Current Evidence on Raw Meat Diets in Pets: A Natural Symbol, but a Nutritional Controversy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Definition of Raw Meat Diets
4. Latest Scientific Data on the Health Effects of RMBDs
4.1. Body Condition
Reference | Diets | Nutrient Content | Items | Major Findings | Level |
---|---|---|---|---|---|
[35] Sandri et al., 2016 | Raw beef with premix vs. dry diets | CP: 26.2 vs. 26.7% Fat: 18.2 vs. 10.6% CF: 9.5 vs. 2.2% | Body | Maintained body weight and condition score | I |
Faecal | Lower lactic acid level | ||||
Microbiome | Dominated by Fusobacterium and Clostridium | ||||
[36] Sandri et al., 2019 | Raw beef with grain /bean powders vs. dry diets | CP: 27/26 vs. 24% Fat: 19/19 vs. 15% CF: 0.7/0.8 vs. 2.2% | Body | Maintained body weight and body condition score | I |
Faecal | Higher isovalerate level | ||||
Metabolites | Increased cholesterol, myo-inositol, gluconic acid, isomaltose, 4-hydroxybutyric acid, 4-aminobutyric acid and threonic acid | ||||
[37] Schmidt et al., 2018 | Commercial BARF vs. dry/wet diets | Unavailable | Body | Maintained body weight and condition score | I |
Faecal | Increased faecal cholesterol concentration | ||||
Microbiome | Higher dysbiosis index, C. perfringens, Streptococcus, and E. coli | ||||
[39] Hiney et al., 2021 | RMBDs vs. dry | Unavailable | Body | Maintained body weight and body condition score | I |
[41] Algya et al., 2018 | Commercial RMBDs vs. dry/mildly cooked diets | CP: 25 vs. 24/31% Fat: 34 vs. 13/28% CF: 6.9 vs. 9.6/12% | Blood | Higher chloride, lower TG and ALP | I |
Faecal | Higher ammonia, lower pH | ||||
Microbiome | Lower Bifidobacterium, Turicibacter, and higher Fusobacterium | ||||
[46] Anderson et al., 2018 | Raw beef vs. dry diets | CP: 76 vs. 29.9% Fat: 17.9 vs. 27.1% CF: 0.6 vs. 2.4% | Blood | Decreased cytokine gene and receptor expression | I |
[47] Anturaniemi et al., 2020 | Commercial BARFs vs. dry diets | CP: 38 vs. 27.5% Fat: 50 vs. 17.4% CF: 1.5 vs. 1.4% | Blood | Anti-inflammatory/oxidative gene enhancement of IGHM, IGLL5, CD79B | I |
[48] Kim et al., 2017 | Various raw meat and vegetables vs. dry diets | Unavailable | Microbiome | More diverse and abundant microbial composition | I |
[49] Bermingham et al., 2017 | Raw beef with mineral premix vs. dry diets | CP: 76.3 vs. 29.0% Fat: 17.9 vs. 27.1% CF: 0.6 vs. 2.4% | Microbiome | Dominated by Peptostreptococcus, Fusobacterium, Blautia, Clostridium and Lactobacillus | I |
[50] Scarsella et al., 2020 | Commercial BARF vs. dry/homemade | Unavailable | Microbiome | Higher Clostridiaceae, Coriobacteriaceae and Fusobacteriaceae | I |
[51] Beloshapka et al., 2013 | Raw beef vs. chicken with fibres | CP: 25 vs. 32% Fat: 64 vs. 51% CF: 2.6 vs. 4.2% | Microbiome | Dominated by Fusobacterium and Clostridium | I |
[43] Cai et al., 2022 | Raw vs. pasteurised/high-temperature sterilised diets | CP: 31 vs. 30/30% Fat: 9 vs. 9/9% CF: 1 vs. 0.98/1.0% | Blood | Higher neutrophils and lower triglyceride | II |
Faecal | Lower acetic acid, propionic acid, butyric acid | ||||
Microbiome | High Ruminococcaceae low Shigella Prevotellaceae | ||||
[52] Castañeda et a., 2023 | Homemade BARF vs. dry diets | Unavailable | Microbiome | Higher Fusobacterium, Bacteroides, and C. perfringens. | II |
Reference | Diets | Nutrient Content | Items | Major Findings | Level |
---|---|---|---|---|---|
[17] Kerr et al., 2011 | RMBDs based on beef/bison/elk/horse | CP: 66/49/79/60% Fat: 19/38/5.4/26% CF: 7/6.7/9.2/7.1% | Metabolism | Similar N retention and maintained N metabolism | I |
[38] Butowski et al., 2019 | Commercial beef-based RMBDs vs. dry diets | CP: 74/66 vs. 42% Fat: 19/15 vs. 16% CF: 3.5/0.9 vs. 1.8% | Body | Maintained body weight and body condition | I |
Faecal | Lower propionate | ||||
Microbiome | Dominated by Fusobacterium, Prevotellaceae Clostridium, and Clostridiales | ||||
[53] Kerr et al., 2012 | Commercial beef-based RMBDs vs. dry or beef-based cooked diets | CP: 52.5 vs. 52/57% Fat: 20 vs. 18/17% CF: 4.2 vs. 4.9/4.2% | Blood | Higher levels of serum albumin and cholesterol | I |
[54] Hamper et al., 2017 | Commercial RMBDs vs. wet diets | CP: 37 vs. 36% Fat: 26 vs. 29% | Blood | Higher globulin levels | I |
[55] Kerr et al., 2014 | Raw whole chicks vs. dry diets | CP: 71.4 vs. 38.9% Fat: 20 vs. 14.4% | Microbiome | Higher Fusobacterium and Clostridium | I |
[56] Momoi et al., 2001 | Commercial fish-based RMBDs | Unavailable | Blood | Increased plasma lipid peroxide | IV |
4.2. Blood Characteristics
4.3. Gut Microbiome
4.4. Gut Metabolome
4.5. Host Metabolism
5. Owner Motivations for Feeding Raw Meat Diets
6. Benefits of Raw Meat Diets—Public Claims
Reference | Diets | Claimed Benefit/Aspect | Level |
---|---|---|---|
[36] Sandri et al., 2019 | RMBDs vs. dry diets in dogs | Better stool quality | I |
[38] Butowski et al., 2019 | Commercial RMBDs vs. dry diets in cats | Higher apparent digestibility of dry matter, gross energy, protein, fat | I |
[74] Moore et al., 2020 | Commercial RMBDs vs. dry diets in dogs | Beneficial for metabolic health | II |
[57] Puurunen et al., 2022 | Raw vs. other diet types in dogs | Beneficial for lipid metabolism, lower inflammatory status. | III |
[68] Hemida et al., 2021 | Non-processed meat-based vs. ultra- processed carbohydrate-based diets | Lower IBD risk in puppies | III |
[69] Hemida et al., 2021 | Raw meat/organs vs. dry in Finland dogs | Lower risk of the development of allergy/atopy skin signs | III |
[70] Hemida et al., 2020 | Non-processed meat-based vs. ultra- processed carbohydrate-based diets | Lower risk of the development of atopic dermatitis | III |
[71] Vuori et al., 2023 | Non-processed meat-based vs. ultra- processed carbohydrate-based diets | Lower risk of the development of chronic enteropathy | III |
[72] Nijsse et al., 2016 | Frozen raw meat vs. commercial dry diet in dogs in Netherlands | Lower risk of T. canis infections | III |
[4] Morelli et al., 2019 | Multiple RMBDs (no control) | Cleaner teeth | IV |
[67] Glasgowet al., 2018 | Whole-rabbit in kittens (no control) | Better stool quality Better coat quality | IV |
[73] Dijcker et al., 2012 | Multiple RMBD vs. dry diets in dogs | Lower calcium oxalate urolith risk | IV |
7. Risks of Raw Meat Diets
7.1. Pathogenic Hazards
Reference | Risks | Diets | Level |
---|---|---|---|
[84] Joffe et al., 2002 | Salmonella in diets and dogs | A homemade BARF vs. dry diet | II |
[94] Baede et al., 2017 | Enterobacteriaceae in pet foods | Commercial RMBDs vs. various diets | II |
[95] Strohmeyer et al., 2006 | E. coli, Salmonella, Cryptosporidium in pet foods | Commercial RMBDs vs. dry/wet diets | II |
[101] Groat et al., 2022 | Salmonella and antimicrobial-resistant E. coli in UK dogs | Multiple RMBDs vs. various diets | II |
[27] Mehlenbacher et al., 2012 | Salmonella in raw pet food in St. Paul | Multiple commercial RMBDs | III |
[77] Finley et al., 2008 | Salmonella and antimicrobial resistance in Canadian canine food | Multiple commercial RMBDs | III |
[78] Hellgren et al., 2019 | Salmonella, Campylobacter, Clostridium, Enterobacteriaceae in dogs | Multiple RMBDs | III |
[79] Solís et al., 2022 | Salmonella, Listeria, and Campylobacter in canine diets and faeces | Commercial RMBDs vs. dry diets | III |
[80] Nemser et al., 2014 | Listeria and Salmonella in pet foods | Commercial RMBDs vs. various diets | III |
[81] Lenz et al., 2009 | Campylobacter and Salmonella in pet dogs | Multiple commercial RMBDs | III |
[82] Cammack et al., 2021 | Salmonella, Campylobacter, and E. coli in pet foods | Multiple commercial RMBDs | III |
[83] Azza et al., 2014 | E. coli, Salmonella, Staph aureus in pet foods | Multiple RMBDs | III |
