scholar] [CrossRef]
- Gyawali, C.N.; Gupta, M.P. Study of Ehrlichia canis in febrile dogs of Kathmandu valley of Nepal. Int. J. Vet. Sci. Anim. Husb. 2023, 8, 227–235. [Google Scholar]
- Lilius, E.M.; Nuutila, J. Bacterial infections, DNA virus infections, and RNA virus infections manifest differently in neutrophil receptor expression. Sci. World J. 2012, 2012, 527347. [Google Scholar] [CrossRef]
- Markanday, A. Acute Phase Reactants in Infections: Evidence-Based Review and a Guide for Clinicians. OFID 2015, 2, ofv098. [Google Scholar] [CrossRef]
- Indu, S.; Saseedranath, M.R. Acute leptospirosis in a dog-a case report. J. Vet. Anim. Sci. 2001, 32, 65–66. [Google Scholar]
- Immelman, A.; Button, C. Ehrlichia canis infection. (Tropical canine pancytopaenia or canine rickettsiosis). J. S. Afr. Vet. Assoc. 1973, 44, 241–245. [Google Scholar]
- Melter, O.; Stehlik, I. Infection with Anaplasma phagocytophilum in a young dog: A case report. Vet Med (Praha) 2007, 52, 207–212. [Google Scholar] [CrossRef]
- Mălăncuș, R.; Pavel, G. Anemia Description in Babesia spp. Infected Dogs. Series Vet. Med. Iasi Univ. Life Sci. 2017, 83–88. Available online: https://repository.iuls.ro/xmlui/handle/20.500.12811/1134 (accessed on 12 January 2025).
- Rashid, A.; Rasheed, K. Trypanosomiasis in Dog; A Case Report. J. Arthropod Borne Dis. 2008, 2, 48–51. [Google Scholar]
- Chandrasekar, M.; Senthilkumar, G. Management of Trypanosomiasis and Associated Corneal Opacity in a dog. Intas Polivet 2017, 18, 178–179. [Google Scholar]
- Brkljačić, M.; Torti, M. The concentrations of the inflammatory markers the amino-terminal portion of C-type pronatriuretic peptide and procalcitonin in canine portion of C-type pronatriuretic peptide and procalcitonin in canine babesiosis caused by babesiosis caused by Babesia c. Vet. Arh. 2014, 84, 575–589. [Google Scholar]
- Vishnurahav, R.B.; Pillai, U.N. Haemato-biochemical changes in canine babesiosis. Indian. J. Can. Pract. 2014, 6, 130–131. [Google Scholar]
- Ajith, Y.; Chacko, N. Clinical management of a Labrador retriever dog concurrently infected with Leptospira interrogans, Babesia gibsoni and Dirofilaria repens. Comp. Clin. Path 2016, 25, 1325–1330. [Google Scholar] [CrossRef]
- Seamer, J.; Snape, T. Ehrlichia canis and tropical canine pancytopenia. Rev. Vet. Sci. 1972, 13, 307–314. [Google Scholar] [CrossRef]
- Buhles, W.C.; Huxsou, D.L. Tropical Canine Pancytopenia: Clinical, Hematologic, and Serologic Response of Dogs to Ehrlichia canis Infection, Tetracycline Therapy, and Challenge Inoculation. J. Infect. Dis. 1974, 130, 357–367. [Google Scholar] [CrossRef]
- Keenan, K.P.; Buhles, W.C. Pathogenesis of Infection with Rickettsia rickettsii in the Dog: A Disease Model for Rocky Mountain Spotted Fever. J. Infect. Dis. 1977, 135, 911–917. [Google Scholar] [CrossRef]
- Sawale, G.K.; Roshini, S. ; Roshini, S. Trypanosomiasis in non-descript dog: A case report. Indian. J. Canine Pract. 2012, 4, 76–77. [Google Scholar]
- Shusterman, N.; Kimmel, P.L. Factors Influencing Erythrocyte Sedimentation in patients with Chronic Renal Failure. Arch. Intern. Med. 1985, 145, 1796–1799. [Google Scholar] [CrossRef] [PubMed]
- Bathon, J.; Graves, J. The Erythrocyte Sedimentation Rate in End-Stage Renal Failure. Am. J. Kidney Dis. 1987, 10, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Buckenmayer, A.; Dahmen, L. Erythrocyte Sedimentation Rate in patients with Renal Insufficiency and renal replacement therapy. Lab. Med. 2022, 53, 483–487. [Google Scholar] [CrossRef]
