Heat Stress in Dairy Cows: Impacts, Identification, and Mitigation Strategies—A Review
Simple Summary
Abstract
1. Introduction
2. Thermoregulation
3. Physiological Aspects of Heat Stress in Dairy Cows
4. Heat Stress and Productivity
5. Heat Stress and Reproduction
6. Heat Stress and Its Impact on Health
7. Machine Learning for Predicting Heat Stress
8. Strategies to Minimize Heat Stress
9. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baêta, F.; Souza, C. Ambiência Em Edificações Rurais, 2nd ed.; Editora UFV: Viçosa, Brazil, 2010; Volume 1, ISBN 9788572693936. [Google Scholar]
- Chen, S.; Yong, Y.; Ju, X. Effect of Heat Stress on Growth and Production Performance of Livestock and Poultry: Mechanism to Prevention. J. Therm. Biol. 2021, 99, 103019. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, G.; Herbut, P.; Pinto, S.; Heinicke, J.; Kuhla, B.; Amon, T. Animal-Related, Non-Invasive Indicators for Determining Heat Stress in Dairy Cows. Biosyst. Eng. 2020, 199, 83–96. [Google Scholar] [CrossRef]
- Rejeb, M.; Sadraoui, R.; Najar, T.; M’rad, M.B. A Complex Interrelationship between Rectal Temperature and Dairy Cows’ Performance under Heat Stress Conditions. Open J. Anim. Sci. 2016, 6, 24–30. [Google Scholar] [CrossRef]
- Damasceno, F.A. Composat Barn Como Alternativa Para a Pecuária Leiteira, 1st ed.; Gulliver: Osaka, Japan, 2020; Volume 1. [Google Scholar]
- Becker, C.A.; Collier, R.J.; Stone, A.E. Invited Review: Physiological and Behavioral Effects of Heat Stress in Dairy Cows. J. Dairy Sci. 2020, 103, 6751–6770. [Google Scholar] [CrossRef] [PubMed]
- Burhans, W.S.; Rossiter Burhans, C.A.; Baumgard, L.H. Invited Review: Lethal Heat Stress: The Putative Pathophysiology of a Deadly Disorder in Dairy Cattle. J. Dairy Sci. 2022, 105, 3716–3735. [Google Scholar] [CrossRef] [PubMed]
- Polsky, L.; von Keyserlingk, M.A.G. Invited Review: Effects of Heat Stress on Dairy Cattle Welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [PubMed]
- Roth, Z. Reproductive Physiology and Endocrinology Responses of Cows Exposed to Environmental Heat Stress—Experiences from the Past and Lessons for the Present. Theriogenology 2020, 155, 150–156. [Google Scholar] [CrossRef]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Inadagbo, O.; Makowski, G.; Ahmed, A.A.; Daigle, C. On Developing a Machine Learning-Based Approach for the Automatic Characterization of Behavioral Phenotypes for Dairy Cows Relevant to Thermotolerance. AgriEngineering 2024, 6, 2656–2677. [Google Scholar] [CrossRef]
- Brezov, D.; Hristov, H.; Dimov, D.; Alexiev, K. Predicting the Rectal Temperature of Dairy Cows Using Infrared Thermography and Multimodal Machine Learning. Appl. Sci. 2023, 13, 11416. [Google Scholar] [CrossRef]
- Pacheco, V.M.; Sousa, R.V.d.; Rodrigues, A.V.d.S.; Sardinha, E.J.d.S.; Martello, L.S. Thermal Imaging Combined with Predictive Machine Learning Based Model for the Development of Thermal Stress Level Classifiers. Livest. Sci. 2020, 241, 104244. [Google Scholar] [CrossRef]
- Chung, H.; Li, J.; Kim, Y.; Van Os, J.M.C.; Brounts, S.H.; Choi, C.Y. Using Implantable Biosensors and Wearable Scanners to Monitor Dairy Cattle’s Core Body Temperature in Real-Time. Comput. Electron. Agric. 2020, 174, 105453. [Google Scholar] [CrossRef]
- Curtis, S.E. Environmental Management in Animal Agriculture; Iowa State University Press: Ames, IA, USA, 1983; ISBN 9780813. [Google Scholar]