[88] Finley et al., 2007 | Salmonella shedding in research dogs | Commercial RMBDs | III |
[89] Leonard et al., 2011 | Salmonella in pet dogs in Canada | Multiple RMBDs vs. various diets | III |
[90] Lefebvre et al., 2011 | Salmonella and E. coli in therapy dogs in Canada | Multiple RMBDs vs. various diets | III |
[91] Morley et al., 2006 | Salmonella infections at Greyhound breeding facility in US. | Multiple RMBDs | III |
[92] Pitout et al., 2003 | Antimicrobial-resistant Salmonella in Canadian pet treats | Pet treats containing dead raw beef | III |
[96] Gibson et al., 2022 | E. coli in pet foods | Commercial RMBDs vs. dry/wet diets | III |
[97] Nilsson et al., 2015 | Antibacterial-resistant E. coli in Swedish canine foods | Commercial RMBDs included poultry | III |
[98] Treier et al., 2021 | Shiga toxin-producing E. coli in raw pet foods | Multiple commercial RMBDs | III |
[102] Naziri et al., 2016 | E. coli in dogs and humans in Iran | Multiple RMBDs vs. various diets | III |
[103] Wedley et al., 2017 | Antimicrobial-resistant E. coli in UK dogs | Multiple RMBDs vs. various diets | III |
[106] Parsons et al., 2011 | Campylobacter infection in kennelled dogs in UK | Multiple RMBDs | III |
[107] O’Halloran et al., 2019 | Tuberculosis due to M. bovis in six pet cats in UK | Multiple RMBDs | III |
[108] Phipps et al., 2018 | M. bovis outbreak in foxhound, working dogs, and humans in UK | Unspecified | III |
[109] Roberts et al., 2014 | M. bovis infection in cats in UK | Unspecified | III |
[110] Lee et al., 2018 | Avian Influenza A(H5N6) infection in cats in South Korea | Unspecified | III |
[111] Marschall et al., 2008 | Avian Influenza H5N1 infection in cats in Germany and Austria | Unspecified | III |
[114] Weese et al., 2005 | C. perfringens and C. difficile in Canadian pet foods | Multiple RMBDs | III |
[123] Dubey et al., 2005 | T. gondii in meat and cats in US | Beef, chicken, and pork in stores | III |
[124] Jokelainen et al., 2012 | T. gondii in Finish cats | RMBDs vs. various diets | III |
[125] Bojanić et al., 2017 | Campylobacter in dogs and homemade RMBDs in New Zealand | Multiple homemade RMBDs | III |
[115] Viegas et al., 2020 | Salmonella, C. perfringens and C. difficile in dogs in Brazil | RMBDs vs. various diets | III |
[130] Reimschuessel et al., 2017 | Salmonella in US dogs and cats | RMBDs vs. various diets | III |
[134] Mounsey et al., 2022 | Antibacterial-resistant E. coli in UK dogs | RMBDs vs. various diets | III |
[135] Leonard et al., 2015 | Antimicrobial-resistant Salmonella and E coli in dogs | RMBDs vs. various diets | III |
[137] Nuesch et al., 2019 | E. coli, Salmonella and antibiotic resistance in Switzerland pet foods | Multiple RMBDs | III |
[19] Vecchiato et al., 2022 | Enterobacteriaceae, Salmonella spp. in Germen dogs and cats | Multiple RMBDs (no control) | IV |
[76] Wright et al., 2005 | S. Typhimurium in 4 animal facilities in USA | Unspecified | IV |
[85] Brisdon et al., 2006 | Salmonella outbreak in humans associated with pet treats in US | Pet treats containing raw meat | IV |
[86] Behravesh et al., 2010 | Human Salmonella infections linked to dog and cat foods | Commercial RMBDs vs. dry diets | IV |
[87] Canada, 2020 | Salmonella and Enterobacteriaceae in dog treats in Canada | Dog treats containing raw meat | IV |
[93] Cavallo et al., 2015 | Human S. Typhimurium outbreak in pet treats in US | Pet treats containing raw chicken | IV |
[99] Kaindama et al., 2021 | Shiga toxin-producing E. coli in homemade raw dog foods | RMBDs include tripe (no control) | IV |
[100] Jones et al., 2019 | Salmonella, E. coli, and Listeria in pet diets and faeces | Commercial RMBDs (no control) | IV |
[104] Suzuki et al., 2009 | Campylobacter in pet food with poultry meat and by-products | Commercial RMBDs (no control) | IV |
[105] Campagnolo et al., 2017 | Campylobacter jejuni infection in a puppy in US | Commercial RMBDs (no control) | IV |
[112] Songserm et al., 2006 | Avian Influenza A(H5N1) infection in a pet cat in Thailand | Raw pigeon | IV |
[113] Yu et al., 2015 | Avian Influenza H5N6 infection in a domestic cat in China | Wild birds | IV |
[115] Bouttier et al., 2010 | C. difficile in commercial feline raw diets in France | Ground meat-based RMBDs | IV |
[117] Rodriguez et al., 2007 | C. difficile infection in dogs in Canada | Ground meat-based RMBDs | IV |
[118] Frost et al., 2017 | Brucella suis infection in dogs in UK | Unspecified | IV |
[119] Mor et al., 2016 | Brucella suis infection in dogs in Australia | Raw feral pig meat (no control) | IV |
[120] Brennan et al., 2020 | T. gondii in cats in Australia | Raw chicken/kangaroo/beef (no control) | IV |
[122] Dubey et al., 2003 | T. gondii, Sarcocystis spp., H.heydorni-like parasite in 3 puppies | Raw tissue of sheep (no control) | IV |
[126] van Bree et al., 2018 | E. coli, L. monocytogenes, S. cruzi, S. tenella, T. gondii in Dutch pets | Commercial RMBDs (no control) | IV |
[127] Clark et al., 2001 | Salmonella in dogs in Canada | Raw pig ears (no control) | IV |
[128] Binagia et al., 2020 | Salmonella mesenteric lymphadenitis in two dogs | Commercial RMBDs (no control) | IV |
[129] Fauth et al., 2015 | Salmonella bacteriuria in a cat | Commercial RMBD (no control) | IV |
[133] Bacci et al., 2019 | E. coli, Salmonella and antibiotic resistance in pet foods | Fresh poultry, pork, beef (no control) | IV |
7.2. Nutritional Imbalance Risks
Reference | Risks | Diets | Level |
---|---|---|---|
Nutritional Imbalance | |||
[19] Vecchiato et al., 2022 | Higher fat, Ca and/or P content than the legal limits | Multiple commercial RMBDs in Germany | III |
[149] Hajek et al., 2022 | Lower plasma taurine in pet dogs | Multiple RMBDs vs. dry diets | III |
[147] Dodd et al., 2021 | Abnormal bone mineralization in a puppy | Homemade RMBD with cow and goat dairy products (no control). | IV |
[26] Dillitzer et al., 2011 | Vitamin and mineral deficiencies in adult dogs | Commercial BARFs (no control) | IV |
[28] Taylor et al., 2009 | Diffuse osteopenia and myelopathy in a puppy | Premix and raw ground beef (no control) | IV |
[145] Lenox et al., 2015 | Metabolic bone disease in a kitten | Raw chicken diet (no control) | IV |
[146] Polizopoulou et al., 2005 | Hypervitaminosis A in a cat | Homemade raw pork liver (no control) | IV |
[148] Delay et al., 2002 | Nutritional osteodystrophy in puppies | A commercial BARF (no control) | IV |
[150] Zeugswetter et al., 2013 | Hyperthyroidism in two dogs | Commercial RMBDs with thyroids (no control) | IV |
[152] Sontas et al., 2014 | Hyperthyroidism in a miniature pinscher bitch | Homemade BARF included cattle bones and meat of the head and neck region (no control) | IV |
Oesophageal Foreign Body | |||
[153] Rousseau et al., 2007 | Bones lodged in oesophagus in 48 dogs with esophagitis | Unspecified BARF | IV |
[154] Gianella et al., 2009 | In 102 dogs with foreign bodies, 50 are bones | Unspecified BARF | IV |
[155] Frowde et al., 2011 | Five cats had oesophageal foreign bodies, 2 are bones | Unspecified BARF | IV |
[156] Thompson et al., 2011 | 29.7% of oesophageal foreign bodies were bones in dogs | Unspecified BARF | IV |
7.3. Sustainability
8. General Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waters, A. Raw diets: Are we at a turning point? Vet. Rec. 2017, 181, 384. [Google Scholar] [CrossRef]
- Davies, R.H.; Lawes, J.R.; Wales, A.D. Raw diets for dogs and cats: A review, with particular reference to microbiological hazards. J. Small Anim. Pract. 2019, 60, 329–339. [Google Scholar] [CrossRef]
- American Pet Products Association (APPA). The 2017–2018 APPA National Pet Owners Survey Debut. 2018. Available online: http://americanpetproducts.org/Uploads/MemServices/GPE2017_NPOS_Semin-ar.pdf (accessed on 4 December 2018).