- Su, T.; Shi, S. Clinicopathological characteristics and prognosis of IgG4-related kidney disease. Nat. Med. J. China 2021, 101, 2559–2562. [Google Scholar]
- Dunaevich, A.; Chen, H. Acute on chronic kidney disease in dogs: Etiology, clinical and clinicopathologic findings, prognostic markers, and survival. J. Vet. Intern. Med. 2020, 34, 2507–2515. [Google Scholar] [CrossRef]
- Bartges, J.W. Chronic Kidney Disease in Dogs and Cats. Vet. Clin. N. Am. Small Anim. Pract. 2012, 42, 669–692. [Google Scholar] [CrossRef]
- Mendóza-López, C.I.; Del-Angel-Caraza, J. Analysis of lower urinary tract disease of dogs. Pesqui. Vet. Bras. 2017, 37, 1275–1280. [Google Scholar] [CrossRef]
- Sawale, G.K. Clinicopathology of uraemia in dog-case report. Indian. J. Can. Pract. 2012, 4, 67–69. [Google Scholar]
- Greco, D.S. Congenital and inherited renal disease of small animals. Vet. Clin. North. Am. Small Anim. Pract. 2001, 31, 393–399. [Google Scholar] [CrossRef]
- Woldemeskel, M. A Concise Review of Amyloidosis in Animals. Vet. Med. Int. 2012, 2012, 427296. [Google Scholar] [CrossRef] [PubMed]
- Kulikov, E.V.; Vatnikov, Y.A. Special Aspects of the Pathohistological Diagnostics of Familial Shar-Pei Amyloidosis. Asian J. Pharm. 2017, 11, 152–157. [Google Scholar]
- Carrier Seegal, B.; Hasson, M.W. Glomerulonephritis produced in dogs by specific antisera. J. Exp. Med. 1955, 102, 807–822. [Google Scholar]
- Slauson, D.O.; Gribble, D.H. Clinicopathological study of renal amyloidosis. J. Comp. Pathol. 1970, 80, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Slauson, D.O.; Gribble, D.H. Thrombosis Complicating Renal Amyloidosis in Dogs. Vet. Pathol. 1971, 8, 352–363. [Google Scholar] [CrossRef]
- Aletaha, D.; Smolen, J. Diagnosis and Management of Rheumatoid Arthritis: A Review. Am. Med. Assoc. 2018, 320, 1360–1372. [Google Scholar] [CrossRef]
- Luquita, A.; Urli, L. Erythrocyte aggregation in rheumatoid arthritis: Cell and plasma factor’s role. Clin. Hemorheol. Microcirc. 2009, 41, 49–56. [Google Scholar] [CrossRef]
- McWilliams, D.F.; Kiely, P.D. Interpretation of DAS28 and its components in the assessment of inflammatory and non-inflammatory aspects of rheumatoid arthritis. BMC Rheumatol. 2018, 2, 8. [Google Scholar] [CrossRef]
- Ellitsgaard, N.; Andersson, A.P. Changes in C-reactive protein and erythrocyte sedimentation rate after hip fractures. Int. Orthop. 1991, 15, 311–314. [Google Scholar] [CrossRef]
- Obremskey, W.T.; Metsemakers, W.J. Musculoskeletal Infection in Orthopaedic Trauma. J. Bone Joint Surg. Am. 2020, 102, e44. [Google Scholar] [CrossRef]
- Ajmal, M.; Hayward, A.H. Arthritis and osteo-arthritis in dogs. J. Small Anim. Pract. 1970, 11, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D. Immune-based erosive inflammatory joint disease of the dog: Canine rheumatoid arthritis. Pathological investigations. J. Small Anim. Pract. 1987, 28, 799–819. [Google Scholar] [CrossRef]
- Spreng, D.; Sigrist, N. Endogenous nitric oxide production in canine osteoarthritis: Detection in urine, serum, and synovial fluid specimens. Vet. Surg. 2001, 30, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Phaneendra, M.; Lakshmi, N. Evaluation of Biochemical and Haematological Parameters for Assessment of Compound Fracture Healing in Dogs with Local Antibiotic Treatment. Int. J. Livest. Res. 2018, 8, 138–143. [Google Scholar] [CrossRef]
- Khaidarova, S.A.; Nerzieva, B.D. Hematological indications for the treatment of fractures of tubular bones in dogs by osteosynthesis. Eurasian Med. Res. Period. 2022, 7, 90–95. [Google Scholar]