- Tinôco, I.F.F. Avicultura Industrial: Novos Conceitos de Materiais, Concepções e Técnicas Construtivas Disponíveis Para Galpões Avícolas Brasileiros. Rev. Bras. Cienc. Avic. 2001, 3, vti-717567. [Google Scholar] [CrossRef]
- Costa, D.A.d.; Santos, V.M.d.; Oliveira, A.V.D.d.; Souza, C.L.d.; Moreira, G.R.; Rosa, B.L.; Reis, E.M.B.; Queiroz, A.M.d. Efeito Da Sazonalidade Sobre as Respostas Fisiológicas e Produtivas de Vacas Leiteiras Mestiças Ao Clima Amazônico Equatorial. Ciênc. Anim. Bras. 2023, 24, e-73559E. [Google Scholar] [CrossRef]
- Machado, R.M.e.S.; Bre, F.; Melo, A.P.; Lamberts, R. The Impact of Climate Data Uncertainty on Bioclimatic Zoning for Building Design. Build. Environ. 2025, 269, 112423. [Google Scholar] [CrossRef]
- Bewley, J.M.; Robertson, L.M.; Eckelkamp, E.A. A 100-Year Review: Lactating Dairy Cattle Housing Management. J. Dairy Sci. 2017, 100, 10418–10431. [Google Scholar] [CrossRef] [PubMed]
- Leso, L.; Barbari, M.; Lopes, M.A.; Damasceno, F.A.; Galama, P.; Taraba, J.L.; Kuipers, A. Invited Review: Compost-Bedded Pack Barns for Dairy Cows. J. Dairy Sci. 2020, 103, 1072–1099. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, V.; Boucher, A.; Dahl, G.E.; Laporta, J. Consequences of Maternal Heat Stress at Different Stages of Embryonic and Fetal Development on Dairy Cows’ Progeny. Anim. Front. 2021, 11, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.H.R.F.; Le Floc’h, N.; Noblet, J.; Renaudeau, D. Physiological Responses of Growing Pigs to High Ambient Temperature and/or Inflammatory Challenges. Rev. Bras. Zootec. 2017, 46, 537–544. [Google Scholar] [CrossRef]
- Lazzari, J.; Isola, J.V.V.; Szambelan, V.L.; Menegazzi, G.; Busanello, M.; Rovani, M.T.; Sarubbi, J.; Schmitt, E.; Ferreira, R.; Gonçalves, P.B.D.; et al. Thermoregulatory Response of Black or Red Lactating Holstein Cows in the Hot and Cold Season in Southern Brazil. J. Therm. Biol. 2024, 121, 103833. [Google Scholar] [CrossRef]
- Chen, X.; Shu, H.; Sun, F.; Yao, J.; Gu, X. Impact of Heat Stress on Blood, Production, and Physiological Indicators in Heat-Tolerant and Heat-Sensitive Dairy Cows. Animals 2023, 13, 2562. [Google Scholar] [CrossRef] [PubMed]
- Casarotto, L.T.; Jones, H.N.; Chavatte-Palmer, P.; Laporta, J.; Peñagaricano, F.; Ouellet, V.; Bromfield, J.; Dahl, G.E. Late-Gestation Heat Stress Alters Placental Structure and Function in Multiparous Dairy Cows. J. Dairy Sci. 2025, 108, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to Hot Climate and Strategies to Alleviate Heat Stress in Livestock Production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef]
- Zhou, M.; Groot Koerkamp, P.W.G.; Huynh, T.T.T.; Aarnink, A.J.A. Evaporative Water Loss from Dairy Cows in Climate-Controlled Respiration Chambers. J. Dairy Sci. 2023, 106, 2035–2043. [Google Scholar] [CrossRef]
- Zhou, M.; Huynh, T.T.T.; Groot Koerkamp, P.W.G.; van Dixhoorn, I.D.E.; Amon, T.; Aarnink, A.J.A. Effects of Increasing Air Temperature on Skin and Respiration Heat Loss from Dairy Cows at Different Relative Humidity and Air Velocity Levels. J. Dairy Sci. 2022, 105, 7061–7078. [Google Scholar] [CrossRef]
- Serviento, A.M.; He, T.; Ma, X.; Räisänen, S.E.; Niu, M. Modeling the Effect of Ambient Temperature on Reticulorumen Temperature, and Drinking and Eating Behaviors of Late-Lactation Dairy Cows during Colder Seasons. Animal 2024, 18, 101209. [Google Scholar] [CrossRef] [PubMed]
- Garner, J.B.; Douglas, M.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; DiGiacomo, K.; Leury, B.J.; Hayes, B.J. Responses of Dairy Cows to Short-Term Heat Stress in Controlled-Climate Chambers. Anim. Prod. Sci. 2017, 57, 1233. [Google Scholar] [CrossRef]