- Morelli, G.; Bastianello, S.; Catellani, P.; Ricci, R. Raw meat-based diets for dogs: Survey of owners’ motivations, attitudes and practices. BMC Vet. Res. 2019, 15, 74. [Google Scholar] [CrossRef]
- Wall, T. Raw pet food sales growing despite health warnings. Petfood Ind. 2018, 60, 24–27. [Google Scholar]
- Stogdale, L. One veterinarian’s experience with owners who are feeding raw meat to their pets. Can. Vet. J. 2019, 60, 655. [Google Scholar] [PubMed]
- Dodd, S.; Cave, N.; Shoveller, A.; Adolphe, J.; Verbrugghe, A. An observational study of pet feeding practices and how these have changed between 2008 and 2018. Vet. Rec. 2020, 186, 643. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.; Williams, N.; Schmidt, V.; Cookson, D.; Symington, C.; Pinchbeck, G. A dog’s dinner: Factors affecting food choice and feeding practices for UK dog owners feeding raw meat-based or conventional cooked diets. Prev. Vet. Med. 2022, 208, 105471. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.; Willis, S.; Shepherd, M.L. Survey of owner motivations and veterinary input of owners feeding diets containing raw animal products. PeerJ 2017, 5, e3031. [Google Scholar] [CrossRef] [PubMed]
- Bulochova, V.; Evans, E.W. Exploring Food Safety Perceptions and Self-Reported Practices of Pet Owners Providing Raw Meat–Based Diets to Pets. J. Food Prot. 2021, 84, 912–919. [Google Scholar] [CrossRef] [PubMed]
- American Animal Hospital Association. Raw Protein Diet. 2011. Available online: https://www.aaha.org/resources/2021-aaha-nutrition-and-weight-management-guidelines/raw-protein-diet/ (accessed on 22 June 2021).
- American Veterinary Medical Association. Raw or Undercooked Animal-Source Protein in Cat and Dog Diets. 2012. Available online: https://www.avma.org/resources-tools/avma-policies/raw-or-undercooked-animal-source-protein-cat-and-dog-diets (accessed on 6 October 2016).
- Food and Drug Administration. Get the Facts! Raw Pet Food Diets Can Be Dangerous to You and Your Pet. 2018. Available online: https://www.fda.gov/animalveterinary/resourcesforyou/animalhealthliteracy/ucm373757.htm (accessed on 22 February 2018).
- Michel, K.E. Unconventional diets for dogs and cats. Vet. Clin. Small Anim. Pract. 2006, 36, 1269–1281. [Google Scholar] [CrossRef]
- Vester, B.M.; Beloshapka, A.N.; Middelbos, I.S.; Burke, S.L.; Dikeman, C.L.; Simmons, L.G.; Swanson, K.S. Evaluation of nutrient digestibility and fecal characteristics of exotic felids fed horse-or beef-based diets: Use of the domestic cat as a model for exotic felids. Zoo Biol. 2010, 29, 432–448. [Google Scholar] [CrossRef]
- Vester, B.M.; BBurke, S.L.; Liu, K.J.; Dikeman, C.L.; Simmons, L.G.; Swanson, K.S. Influence of feeding raw or extruded feline diets on nutrient digestibility and nitrogen metabolism of African wildcats (Felis lybica). Zoo Biol. 2010, 29, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Kerr, K.R.; Beloshapka, A.N.; Morris, C.L.; Swanson, K.S. Nitrogen metabolism of four raw meat diets in domestic cats. Br. J. Nutr. 2011, 106, S174–S177. [Google Scholar] [CrossRef]
- Michel, K.E.; Willoughby, K.N.; Abood, S.K.; Fascetti, A.J.; Fleeman, L.M.; Freeman, L.M.; Laflamme, D.P.; Bauer, C.; Kemp, B.; Van Doren, J. Attitudes of pet owners toward pet foods and feeding management of cats and dogs. J. Am. Vet. Med. Assoc. 2008, 233, 1699–1703. [Google Scholar] [CrossRef] [PubMed]
- Vecchiato, C.G.; Schwaiger, K.; Biagi, G.; Dobenecker, B. From Nutritional Adequacy to Hygiene Quality: A Detailed Assessment of Commercial Raw Pet-Food for Dogs and Cats. Animals 2022, 12, 2395. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.M. Raw feeding in dogs and cats. Companion Anim. 2019, 24, 578–584. [Google Scholar] [CrossRef]
- Schlesinger, D.P.; Joffe, D.J. Raw food diets in companion animals: A critical review. Can. Vet. J. 2011, 52, 50. [Google Scholar]
- Freeman, L.M.; Chandler, M.L.; Hamper, B.A.; Weeth, L.P. Current knowledge about the risks and benefits of raw meat–based diets for dogs and cats. J. Am. Vet. Med. Assoc. 2013, 243, 1549–1558. [Google Scholar] [CrossRef]
- Butowski, C.F.; Moon, C.D.; Thomas, D.G.; Young, W.; Bermingham, E.N. The effects of raw-meat diets on the gastrointestinal microbiota of the cat and dog: A review. N. Z. Vet. J. 2022, 70, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wernimont, S.M.; Radosevich, J.; Jackson, M.I.; Ephraim, E.; Badri, D.V.; MacLeay, J.M.; Jewell, D.E.; Suchodolski, J. The effects of nutrition on the gastrointestinal microbiome of cats and dogs: Impact on health and disease. Front. Microbiol. 2020, 11, 1266. [Google Scholar] [CrossRef]
- Daly, J.; Willis, K.; Small, R.; Green, J.; Welch, N.; Kealy, M.; Hughes, E. A hierarchy of evidence for assessing qualitative health research. J. Clin. Epidemiol. 2007, 60, 43–49. [Google Scholar] [CrossRef]
- Dillitzer, N.; Becker, N.; Kienzle, E. Intake of minerals, trace elements and vitamins in bone and raw food rations in adult dogs. Br. J. Nutr. 2011, 106, S53–S56. [Google Scholar] [CrossRef] [PubMed]
- Mehlenbacher, S.; Churchill, J.; Olsen, K.E.; Bender, J.B. Availability, brands, labelling and Salmonella contamination of raw pet food in the Minneapolis/St. Paul area. Zoonoses Public Health 2012, 59, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.B.; Geiger, D.A.; Saker, K.E.; Larson, M.M. Diffuse osteopenia and myelopathy in a puppy fed a diet composed of an organic premix and raw ground beef. J. Am. Vet. Med. Assoc. 2009, 234, 1041–1048. [Google Scholar] [CrossRef]
- Billinghurst, I. Give Your Dog a Bone: The Practical Common-Sense Way to Feed Dogs for a Long, Healthy Life; Ian Billinghurst: Alexandria, New South Wales, Australia, 1993. [Google Scholar]
- Volhard, W.; Brown, K.L. The Holistic Guide for a Healthy Dog; Howell Book House: New York, NY, USA, 1995. [Google Scholar]
- Schultze, K.R. Natural Nutrition for Dogs and Cats: The Ultimate Diet; Hay House Inc.: Carlsbad, CA, USA, 1998. [Google Scholar]
- Weeth, L.P. Home-prepared diets for dogs and cats. Vetlearn 2012, 35, E1–E3. [Google Scholar]
- Stockman, J.; Fascetti, A.J.; Kass, P.H.; Larsen, J.A. Evaluation of recipes of home-prepared maintenance diets for dogs. J. Am. Vet. Med. Assoc. 2013, 242, 1500–1505. [Google Scholar] [CrossRef]
- Loftus, J.P.; Wakshlag, J.J. Canine and feline obesity: A review of pathophysiology, epidemiology, and clinical management. Vet. Med. Res. Rep. 2014, 6, 49–60. [Google Scholar]