- Chaudhry, N.I.; Khan, M.A. Experimental study on hemogram and chemistry profile in splenectomized dogs. Pak. Vet. J. 1997, 17, 24–28. [Google Scholar]
- Alam, M.R.; Hoque, M.A. Haematological pictures in clinically affected dogs. Bang. J. Med. 2005, 3, 63–65. [Google Scholar] [CrossRef]
- Andonova, M.; Urumova, V. Haematological and biochemical parameters characterising the progression of experimental Pseudomonas aeruginosa skin infection in dogs. Bulgarian J. Vet. Med. 2014, 17, 32–41. [Google Scholar]
- Farrow, B.R.; Huxtable, C.R. Nephrotic syndrome in the cat due to diffuse membranous glomerulonephritis. Pathology 1969, 1, 67–72. [Google Scholar] [CrossRef]
- Chekrysheva, V.V.; Rodin, I.A. Therapies of purulent mastitis in cats. Int. Trans. J. Eng. Manag. Sci. Tech. 2020, 11, 1–7. [Google Scholar]
- Rudenko, A.A.; Karamyan, A. Treatment for cholangiohepatitis in cats. RUDN J. Agron. Anim. Ind. 2023, 18, 135–144. [Google Scholar] [CrossRef]
- Gori, E.; Pasquini, A. Prospective Application of the Erythrocyte Sedimentation Rate (ESR) as a Possible Inflammatory Marker in Feline Patients. Vet. Med. Int. 2024, 2024, 2313447. [Google Scholar] [CrossRef] [PubMed]
- Polzin, D.J. Chronic Kidney Disease in Small Animals. Vet. Clin. North. Am.Small Anim. Pract. 2011, 41, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Tatyana, M.; Klimovich, A. The prevalence of FeLV and FIV infection in cats and hematological changes and clinical signs in Felv/FIV infected cats from Vladivostok, Russia. Adv. Anim. Vet. Sci. 2019, 7, 570–573. [Google Scholar] [CrossRef]
- Kulenkova, J.; Ravilov, R.K. A comparative study of the effectiveness of regimens for the treatment of calicivirus infection in cats-a comparative study. Vet. Pract. 2020, 21, 88–91. [Google Scholar]
- Tresnitskiy, S.; Lutsay, V. Features of the course of compensated, subcompensated and decompensated intestinal dysbiosis in cats. BIO Web Conf. 2023, 431, 01054. [Google Scholar] [CrossRef]
- World Health Organization. The Selection and Use of Essential In Vitro Diagnostics; WHO: Genava, Switzerland, 2020. [Google Scholar]
- Banfi, G.; Salvagno, G.L. The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clin. Chem. Lab. Med. 2007, 45, 565–576. [Google Scholar] [CrossRef]
- Alende-Castro, V.; Alonso-Sampedro, M. Factors influencing erythrocyte sedimentation rate in adults. Medicine 2019, 98, e16816. [Google Scholar] [CrossRef]
- Cerón, J.J.; Eckersall, P.D. Acute phase proteins in dogs and cats: Current knowledge and future perspectives. Vet. Clin. Pathol. 2005, 34, 85–99. [Google Scholar] [CrossRef]
- Litao, M.K.; Kamat, D. Erythrocyte Sedimentation Rate and C-Reactive Protein: How Best to Use Them in Clinical Practice. Ped. Annals 2014, 43, 417–420. [Google Scholar] [CrossRef]
Technique/ Method Adopted | N Dogs | ESR Values (mm/h) | Reference | Type of Group for Healthy Subjects |
---|---|---|---|---|
N.R. | 21 | Mn 1.7 ± SD 2.0 IR 0–8 | [55] | Control group |
Wintrobe | 11 | IR 0.5–3 | [34] | Control group |
Westergren | 33 | Mn 12.5 ± SE 5.87 | [56] | Control group |
Wintrobe | N.R. | IR 5–25 | [38] | Control group |
N.R. | 4 | Mn 2.5 ± SD 5.0 | [57] | Control group |
Wintrobe | 15 | Mn 0.27 ± SE 0.12 | [58] | Control group |
Westergren | 27 | <3 (1) | [59] | Used for RI |
N.R. | 5 | Mn 2.45 ± SD 0.12 | [60] | Control group |
N.R. | N.R. | <10 (2) | [61] | Control group |
Panchenkov (2) | N.R. | IR 0–5 | [62] | Used for RI |
N.R. | 50 | Mn 3.4 ± SD 0.3 | [42] | Used for RI |
N.R. | 12 | Mn 3.00 ± SD 0.37 (3) | [63] | Control group |