- Vujanac, I.; Kirovski, D.; Bojkovski, J.; Prodanovic, R.; Savic, B.; Samanc, H. Effect of Heat Stress on Vital Signs in High-Yield Dairy Cows. Vet. Glas. 2010, 64, 53–63. [Google Scholar] [CrossRef]
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, B.; Heuwieser, W.; Halachmi, I.; Banhazi, T.; Amon, T. Influence of Barn Climate, Body Postures and Milk Yield on the Respiration Rate of Dairy Cows. Ann. Anim. Sci. 2019, 19, 469–481. [Google Scholar] [CrossRef]
- Gendelman, M.; Aroyo, A.; Yavin, S.; Roth, Z. Seasonal Effects on Gene Expression, Cleavage Timing, and Developmental Competence of Bovine Preimplantation Embryos. Reproduction 2010, 140, 73–82. [Google Scholar] [CrossRef]
- Wheelock, J.B.; Rhoads, R.P.; VanBaale, M.J.; Sanders, S.R.; Baumgard, L.H. Effects of Heat Stress on Energetic Metabolism in Lactating Holstein Cows. J. Dairy Sci. 2010, 93, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and Hormonal Acclimation to Heat Stress in Domesticated Ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- von Keyserlingk, M.A.G.; Martin, N.P.; Kebreab, E.; Knowlton, K.F.; Grant, R.J.; Stephenson, M.; Sniffen, C.J.; Harner, J.P.; Wright, A.D.; Smith, S.I. Invited Review: Sustainability of the US Dairy Industry. J. Dairy Sci. 2013, 96, 5405–5425. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F. Is Fertility Declining in Dairy Cattle? Theriogenology 2003, 60, 89–99. [Google Scholar] [CrossRef]
- Mendonça, L.G.D.; Mantelo, F.M.; Stevenson, J.S. Fertility of Lactating Dairy Cows Treated with Gonadotropin-Releasing Hormone at AI, 5 Days after AI, or Both, during Summer Heat Stress. Theriogenology 2017, 91, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Friedman, E.; Roth, Z.; Voet, H.; Lavon, Y.; Wolfenson, D. Progesterone Supplementation Postinsemination Improves Fertility of Cooled Dairy Cows during the Summer. J. Dairy Sci. 2012, 95, 3092–3099. [Google Scholar] [CrossRef] [PubMed]
- de la Sota, R.L.; Burke, J.M.; Risco, C.A.; Moreira, F.; DeLorenzo, M.A.; Thatcher, W.W. Evaluation of Timed Insemination during Summer Heat Stress in Lactating Dairy Cattle. Theriogenology 1998, 49, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Brenu, E.W.; Staines, D.R.; Tajouri, L.; Huth, T.; Ashton, K.J.; Marshall-Gradisnik, S.M. Heat Shock Proteins and Regulatory T Cells. Autoimmune Dis. 2013, 2013, 813256. [Google Scholar] [CrossRef]
- Sanders, A.H.; Shearer, J.K.; De Vries, A. Seasonal Incidence of Lameness and Risk Factors Associated with Thin Soles, White Line Disease, Ulcers, and Sole Punctures in Dairy Cattle. J. Dairy Sci. 2009, 92, 3165–3174. [Google Scholar] [CrossRef] [PubMed]
- Pakrashi, A.; Ryan, C.; Guéret, C.; Berry, D.P.; Corcoran, M.; Keane, M.T.; Mac Namee, B. Early Detection of Subclinical Mastitis in Lactating Dairy Cows Using Cow-Level Features. J. Dairy Sci. 2023, 106, 4978–4990. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, P.; Núñez-Sánchez, N.; Molina-Gay, S.; Rodríguez-Estévez, V.; Cardoso-Toset, F. Near Infrared Spectroscopy Analysis as a Screening Tool to Classify Milk from Bovine Subclinical Mastitis and Promote Pathogen-Based Therapy. Appl. Food Res. 2025, 5, 100651. [Google Scholar] [CrossRef]
- Spellman, M.E.; Geary, C.M.; Somula, H.; Singh, A.; Wieland, M. The Association between Teat Shape and Clinical Mastitis. J. Dairy Sci. 2025, 108, 773–780. [Google Scholar] [CrossRef]