- Sandri, M.; Dal Monego, S.; Conte, G.; Sgorlon, S.; Stefanon, B. Raw meat based diet influences faecal microbiome and end products of fermentation in healthy dogs. BMC Vet. Res. 2016, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sandri, M.; Sgorlon, S.; Conte, G.; Serra, A.; Dal Monego, S.; Stefanon, B. Substitution of a commercial diet with raw meat complemented with vegetable foods containing chickpeas or peas affects faecal microbiome in healthy dogs. Ital. J. Anim. Sci. 2019, 18, 1205–1214. [Google Scholar] [CrossRef]
- Schmidt, M.; Unterer, S.; Suchodolski, J.S.; Honneffer, J.B.; Guard, B.C.; Lidbury, J.A.; Steiner, J.M.; Fritz, J.; Kolle, P. The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. PLoS ONE 2018, 13, e0201279. [Google Scholar] [CrossRef]
- Butowski, C.F.; Thomas, D.G.; Young, W.; Cave, N.J.; McKenzie, C.M.; Rosendale, D.I.; Bermingham, E.N. Addition of plant dietary fibre to a raw red meat high protein, high fat diet, alters the faecal bacteriome and organic acid profiles of the domestic cat (Felis catus). PLoS ONE 2019, 14, e0216072. [Google Scholar] [CrossRef] [PubMed]
- Hiney, K.; Sypniewski, L.; Rudra, P.; Pezeshki, A.; McFarlane, D. Clinical health markers in dogs fed raw meat-based or commercial extruded dry diets. J. Anim. Sci. 2021, 99, 133. [Google Scholar] [CrossRef]
- Jackson, M.I. Macronutrient Proportions and Fat Type Impact Ketogenicity and Shape the Circulating Lipidome in Dogs. Metabolites 2022, 12, 591. [Google Scholar] [CrossRef] [PubMed]
- Algya, K.M.; Cross, T.W.; Leuck, K.N.; Kastner, M.E.; Baba, T.; Lye, L.; de Godoy, M.R.C.; Swanson, K.S. Apparent total-tract macronutrient digestibility, serum chemistry, urinalysis, and fecal characteristics, metabolites and microbiota of adult dogs fed extruded, mildly cooked, and raw diets. J. Anim. Sci. 2018, 96, 3670–3683. [Google Scholar] [CrossRef] [PubMed]
- Neshovska, H.; Shindarska, Z. Comparative study of the digestibility of dry and raw food in dogs. Int. J. Vet. Sci. Anim. Husb. 2021, 6, 1–3. [Google Scholar] [CrossRef]
- Cai, X.; Liao, R.; Chen, G.; Lu, Y.; Zhao, Y.; Chen, Y. The influence of food processing methods on serum parameters, apparent total-tract macronutrient digestibility, fecal microbiota and SCFA content in adult beagles. PLoS ONE 2022, 17, e0262284. [Google Scholar] [CrossRef]
- Forrest, R.; Awawdeh, L.; Esam, F.; Pearson, M.; Waran, N. The diets of companion cats in Aotearoa New Zealand: Identification of obesity risk factors. Animals 2021, 11, 2881. [Google Scholar] [CrossRef] [PubMed]
- Orsolya Julianna, T.; Kata, V.; Vanda Katalin, J.; Peter, P. Factors Affecting Canine Obesity Seem to Be Independent of the Economic Status of the Country-A Survey on Hungarian Companion Dogs. Animals 2020, 10, 1267. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.; Armstrong, K.M.; Young, W.; Maclean, P.; Thomas, D.G.; Bermingham, E.N. Effect of dry and raw meat diets on peripheral blood mononuclear cell gene expression profile in dogs. Vet. J. 2018, 234, 7–10. [Google Scholar] [CrossRef]
- Anturaniemi, J.; Zaldivar-Lopez, S.; Savelkoul, H.F.; Elo, K.; Hielm-Bjorkman, A. The effect of atopic dermatitis and diet on the skin transcriptome in Staffordshire Bull Terriers. Front. Vet. Sci. 2020, 7, 763. [Google Scholar] [CrossRef]
- Kim, J.; An, J.U.; Kim, W.; Lee, S.; Cho, S. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumina MiSeq platform. Gut Pathog. 2017, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, E.N.; Maclean, P.; Thomas, D.G.; Cave, N.J.; Young, W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ 2017, 5, e3019. [Google Scholar] [CrossRef] [PubMed]
- Scarsella, E.; Sandri, M.; Monego, S.D.; Licastro, D.; Stefanon, B. Blood microbiome: A new marker of gut microbial population in dogs? Vet. Sci. 2020, 7, 198. [Google Scholar] [CrossRef]
- Beloshapka, A.N.; Dowd, S.E.; Suchodolski, J.S.; Steiner, J.M.; Duclos, L.; Swanson, K.S. Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. FEMS Microbiol. Ecol. 2013, 84, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, S.; Ariza, G.; Rincón-Riveros, A.; Muñoz, M.; Ramírez, J.D. Diet-induced changes in fecal microbiota composition and diversity in dogs (Canis lupus familiaris): A comparative study of BARF-type and commercial diets. Comp. Immunol. Microbiol. Infect. Dis. 2023, 98, 102007. [Google Scholar] [CrossRef]
- Kerr, K.R.; Vester Boler, B.M.; Morris, C.L.; Liu, K.J.; Swanson, K.S. Apparent total tract energy and macronutrient digestibility and fecal fermentative end-product concentrations of domestic cats fed extruded, raw beef-based, and cooked beef-based diets. J. Anim. Sci. 2012, 90, 515–522. [Google Scholar] [CrossRef]
- Hamper, B.A.; Bartges, J.W.; Kirk, C.A. Evaluation of two raw diets vs a commercial cooked diet on feline growth. J. Feline Med. Surg. 2017, 19, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Kerr, K.R.; Dowd, S.E.; Swanson, K.S. Faecal microbiota of domestic cats fed raw whole chicks v. an extruded chicken-based diet. J. Nutr. Sci. 2014, 3, e22. [Google Scholar] [CrossRef] [PubMed]
- Momoi, Y.; Goto, Y.; Tanide, K.; Takahashi, N.; Watari, T.; Yamazoe, K.; Tsujimoto, H.; Kudo, T. Increase in plasma lipid peroxide in cats fed a fish diet. J. Vet. Med. Sci. 2001, 63, 1293–1296. [Google Scholar] [CrossRef]
- Puurunen, J.; Ottka, C.; Salonen, M.; Niskanen, J.E.; Lohi, H. Age, breed, sex and diet influence serum metabolite profiles of 2000 pet dogs. R. Soc. Open Sci. 2022, 9, 211642. [Google Scholar] [CrossRef]
- Lyu, Y.; Su, C.; Verbrugghe, A.; Van de Wiele, T.; Martos Martinez-Caja, A.; Hesta, M. Past, present, and future of gastrointestinal microbiota research in cats. Front. Microbiol. 2020, 11, 1661. [Google Scholar] [CrossRef] [PubMed]
- Vital, M.; Gao, J.; Rizzo, M.; Harrison, T.; Tiedje, J.M. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia. ISME J. 2015, 9, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; MacIntosh, S.E.; White, R.L. Utilization of d-amino acids by Fusobacterium nucleatum and Fusobacterium varium. Amino Acids 1999, 17, 185. [Google Scholar] [CrossRef]
- Andrés-Lasheras, S.; Martín-Burriel, I.; Mainar-Jaime, R.C.; Morales, M.; Kuijper, E.; Blanco, J.L.; Chirino-Trejo, M.; Bolea, R. Preliminary studies on isolates of Clostridium difficile from dogs and exotic pets. BMC Vet. Res. 2018, 14, 77. [Google Scholar] [CrossRef]
- Newman, J.M. Food Culture in China; Greenwood Publishing Group: Westport, CT, USA, 2004. [Google Scholar]
- Amir, H.M.; Razauden, Z.; Harisun, Y.; Muhamad, I.I.; Mona, Z. Halal cat food for the world market. Int. J. Adv. Sci. Eng. Inf. Technol. 2014, 4, 26–29. [Google Scholar]
- Bischoff, K.; Rumbeiha, W.K. Pet food recalls and pet food contaminants in small animals: An update. Vet. Clin. Small Anim. Pract. 2018, 48, 917–931. [Google Scholar] [CrossRef]
- McKinney, M. Pet owners seeking justice as class action lawsuits filed against Hill’s. UBM Life Sciences 2019, 50, dvm360. [Google Scholar]