Westergren | NR | IR 0–5 | [64] | Control group |
Westergren | 10 | Mn 6.00 ± SE 0.47 | [65] | Control group |
Westergren | 22 | Mn 3.85 ± SD 0.46 | [66] | Control group |
Panchenkov (3) | 25 | Mn 3.7 ± SD 0.3 (3) | [67] | Control group |
N.R. | 32 | Mn 13.64 ± IR 9.2 (3) | [68] | Control group |
MINI-PET (4) | 119 | IR 0–10 | [43] | Used for RI |
Westergren | 119 | IR 0–5 | [43] | Used for RI |
N.R. | 50 | Mn 3.80 ± SE 0.30 (5) | [41] | Control group |
Westergren | 11 | Mn 6.45 ± SE 2.79 | [40] | Control group |
MINI-PET | 120 | IR 1–8 | [48] | Used for RI |
N.R. | N.R. | IR 6–10 | [69] | Used for RI |
MINI-PET | 22 | Mn 9.09 ± SD 7.97 | [45] | Control group |
N.R. | 15 | Mn 5.13 ± SE 0.32 | [70] | Control group |
N.R. | N.R. | IR 5–8 | [71] | Used for RI |
MINI-PET | 22 | Md 7.5–IQR 5–11 | [49] | Control group |
MINI-PET | 53 | Md 7–IQR 2.7–10 | [51] | Control group |
MINI-PET | 53 | IR 1.0–13.7 | [51] | Used for RI |
Type of Study (Enrolled Dogs) | Diagnosis | Main Laboratory Results (ESR Values in mm/h) | ESR Method | Ref |
---|---|---|---|---|
Observational (n = 12) | Total and partial splenectomy | High ESR after partial (29.7–40.5) ** or total splenectomy (27.5–32.5) ** | N.R. | [111] |
Observational (n = 23) | Different inflammatory conditions | High ESR associated with anemia (37) °, fever (45) °, and abscesses (35) ° | Wintrobe | [112] |
Observational (n = 32 sick; n = 32 controls) | Urinary tract infections | Higher ESR (25.83 ± 26.3) § | N.R. | [68] |
Observational longitudinal (n = 9) | Experimental infection with Staphylococcus aureus | Higher ESR over time: T0 (4 ± 2.2) §; T48h (13 ± 11.3) §; T72h (15 ± 15) § | Panchenkov | [62] |
Observational longitudinal (n = 5 infected; n = 5 controls) | Experimental infection with Pseudomonas aeruginosa | Higher ESR over time (from approximately 18 to 46 at 72h p.i.) | Panchenkov | [113] |
Obsevational (n = 43 active leishmaniosis; n = 25 L. infantum seropositive; n = 65 inflammatory diseases) | Inflammatory diseases vs. leishmaniosis | Higher ESR in dogs with inflammatory diseases (41) ° vs. dogs L. infantum seropositive (11) ° | MINI-PET | [50] |
Observational (n = 217 sick; n = 53 controls) | Inflammatory or non-inflammatory diseases | High ESR in severe/acute diseases (5.2–26.8) **; acute/subacute inflammation (9–38) **; tumors (10–23.7) **; mild chronic disorders (5.4–11) ** | MINI-PET | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diamanti, D.; Pieroni, C.; Pennisi, M.G.; Marchetti, V.; Gori, E.; Paltrinieri, S.; Lubas, G. The Erythrocyte Sedimentation Rate (ESR) in Veterinary Medicine: A Focused Review in Dogs and Cats. Animals 2025, 15, 246. https://doi.org/10.3390/ani15020246
Diamanti D, Pieroni C, Pennisi MG, Marchetti V, Gori E, Paltrinieri S, Lubas G. The Erythrocyte Sedimentation Rate (ESR) in Veterinary Medicine: A Focused Review in Dogs and Cats. Animals. 2025; 15(2):246. https://doi.org/10.3390/ani15020246
Chicago/Turabian StyleDiamanti, Daniela, Carolina Pieroni, Maria Grazia Pennisi, Veronica Marchetti, Eleonora Gori, Saverio Paltrinieri, and George Lubas. 2025. "The Erythrocyte Sedimentation Rate (ESR) in Veterinary Medicine: A Focused Review in Dogs and Cats" Animals 15, no. 2: 246. https://doi.org/10.3390/ani15020246
APA StyleDiamanti, D., Pieroni, C., Pennisi, M. G., Marchetti, V., Gori, E., Paltrinieri, S., & Lubas, G. (2025). The Erythrocyte Sedimentation Rate (ESR) in Veterinary Medicine: A Focused Review in Dogs and Cats. Animals, 15(2), 246. https://doi.org/10.3390/ani15020246