- Sargeant, J.M.; Schukken, Y.H.; Leslie, K.E. Ontario Bulk Milk Somatic Cell Count Reduction Program: Progress and Outlook. J. Dairy Sci. 1998, 81, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
- Buffington, D.E.; Collazo-Arocho, A.; Canton, G.H.; Pitt, D.; Thatcher, W.W.; Collier, R.J. Black Globe-Humidity Index (BGHI) as Comfort Equation for Dairy Cows. Trans. ASAE 1981, 24, 0711–0714. [Google Scholar] [CrossRef]
- Becker, C.A.; Aghalari, A.; Marufuzzaman, M.; Stone, A.E. Predicting Dairy Cattle Heat Stress Using Machine Learning Techniques. J. Dairy Sci. 2021, 104, 501–524. [Google Scholar] [CrossRef]
- Gorczyca, M.T.; Gebremedhin, K.G. Ranking of Environmental Heat Stressors for Dairy Cows Using Machine Learning Algorithms. Comput. Electron. Agric. 2020, 168, 105124. [Google Scholar] [CrossRef]
- Bovo, M.; Agrusti, M.; Benni, S.; Torreggiani, D.; Tassinari, P. Random Forest Modelling of Milk Yield of Dairy Cows under Heat Stress Conditions. Animals 2021, 11, 1305. [Google Scholar] [CrossRef] [PubMed]
- Stygar, A.H.; Frondelius, L.; Berteselli, G.V.; Gómez, Y.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. Measuring Dairy Cow Welfare with Real-Time Sensor-Based Data and Farm Records: A Concept Study. Animal 2023, 17, 101023. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yan, G.; Li, F.; Lin, H.; Jiao, H.; Han, H.; Liu, W. Optimized Machine Learning Models for Predicting Core Body Temperature in Dairy Cows: Enhancing Accuracy and Interpretability for Practical Livestock Management. Animals 2024, 14, 2724. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Zhao, W.; Wang, C.; Shi, Z.; Li, H.; Yu, Z.; Jiao, H.; Lin, H. A Comparative Study of Machine Learning Models for Respiration Rate Prediction in Dairy Cows: Exploring Algorithms, Feature Engineering, and Model Interpretation. Biosyst. Eng. 2024, 239, 207–230. [Google Scholar] [CrossRef]
- Fuentes, S.; Gonzalez Viejo, C.; Cullen, B.; Tongson, E.; Chauhan, S.S.; Dunshea, F.R. Artificial Intelligence Applied to a Robotic Dairy Farm to Model Milk Productivity and Quality Based on Cow Data and Daily Environmental Parameters. Sensors 2020, 20, 2975. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Banhazi, T.; Ghahramani, A.; Bowtell, L.; Wang, C.; Li, B. Modelling of Heat Stress in a Robotic Dairy Farm. Part 2: Identifying the Specific Thresholds with Production Factors. Biosyst. Eng. 2020, 199, 43–57. [Google Scholar] [CrossRef]
- Géron, A. Mãos à Obra: Aprendizado de Máquinas Com Scikit-Learn & TensorFlow; Alta Books: Los Angeles, CA, USA, 2019. [Google Scholar]
- Obando Vega, F.A.; Montoya Ríos, A.P.; Osorio Saraz, J.A.; Andrade, R.R.; Damasceno, F.A.; Barbari, M. CFD Study of a Tunnel-Ventilated Compost-Bedded Pack Barn Integrating an Evaporative Pad Cooling System. Animals 2022, 12, 1776. [Google Scholar] [CrossRef]
- Titto, C.G.; Negrão, J.A.; Titto, E.A.L.; Canaes, T.d.S.; Titto, R.M.; Pereira, A.M.F. Effects of an Evaporative Cooling System on Plasma Cortisol, IGF-I, and Milk Production in Dairy Cows in a Tropical Environment. Int. J. Biometeorol. 2013, 57, 299–306. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, R.; Choi, C.Y.; Rong, L.; Zhang, G.; Wang, K.; Wang, X. Recent Research and Development of Individual Precision Cooling Systems for Dairy Cows—A Review. Comput. Electron. Agric. 2024, 225, 109248. [Google Scholar] [CrossRef]
- Liu, E.; Liu, L.; Zhang, Z.; Qu, M.; Xue, F. An Automated Sprinkler Cooling System Effectively Alleviates Heat Stress in Dairy Cows. Animals 2024, 14, 2586. [Google Scholar] [CrossRef]