- Johnson, W.; Johnson, S.C. Dr. Sinning respond: Letter to the editor. J. Am. Vet. Med. Assoc. 2001, 219, 434. [Google Scholar]
- Glasgow, A.G.; Cave, N.J.; Marks, S.L. Role of Diet in the Health of the Feline Intestinal Tract and in Inflammatory Bowel Disease; University of California, Davies: Pittsburgh, PA, USA, 2018. [Google Scholar]
- Hemida, M.; Vuori, K.A.; Moore, R.; Anturaniemi, J.; Hielm-Björkman, A. Early Life Modifiable Exposures and their Association with Owner Reported Inflammatory Bowel Disease Symptoms in Adult Dogs. Front. Vet. Sci. 2021, 8, 552350. [Google Scholar] [CrossRef] [PubMed]
- Hemida, M.; Salin, S.; Vuori, K.A.; Moore, R.; Anturaniemi, J.; Rosendahl, S.; Barrouin-Melo, S.M.; Hielm-Björkman, A. Puppyhood diet as a factor in the development of owner-reported allergy/atopy skin signs in adult dogs in Finland. J. Vet. Intern. Med. 2021, 35, 2374–2383. [Google Scholar] [CrossRef]
- Hemida, M.; Vuori, K.A.; Salin, S.; Moore, R.; Anturaniemi, J.; Hielm-Björkman, A. Identification of modifiable pre- and postnatal dietary and environmental exposures associated with owner-reported canine atopic dermatitis in Finland using a web-based questionnaire. PLoS ONE 2020, 15, e0225675. [Google Scholar] [CrossRef] [PubMed]
- Vuori, K.A.; Hemida, M.; Moore, R.; Salin, S.; Rosendahl, S.; Anturaniemi, J.; Hielm-Björkman, A. The effect of puppyhood and adolescent diet on the incidence of chronic enteropathy in dogs later in life. Sci. Rep. 2023, 13, 1830. [Google Scholar] [CrossRef] [PubMed]
- Nijsse, R.; Mughini-Gras, L.; Wagenaar, J.A.; Ploeger, H.W. Recurrent patent infections with Toxocara canis in household dogs older than six months: A prospective study. Parasit. Vectors 2016, 9, 531. [Google Scholar] [CrossRef] [PubMed]
- Dijcker, J.C.; Hagen-Plantinga, E.A.; Everts, H.; Bosch, G.; Kema, I.P.; Hendriks, W.H. Dietary and animal-related factors associated with the rate of urinary oxalate and calcium excretion in dogs and cats. Vet. Rec. 2012, 171, 46. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.; Anturaniemi, J.; Velagapudi, V.; Bosch, G.; Kema, I.P.; Hendriks, W.H. Targeted Metabolomics with Ultraperformance Liquid Chromatography–Mass Spectrometry (UPLC-MS) Highlights Metabolic Differences in Healthy and Atopic Staffordshire Bull Terriers Fed Two Different Diets, A Pilot Study. Front. Vet. Sci. 2020, 7, 554296. [Google Scholar] [CrossRef] [PubMed]
- World Small Animal Veterinary Association. WSAVA Global Nutrition Committee Statement on Risks of Raw Meat-Based Diets. 2017. Available online: https://wsava.org/wp-content/uploads/2020/05/WSAVA-Global-Nutrition-Committee-Statement-on-Risks-of-Raw-Meat.pdf (accessed on 10 April 2019).
- Wright, J.G.; Tengelsen, L.A.; Smith, K.E.; Bender, J.B.; Frank, R.K.; Grendon, J.H.; Rice, D.H.; Thiessen, A.M.; Gilbertson, C.J.; Sivapalasingam, S.; et al. Multidrug-resistant Salmonella Typhimurium in four animal facilities. Emerg. Infect. Dis. 2005, 11, 1235. [Google Scholar] [CrossRef]
- Finley, R.; Reid-Smith, R.; Ribble, C.; Popa, M.; Vandermeer, M.; Aramini, J. The occurrence and anti-microbial susceptibility of Salmonellae isolated from commercially available pig ear pet treats. Zoonoses Public Health 2008, 55, 455–461. [Google Scholar] [CrossRef]
- Hellgren, J.; Hästö, L.S.; Wikström, C.; Fernström, L.L.; Hansson, I. Occurrence of Salmonella, Campylobacter, Clostridium and Enterobacteriaceae in raw meat-based diets for dogs. Vet. Rec. 2019, 184, 442. [Google Scholar] [CrossRef] [PubMed]
- Solís, C.; Toro, M.; Navarrete, P.; Faúndez, P.; Reyes-Jara, A. Microbiological Quality and Presence of Foodborne Pathogens in Raw and Extruded Canine Diets and Canine Fecal Samples. Front. Vet. Sci. 2022, 9, 799710. [Google Scholar] [CrossRef]
- Nemser, S.M.; Doran, T.; Grabenstein, M.; McConnell, T.; McGrath, T.; Pamboukian, R.; Smith, A.C.; Achen, M.; Danzeisen, G.; Kim, S. Investigation of Listeria, Salmonella, and toxigenic Escherichia coli in various pet foods. Foodborne Pathog. Dis. 2014, 11, 706–709. [Google Scholar] [CrossRef]
- Lenz, J.; Joffe, D.; Kauffman, M.; Zhang, Y.; LeJeune, J. Perceptions, practices, and consequences associated with foodborne pathogens and the feeding of raw meat to dogs. Can. Vet. J. 2009, 50, 637–643. [Google Scholar]
- Finley, R.; Reid-Smith, R.; Weese, J.S.; Angulo, F.J. Human Health Implications of Salmonella-Contaminated Natural Pet Treats and Raw Pet Food. Clin. Infect. Dis. 2006, 42, 686–691. [Google Scholar]
- Azza, H.E.B.; Sahar, M.A.E.; Hala, S.M.; Abo-Taleb, S.M.S. Evaluation of bacterial hazards in various pet foods. Glob. J. Agric. Food Safety Sci. 2014, 1, 432–439. [Google Scholar]
- Joffe, D.J.; Schlesinger, D.P. Preliminary assessment of the risk of Salmonella infection in dogs fed raw chicken diets. Can. Vet. J. 2002, 43, 441–442. [Google Scholar] [PubMed]
- Brisdon, S.; Galanis, E.; Colindres, R.; Crowe, L.; McIntyre, L.; Baer, R.; MacDougall, L.; Wilcott, L.; Farmer, D.E. An international outbreak of human salmonellosis associated with animal-derived pet treats-Canada and Washington State. Can. Commun. Dis. Rep. 2006, 32, 150–155. [Google Scholar]
- Behravesh, C.B.; Ferraro, A.; Deasy, M.; Dato, V.; Moll, M.; Sandt, C.; Rea, N.K.; Rickert, R.; Marriott, C.; Warren, K.; et al. Human Salmonella infections linked to contaminated dry dog and cat food, 2006–2008. Pediatrics 2010, 3, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Canada, H. Human health risk from exposure to natural dog treats. Can. Commun. Dis. Rep. 2000, 26, 41–42. [Google Scholar]
- Finley, R.; Ribble, C.; Aramini, J.; Vandermeer, M.; Popa, M.; Litman, M.; Reid-Smith, R. The risk of salmonellae shedding by dogs fed Salmonella-contaminated commercial raw food diets. Can. Vet. J. 2007, 48, 69–75. [Google Scholar] [PubMed]
- Leonard, E.K.; Pearl, D.L.; Finley, R.L.; Janecko, N.; Peregrine, A.S.; Reid-Smith, R.J.; Weese, J.S. Evaluation of pet-related management factors and the risk of Salmonella spp. carriage in pet dogs from volunteer households in Ontario (2005–2006). Zoonoses Public Health 2011, 58, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, S.L.; Reid-Smith, R.; Boerlin, P.; Weese, J.S. Evaluation of the risks of shedding Salmonellae and other potential pathogens by therapy dogs fed raw diets in Ontario and Alberta. Zoonoses Public Health 2008, 55, 470–480. [Google Scholar] [CrossRef]
- Morley, P.S.; Strohmeyer, R.A.; Tankson, J.D.; Hyatt, D.R.; Dargatz, D.A.; Fedorka-Cray, P.J. Evaluation of the association between feeding raw meat and Salmonella enterica infections at a Greyhound breeding facility. J. Am. Vet. Med. Assoc. 2006, 228, 1524–1532. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.; Reisbig, M.D.; Mulvey, M.; Chui, L.; Louie, M.; Crowe, L.; Church, D.L.; Elsayed, S.; Gregson, D.; Ahmed, R.; et al. Association between handling of pet treats and infection with Salmonella enterica serotype Newport expressing the AmpC β-lactamase, CMY-2. J. Clin. Microbiol. 2003, 41, 4578–4582. [Google Scholar] [CrossRef]
- Cavallo, S.J.; Daly, E.R.; Seiferth, J.; Nadeau, A.M.; Mahoney, J.; Finnigan, J.; Wikoff, P.; Kiebler, C.A.; Simmons, L. Human outbreak of Salmonella Typhimurium associated with exposure to locally made chicken jerky pet treats, New Hampshire, 2013. Foodborne Pathog. Dis. 2015, 12, 441–446. [Google Scholar] [CrossRef]
- Baede, V.O.; Broens, E.M.; Spaninks, M.P.; Timmerman, A.J.; Graveland, H.; Wagenaar, J.A.; Duim, B.; Hordijk, J. Raw pet food as a risk factor for shedding of extended-spectrum beta-lactamase-producing Enterobacteriaceae household cats. PLoS ONE 2017, 12, e0187239. [Google Scholar] [CrossRef] [PubMed]
- Strohmeyer, R.A.; Morley, P.S.; Hyatt, D.R.; Dargatz, D.A.; Scorza, A.V.; Lappin, M.R. Evaluation of bacterial and protozoal contamination of commercially available raw meat diets for dogs. J. Am. Vet. Med. Assoc. 2006, 228, 537–542. [Google Scholar] [CrossRef]
- Gibson, J.F.; Parker, V.J.; Howard, J.P.; Snell, C.M.; Cross, E.W.; Pagliughi, L.B.; Diaz-Campos, D.; Winston, J.A.; Rudinsky, A.J. Escherichia coli pathotype contamination in raw canine diets. Am. J. Vet. Res. 2022, 12, 83. [Google Scholar] [CrossRef]
- Nilsson, O. Hygiene quality and presence of ESBL-producing Escherichia coli in raw food diets for dogs. Infect. Ecol. Epidemiol. 2015, 5, 28758. [Google Scholar] [CrossRef] [PubMed]
- Treier, A.; Stephan, R.; Stevens, M.J.A.; Cernela, N.; Nüesch-Inderbinen, M. High Occurrence of Shiga Toxin-Producing Escherichia coli in Raw Meat-Based Diets for Companion Animals-A Public Health Issue. Microorganisms 2021, 9, 1556. [Google Scholar] [CrossRef]
- Kaindama, L.; Jenkins, C.; Aird, H.; Stoker, K.; Byrne, L. A cluster of Shiga Toxin-producing Escherichia coli O157:H7 highlights raw pet food as an emerging potential source of infection in humans. Epidemiol. Infect. 2021, 149, e124. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Wang, L.; Ceric, O.; Nemser, S.M.; Rotstein, D.S.; Jurkovic, D.A.; Rosa, Y.; Byrum, B.; Cui, J.; Zhang, Y.; et al. Whole genome sequencing confirms source of pathogens associated with bacterial foodborne illness in pets fed raw pet food. J. Vet. Diagn. Investig. 2019, 31, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Groat, E.F.; Williams, N.J.; Pinchbeck, G.; Warner, B.; Simpson, A.; Schmidt, V.M. UK dogs eating raw meat diets have higher risk of Salmonella and antimicrobial-resistant Escherichia coli faecal carriage. J. Small Anim. Pract. 2022, 63, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Naziri, Z.; Derakhshandeh, A.; Firouzi, R.; Motamedifar, M.; Shojaee Tabrizi, A. DNA fingerprinting approaches to trace Escherichia coli sharing between dogs and owners. J. Appl. Microbiol. 2016, 120, 460–468. [Google Scholar] [CrossRef]
- Wedley, A.L.; Dawson, S.; Maddox, T.W.; Coyne, K.P.; Pinchbeck, G.L.; Clegg, P.; Nuttall, T.; Kirchner, M.; Williams, N.J. Carriage of antimicrobial resistant Escherichia coli in dogs: Prevalence, associated risk factors and molecular characteristics. Vet. Microbiol. 2017, 199, 23–30. [Google Scholar] [CrossRef]
- Suzuki, H.; Yamamoto, S. Campylobacter contamination in retail poultry meats and by-products in the world: A literature survey. J. Vet. Med. Sci. 2009, 71, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Campagnolo, E.R.; Philipp, L.M.; Long, J.M.; Hanshaw, N.L. Pet-associated Campylobacteriosis: A persisting public health concern. Zoonoses Public Health 2018, 65, 304–311. [Google Scholar] [CrossRef]
- Parsons, B.N.; Williams, N.J.; Pinchbeck, G.L.; Christley, R.M.; Hart, C.A.; Gaskell, R.M.; Dawson, S. Prevalence and shedding patterns of Campylobacter spp. in longitudinal studies of kennelled dogs. Vet. J. 2011, 190, 249–254. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran, C.; Ioannidi, O.; Reed, N.; Murtagh, K.; Dettemering, E.; Van Poucke, S.; Gale, J.; Vickers, J.; Burr, P.; Gascoyne-Binzi, D.; et al. Tuberculosis due to Mycobacterium bovis in pet cats associated with feeding a commercial raw food diet. J. Feline Med. Surg. 2019, 21, 667–681. [Google Scholar] [CrossRef]
- Phipps, E.; McPhedran, K.; Edwards, D.; Russell, K.; O’Connor, C.M.; Gunn-Moore, D.A.; O’Halloran, C.; Roberts, T.; Morris, J. Bovine tuberculosis in working foxhounds: Lessons learned from a complex public health investigation. Epidemiol. Infect. 2019, 147, e24. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.; O’connor, C.; Nuñez-Garcia, J.; De La Rua-Domenech, R.; Smith, N.H. Unusual cluster of Mycobacterium bovis infection in cats. Vet. Rec. 2014, 174, 326. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, E.K.; Lee, H.; Heo, G.B.; Lee, Y.N.; Jung, J.Y.; Bae, Y.C.; So, B.; Lee, Y.J.; Choi, E.J. Highly Pathogenic Avian Influenza A(H5N6) in Domestic Cats, South Korea. Emerg. Infect. Dis. 2018, 24, 2343–2347. [Google Scholar] [CrossRef]
- Marschall, J.; Schulz, B.; Priv-Doz, T.C.H.; Priv-Doz, T.W.V.; Huebner, J.; Huisinga, E.; Hartmann, K. Prevalence of influenza A H5N1 virus in cats from areas with occurrence of highly pathogenic avian influenza in birds. J. Feline Med. Surg. 2008, 10, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Songserm, T.; Amonsin, A.; Jam-on, R.; Sae-Heng, N.; Meemak, N.; Pariyothorn, N.; Pariyothorn, S.; Theamboonlers, A.; Poovorawan, Y. Avian influenza H5N1 in naturally infected domestic cat. Emerg. Infect. Dis. 2006, 12, 681. [Google Scholar] [CrossRef]
- Yu, Z.; Gao, X.; Wang, T.; Li, Y.; Li, Y.; Xu, Y.; Chu, D.; Sun, H.; Wu, C.; Li, S.; et al. Fatal H5N6 avian influenza virus infection in a domestic cat and wild birds in China. Sci. Rep. 2015, 5, 10704. [Google Scholar] [CrossRef]
- Weese, J.S.; Rousseau, J.; Arroyo, L. Bacteriological evaluation of commercial canine and feline raw diets. Can. Vet. J. 2005, 46, 513. [Google Scholar] [PubMed]
- Viegas, F.M.; Ramos, C.P.; Xavier, R.G.C.; Lopes, E.O.; Júnior, C.A.O.; Bagno, R.M.; Diniz, A.N.; Lobato, F.C.F.; Silva, R.O.S. Fecal shedding of Salmonella spp., Clostridium perfringens, and Clostridioides difficile in dogs fed raw meat-based diets in Brazil and their owners’ motivation. PLoS ONE 2020, 15, e0231275. [Google Scholar] [CrossRef]
- Bouttier, S.; Barc, M.C.; Felix, B.; Lambert, S.; Collignon, A.; Barbut, F. Clostridium difficile in ground meat, France. Emerg. Infect. Dis. 2010, 16, 733. [Google Scholar] [CrossRef]