- Bertens, C.A.; Stoffel, C.; Crombie, M.B.; Vahmani, P.; Penner, G.B. The Effects of Dietary Cation-Anion Difference and Dietary Buffer for Lactating Dairy Cattle under Mild Heat Stress with Night Cooling. J. Dairy Sci. 2024, 107, 10851–10868. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhang, W.; Choi, C.Y.; Rong, L.; Zhang, G.; Liu, K.; Wang, X. Numerical Evaluation on Spray Cooling to Mitigate Heat Stress in Cattle Using Computational Fluid Dynamics. Comput. Electron. Agric. 2025, 229, 109775. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, Y.; Bai, Y.; Wang, Y.; Ye, S.; Cao, H. Study on the Optimal Layout of Roof Vents and Rooftop Photovoltaic of the Industrial Workshop. Build. Environ. 2024, 260, 111624. [Google Scholar] [CrossRef]
- Van Overbeke, P.; De Vogeleer, G.; Mendes, L.B.; Brusselman, E.; Demeyer, P.; Pieters, J.G. Methodology for Airflow Rate Measurements in a Naturally Ventilated Mock-up Animal Building with Side and Ridge Vents. Build. Environ. 2016, 105, 153–163. [Google Scholar] [CrossRef]
- Andrade, R.R.; Tinôco, I.d.F.F.; Damasceno, F.A.; Ferraz, G.A.e.S.; Freitas, L.C.d.S.R.; Ferreira, C.d.F.S.; Barbari, M.; Baptista, F.d.J.F.; Coelho, D.J.d.R. Spatial Distribution of Bed Variables, Animal Welfare Indicators, and Milk Production in a Closed Compost-Bedded Pack Barn with a Negative Tunnel Ventilation System. J. Therm. Biol. 2022, 105, 103111. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.E.A.; Tinôco, I.d.F.F.; Damasceno, F.A.; Oliveira, V.C.d.; Ferraz, G.A.e.S.; Sousa, F.C.d.; Andrade, R.R.; Barbari, M. Mapping of the Thermal Microenvironment for Dairy Cows in an Open Compost-Bedded Pack Barn System with Positive-Pressure Ventilation. Animals 2022, 12, 2055. [Google Scholar] [CrossRef]
- Liao, C.-M.; Chiu, K.-H. Wind Tunnel Modeling the System Performance of Alternative Evaporative Cooling Pads in Taiwan Region. Build. Environ. 2002, 37, 177–187. [Google Scholar] [CrossRef]
- Tresoldi, G.; Schütz, K.E.; Tucker, C.B. Cooling Cows with Sprinklers: Effects of Soaker Flow Rate and Timing on Behavioral and Physiological Responses to Heat Load and Production. J. Dairy Sci. 2019, 102, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, S.; Larson, C.C.; De Vries, A.; Hansen, P.J. Effectiveness of Tunnel Ventilation as Dairy Cow Housing in Hot Climates: Rectal Temperatures during Heat Stress and Seasonal Variation in Milk Yield. Trop. Anim. Health Prod. 2020, 52, 2687–2693. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Schütz, K.E.; Tucker, C.B. Cooling Cows Efficiently with Water Spray: Behavioral, Physiological, and Production Responses to Sprinklers at the Feed Bunk. J. Dairy Sci. 2016, 99, 4607–4618. [Google Scholar] [CrossRef] [PubMed]
Reference | Description | Parameters | Models and Metrics * |
---|---|---|---|
Inadagbo et al. (2024) [11] | Computer vision models can be employed to predict animal behavior relevant to thermoregulation, using 96 animals with video collection over 45 days. | Behavioral: Drinking water; Brush use. | YoloV8 Accuracies: 96% |
Convulational neural network Accuracies: 93% | |||
Li et al. (2024) [52] | Machine learning models can be used to predict core body temperature by analyzing data collected from 826 animals during 120 days, monitored on non-consecutive days, totaling 30 days of observation. | Air temperature; Relative humidity; Black globe temperature; Wind speed; Radiation intensity; THI; ITGU; Equivalent temperature; Latent and sensible heat exchange; Surface temperature; Rectal temperature. | Decision Tree/GWO–XGBoost R2 = 0.539, MAE = 0.232 °C, RMSE = 0.295 °C |
Yan et al. (2024) [53] | Prediction of respiration rate in dairy cows by analyzing data collected from 826 cows monitored over 120 days. | Air temperature; Relative humidity; Black globe temperature; Airflow velocity; Solar radiation; Milk production; Respiration rate. | Decision Tree/CATBOOST R2 = 0.676 e RMSE = 9.341 breath/minute |
Stygar et al. (2023) [51] | Dairy cow welfare classification based on sensors and farm records, using 318 cows from six farms over 135 days. | Accelerometers; Milk production; Lactation days; Lactation number; Welfare Quality® (WQ®) protocol. | Decision Tree/XGBoost Sensitivity: 0.44 specificity: 0.68 |
Brezov et al. (2023) [12] | Prediction of rectal temperature of dairy cows, with 295 animals, during 120 days. | Rectal temperature; Respiratory rate; Heart rate; Thermal imaging; THI. | Recurrent neural network R2 = 0.73 MAE = 0.1 °C |
Bovo et al. (2021) [50] | Evaluation of trends in daily milk production of a cow in relation to environmental conditions, using 91 dairy cows, over two years. | Air temperature; Relative humidity; THI; Milk production; Milk days. | Random Forest Total forecast error: 2% |
Becker et al. (2021) [48] | Classification of heat stress in dairy cows, using 27 cows, monitored for 60 days. | THI; Ruminal temperature; Hygiene score; Activity; Respiratory rate. | Logistic regression R2 = 0.53 |
Random Forest R2 = 0.97 | |||
Fuentes et al. (2020) [54] | Modeling of milk productivity and quality based on cow and environmental data, using 348 cows divided into two groups, for 2 years 10 months. | Air temperature; Relative humidity; THI; Lactation days; Lactation number; Milking frequency; Milk production; Milk protein; Milk fat; Somatic cells; Live weight. | Neural network MSE = 0.0189 and 0.0157 kg/animal, for each group of animals. |
Gorczyca et al. (2020) [49] | Classification of thermal stressors for dairy cows, using 19 dairy cows, monitored for 21 days. | Air temperature; Relative humidity; Solar radiation; Air velocity; Respiration rate; Skin temperature; Vaginal temperature. | Random Forest RMSE = 9.695 breath/minute RMSE = 0.434 °C skin temperature. |
Neural networks RMSE = 0.434 °C vaginal temperature. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.P.; Sousa, F.C.d.; Silva, A.L.d.; Schultz, É.B.; Valderrama Londoño, R.I.; Souza, P.A.R.d. Heat Stress in Dairy Cows: Impacts, Identification, and Mitigation Strategies—A Review. Animals 2025, 15, 249. https://doi.org/10.3390/ani15020249
Oliveira CP, Sousa FCd, Silva ALd, Schultz ÉB, Valderrama Londoño RI, Souza PARd. Heat Stress in Dairy Cows: Impacts, Identification, and Mitigation Strategies—A Review. Animals. 2025; 15(2):249. https://doi.org/10.3390/ani15020249
Chicago/Turabian StyleOliveira, Charles Paranhos, Fernanda Campos de Sousa, Alex Lopes da Silva, Érica Beatriz Schultz, Roger Iván Valderrama Londoño, and Pedro Antônio Reinoso de Souza. 2025. "Heat Stress in Dairy Cows: Impacts, Identification, and Mitigation Strategies—A Review" Animals 15, no. 2: 249. https://doi.org/10.3390/ani15020249
APA StyleOliveira, C. P., Sousa, F. C. d., Silva, A. L. d., Schultz, É. B., Valderrama Londoño, R. I., & Souza, P. A. R. d. (2025). Heat Stress in Dairy Cows: Impacts, Identification, and Mitigation Strategies—A Review. Animals, 15(2), 249. https://doi.org/10.3390/ani15020249