- Rodriguez-Palacios, A.; Staempfli, H.R.; Duffield, T.; Weese, J.S. Clostridium difficile in retail ground meat, Canada. Emerg. Infect. Dis. 2007, 13, 485. [Google Scholar] [CrossRef] [PubMed]
- Frost, A. Feeding of raw Brucella suis-infected meat to dogs in the UK. Vet. Rec. 2017, 181, 484. [Google Scholar] [CrossRef] [PubMed]
- Mor, S.M.; Wiethoelter, A.K.; Lee, A.; Moloney, B.; James, D.R.; Malik, R. Emergence of Brucella suis in dogs in New South Wales, Australia: Clinical findings and implications for zoonotic transmission. BMC Vet. Res. 2016, 12, 199. [Google Scholar] [CrossRef] [PubMed]
- Brennan, A.; Hawley, J.; Dhand, N.; Boland, L.; Beatty, J.A.; Lappin, M.R.; Barrs, V.R. Seroprevalence and risk factors for Toxoplasma gondii infection in owned domestic cats in Australia. Vector Borne Zoonotic Dis. 2020, 20, 275–280. [Google Scholar] [CrossRef]
- Canadian Communicable Disease Report. Outbreaks of multidrug-resistant Salmonella Typhimurium associated with veterinary facilities—Idaho, Minnesota, and Washington, 1999. Morb. Mortal Wkly Rep. 2001, 50, 701–704. [Google Scholar]
- Dubey, J.P.; Rass, A.D.; Fritz, D. Clinical Toxoplasma gondii, Hammondia heydornii, and Sarcocystis spp. infections in dogs. Parassitologia 2003, 45, 141–146. [Google Scholar]
- Dubey, J.P.; Hill, D.E.; Jones, J.L.; Hightower, A.W.; Kirkland, E.; Roberts, J.M.; Marcet, P.L.; Lehmann, T.; Vianna, M.C.B. Prevalence of viable toxoplasma gondii in beef, chicken, and pork from retail meat stores in the united states: Risk assessment to consumers. J. Parasitol. 2005, 91, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Jokelainen, P.; Simola, O.; Rantanen, E.; Näreaho, A.; Lohi, H.; Sukura, A. Feline toxoplasmosis in Finland: Cross-sectional epidemiological study and case series study. J. Vet. Diagn. Investig. 2012, 24, 1115–1124. [Google Scholar] [CrossRef]
- Bojanić, K.; Midwinter, A.C.; Marshall, J.C.; Rogers, L.E.; Biggs, P.J.; Acke, E. Isolation of Campylobacter spp. from client-owned dogs and cats, and retail raw meat pet food in the Manawatu, New Zealand. Zoonoses Public Health 2017, 64, 438–449. [Google Scholar] [CrossRef]
- van Bree, F.P.; Bokken, G.C.; Mineur, R.; Franssen, F.; Opsteegh, M.; van der Giessen, J.W.; Lipman, L.; Overgaauw, P. Zoonotic bacteria and parasites found in raw meat-based diets for cats and dogs. Vet. Rec. 2018, 182, 50. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.; Cunningham, J.; Ahmed, R.; Woodward, D.; Fonseca, K.; Isaacs, S.; Ellis, A.; Anand, C.; Ziebell, k.; Muckle, A. Characterization of Salmonella associated with pig ear dog treats in Canada. J. Clin. Microbiol. 2001, 39, 3962–3968. [Google Scholar] [CrossRef]
- Binagia, E.M.; Levy, N.A. Salmonella mesenteric lymphadenitis causing septic peritonitis in two dogs. Vet. Med. Res. Rep. 2020, 27, 25–30. [Google Scholar]
- Fauth, E.; Freeman, L.M.; Cornjeo, L.; Markovich, J.E.; Janecko, N.; Weese, J.S. Salmonella bacteriuria in a cat fed a Salmonella-contaminated diet. J. Am. Vet. Med. Assoc. 2015, 247, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Reimschuessel, R.; Grabenstein, M.; Guag, J.; Nemser, S.M.; Song, K.; Qiu, J.; Clothier, K.A.; Byrne, B.A.; Marks, S.L.; Cadmus, K.; et al. Multilaboratory survey to evaluate Salmonella prevalence in diarrheic and nondiarrheic dogs and cats in the United States between 2012 and 2014. J. Clin. Microbiol. 2017, 55, 1350–1368. [Google Scholar] [CrossRef]
- Elad, D. Immunocompromised patients and their pets: Still best friends? Vet. J. 2013, 197, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Day, M.J. Pet-related infections. Am. Fam. Physician 2016, 94, 794–802. [Google Scholar] [PubMed]
- Bacci, C.; Vismarra, A.; Dander, S.; Barilli, E.; Superchi, P. Occurrence and antimicrobial profile of bacterial pathogens in former foodstuff meat products used for pet diets. J. Food Prot. 2019, 82, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Mounsey, O.; Wareham, K.; Hammond, A.; Findlay, J.; Gould, V.C.; Morley, K.; Cogan, T.A.; Turner, K.M.E.; Avison, M.B.; Reyher, K.K. Evidence that faecal carriage of resistant Escherichia coli by 16-week-old dogs in the United Kingdom is associated with raw feeding. One Health 2022, 14, 100370. [Google Scholar] [CrossRef] [PubMed]
- Leonard, E.K.; Pearl, D.L.; Janecko, N.; Finley, R.L.; Reid-Smith, R.J.; Weese, J.S.; Peregrine, A.S. Risk factors for carriage of antimicrobial-resistant Salmonella spp and Escherichia coli in pet dogs from volunteer households in Ontario, Canada, in 2005 and 2006. Am. J. Vet. Res. 2015, 76, 959–968. [Google Scholar] [CrossRef]
- Finisterra, L.; Duarte, B.; Peixe, L.; Novais, C.; Freitas, A.R. Industrial dog food is a vehicle of multidrug-resistant enterococci carrying virulence genes often linked to human infections. Int. J. Food Microbiol. 2021, 358, 109284. [Google Scholar] [CrossRef]
- Nuesch-Inderbinen, M.; Treier, A.; Zurfluh, K.; Stephan, R. Raw meat-based diets for companion animals: A potential source of transmission of pathogenic and antimicrobial-resistant Enterobacteriaceae. R. Soc. Open Sci. 2019, 6, 191170. [Google Scholar] [CrossRef]
- Shigehisa, T.; Ohmori, T.; Saito, A.; Taji, S.; Hayashi, R. Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. Int. J. Food Microbiol. 1991, 12, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Maks-Warren, N.; Aguilar, V.; Piszczor, K.; Swicegood, B.; Ye, M.; Warren, J.; O’Neill, E.; Fleck, M.; Tejayadi, S. Inactivation of Salmonella, Shiga Toxin-producing E. coli, and Listeria monocytogenes in Raw Diet Pet Foods Using High-Pressure Processing. J. Food Prot. 2023, 86, 100124. [Google Scholar] [CrossRef] [PubMed]
- Serra-Castello, C.; Possas, A.; Jofre, A.; Garriga, M.; Bover-Cid, S. High pressure processing to control Salmonella in raw pet food without compromising the freshness appearance: The impact of acidulation and frozen storage. Food Microbiol. 2023, 109, 104139. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.; De Moura, F.H.; Van Den Broek, K.; De Mello, A.S. Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Sci. 2018, 139, 44–48. [Google Scholar] [CrossRef]
- Kiprotich, S.S.; Aldrich, C.G. A review of food additives to control the proliferation and transmission of pathogenic microorganisms with emphasis on applications to raw meat-based diets for companion animals. Front. Vet. Sci. 2022, 9, 1049731. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, M.; Matsuura, Y.; Okada, H.; Shimozaki, N.; Yamamura, T.; Murayama, Y.; Yokoyama, T.; Mohri, S. Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals. BMC Vet. Res. 2013, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Norrby, E. Prions and protein-folding diseases. J. Intern. Med. 2011, 270, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Lenox, C.; Becvarova, I.; Archipow, W. Metabolic bone disease and central retinal degeneration in a kitten due to nutritional inadequacy of an all-meat raw diet. J. Feline Med. Surg. Open Rep. 2015, 1, 2055116915579682. [Google Scholar] [CrossRef]
- Polizopoulou, Z.S.; Kazakos, G.; Patsikas, M.N.; Roubies, N. Hypervitaminosis A in the cat: A case report and review of the literature. J. Feline Med. Surg. 2005, 7, 363–368. [Google Scholar] [CrossRef]
- Dodd, S.; Barry, M.; Grant, C.; Verbrugghe, A. Abnormal bone mineralization in a puppy fed an imbalanced raw meat homemade diet diagnosed and monitored using dual-energy X-ray absorptiometry. J. Anim. Physiol. Anim. Nutr. 2021, 105, 29–36. [Google Scholar] [CrossRef]
- Delay, J.; Laing, J. Nutritional osteodystrophy in puppies fed a BARF diet. AHL Newsl. 2002, 6, 23. [Google Scholar]
- Hajek, V.; Zablotski, Y.; Kolle, P. Computer-aidedration calculation (Diet Check Munich) versus blood profile in raw fed privately owned dogs. J. Anim. Physiol. Anim. Nutr. 2022, 106, 345–354. [Google Scholar] [CrossRef]
- Zeugswetter, F.K.; Vogelsinger, K.; Handl, S. Hyperthyroidism in dogs caused by consumption of thyroid-containing head meat. Schweiz. Arch. Tierheilkd. 2013, 155, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Kohler, B.; Stengel, C.; Neiger, R. Dietary hyperthyroidism in dogs. J. Small Anim. Pract. 2012, 53, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Sontas, B.H.; Schwendenwein, I.; Schäfer-Somi, S. Primary anestrus due to dietary hyperthyroidism in a miniature pinscher bitch. Can. Vet. J. 2014, 55, 781. [Google Scholar]
- Rousseau, A.; Prittie, J.; Broussard, J.D.; Fox, P.R.; Hoskinson, J. Incidence and characterization of esophagitis following esophageal foreign body removal in dogs: 60 cases (1999–2003). J. Vet. Emerg. Crit. Care 2007, 17, 159–163. [Google Scholar] [CrossRef]
- Gianella, P.; Pfammatter, N.S.; Burgener, I.A. Oesophageal and gastric endoscopic foreign body removal: Complications and follow-up of 102 dogs. J. Small Anim. Pract. 2009, 50, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Frowde, P.E.; Battersby, I.A.; Whitley, N.T.; Elwood, C.M. Oesophageal disease in 33 cats. J. Feline Med. Surg. 2011, 13, 564–569. [Google Scholar] [CrossRef]
- Thompson, H.C.; Cortes, Y.; Gannon, K.; Bailey, D.; Freer, S. Esophageal foreign bodies in dogs: 34 cases (2004–2009). J. Vet. Emerg. Crit. Care 2012, 22, 253–261. [Google Scholar] [CrossRef]
- Swanson, K.S.; Carter, R.A.; Yount, T.P.; Aretz, J.; Buff, P.R. Nutritional sustainability of pet foods. Ads. Nutr. 2013, 4, 141–150. [Google Scholar] [CrossRef] [PubMed]
- The European Pet Food Industry (FEDIAF). Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; The European Pet Food Industry (FEDIAF): Brussels, Belgium, 2024. [Google Scholar]
- Association of American Feed Control Officials (AAFCO). AAFCO Methods for Substantiating Nutritional Adequacy of Dog and Cat Foods; AAFCO: Champaign, IL, USA, 2014. [Google Scholar]
- Hill, R.C.; Choate, C.J.; Scott, K.C.; Molenberghs, G. Comparison of the guaranteed analysis with the measured nutrient composition of commercial pet foods. J. Am. Vet. Med. Assoc. 2009, 234, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Pimentel, M. Food, Energy and Society; Colorado University Press: Niwot, CO, USA, 1996. [Google Scholar]
- Reijnders, L. Environmental aspects of meat production and vegetarianism. In Vegetarian Nutrition; Sabaté, J., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 441–462. [Google Scholar]
- Reijnders, L.; Soret, S. Quantification of the environmental impact of different dietary protein choices. Am. J. Clin. Nutr. 2003, 78, 664S–668S. [Google Scholar] [CrossRef]
- Knight, A. The relative benefits for environmental sustainability of vegan diets for dogs, cats and people. PLoS ONE 2023, 18, e0291791. [Google Scholar] [CrossRef] [PubMed]
- van Rooijen, C.; Bosch, G.; van der Poel, A.F.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H. The Maillard reaction and pet food processing: Effects on nutritive value and pet health. Nutr. Res. Rev. 2013, 26, 130–148. [Google Scholar] [CrossRef] [PubMed]
- van Rooijen, C.; Bosch, G.; van der Poel, A.F.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H. Quantitation of Maillard Reaction Products in Commercially Available Pet Foods. J. Agric. Food Chem. 2014, 62, 8883. [Google Scholar] [CrossRef] [PubMed]
- Empert-Gallegos, A.; Hill, S.; Yam, P.S. Insights into dog owner perspectives on risks, benefits, and nutritional value of raw diets compared to commercial cooked diets. PeerJ 2020, 8, e10383. [Google Scholar] [CrossRef] [PubMed]
LevelI | High-quality randomised trial or prospective study; testing of previously developed diagnostic criteria on consecutive patients; sensible costs and alternatives; values obtained from many studies with multi-way sensitivity analyses; systematic review of Level I randomised controlled trials and Level I studies. |
Level II | Lesser quality randomised controlled trial; prospective comparative study; retrospective study; untreated controls from a randomised controlled trial; lesser quality prospective study; development of diagnostic criteria on consecutive patients; sensible costs and alternatives; values obtained from limited studies; with multi-way sensitivity analyses; systematic review of Level II studies or Level I studies with inconsistent results. |
Level III | Case-control study (therapeutic and prognostic studies); retrospective comparative study; study of non-consecutive patients without consistently applied reference “gold” standard; analyses based on limited alternatives and costs and poor estimates; systematic review of Level III studies. |
Level IV | Case series; case-control study (diagnostic studies); poor reference standard; analyses with no sensitivity analyses. |
Level V | Expert opinion. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, Y.; Wu, C.; Li, L.; Pu, J. Current Evidence on Raw Meat Diets in Pets: A Natural Symbol, but a Nutritional Controversy. Animals 2025, 15, 293. https://doi.org/10.3390/ani15030293
Lyu Y, Wu C, Li L, Pu J. Current Evidence on Raw Meat Diets in Pets: A Natural Symbol, but a Nutritional Controversy. Animals. 2025; 15(3):293. https://doi.org/10.3390/ani15030293
Chicago/Turabian StyleLyu, Yang, Caimei Wu, Lian Li, and Junning Pu. 2025. "Current Evidence on Raw Meat Diets in Pets: A Natural Symbol, but a Nutritional Controversy" Animals 15, no. 3: 293. https://doi.org/10.3390/ani15030293
APA StyleLyu, Y., Wu, C., Li, L., & Pu, J. (2025). Current Evidence on Raw Meat Diets in Pets: A Natural Symbol, but a Nutritional Controversy. Animals, 15(3), 293. https://doi.org/10.3390/ani15030293