Trilostane: Beyond Cushing’s Syndrome
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanism of Action
3.2. Pharmacokinetics
3.3. Management of Hyperadrenocorticism in Dogs
Dosing and Monitoring in Dogs
3.4. Other Veterinary Uses
3.4.1. Alopecia X in Dogs
3.4.2. Equine Cushing’s Syndrome
3.4.3. Feline Cushing’s Syndrome
3.5. Trilostane in Humans
3.5.1. Cushing’s Syndrome
3.5.2. Hypertension and Adrenal Disorders
3.5.3. Other Trilostane Putative Molecular Targets Revealed by Studies on Hormone-Dependent Cancer
3.5.4. Neuroinflammation: Pain and Epilepsy
3.5.5. Trilostane in Anxiety and Depression
3.6. Role in Hormonal Regulation
3.7. Safety and Side Effects
3.8. Neurosteroids, Trilostane, and the Current Evidence: A Possible Role in Neurodegenerative Diseases?
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Neumann, H.; Potts, G.; Ryan, W.; Stonner, F. Steroidal heterocycles. XIII. 4. alpha., 5-Epoxy-5. alpha.-androst-2-eno [2, 3-d] isoxazoles and related compounds. J. Med. Chem. 1970, 13, 948–951. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Food and Drugs Chapter I—Food and Drug Administration Department of Health and Human Services Subchapter E—Animal Drugs, Feeds, and Related Products. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=520.2598 (accessed on 19 December 2024).
- Agency, E.M. Trilostane. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/trilorale (accessed on 19 December 2024).
- Cavallieri, F.; Lucchi, C.; Grisanti, S.; Monfrini, E.; Fioravanti, V.; Toschi, G.; Di Rauso, G.; Rossi, J.; Di Fonzo, A.; Biagini, G. Neurosteroid Levels in GBA Mutated and Non-Mutated Parkinson’s Disease: A Possible Factor Influencing Clinical Phenotype? Biomolecules 2024, 14, 1022. [Google Scholar] [CrossRef]
- Costa, A.M.; Gol, M.; Lucchi, C.; Biagini, G. Antiepileptogenic effects of trilostane in the kainic acid model of temporal lobe epilepsy. Epilepsia 2023, 64, 1376–1389. [Google Scholar] [CrossRef] [PubMed]
- Gol, M.; Costa, A.M.; Biagini, G.; Lucchi, C. Seizure progression is slowed by enhancing neurosteroid availability in the brain of epileptic rats. Epilepsia 2024, 65, e41–e46. [Google Scholar] [CrossRef]
- Lucchi, C.; Costa, A.M.; Senn, L.; Messina, S.; Rustichelli, C.; Biagini, G. Augmentation of endogenous neurosteroid synthesis alters experimental status epilepticus dynamics. Epilepsia 2020, 61, e129–e134. [Google Scholar] [CrossRef] [PubMed]
- Lucchi, C.; Simonini, C.; Rustichelli, C.; Avallone, R.; Zucchi, E.; Martinelli, I.; Biagini, G.; Mandrioli, J. Reduced Levels of Neurosteroids in Cerebrospinal Fluid of Amyotrophic Lateral Sclerosis Patients. Biomolecules 2024, 14, 1076. [Google Scholar] [CrossRef] [PubMed]
- Espallergues, J.; Givalois, L.; Temsamani, J.; Laruelle, C.; Maurice, T. The 3β-hydroxysteroid dehydrogenase inhibitor trilostane shows antidepressant properties in mice. Psychoneuroendocrinology 2009, 34, 644–659. [Google Scholar] [CrossRef] [PubMed]
- Espallergues, J.; Mamiya, T.; Vallée, M.; Koseki, T.; Nabeshima, T.; Temsamani, J.; Laruelle, C.; Maurice, T. The antidepressant-like effects of the 3β-hydroxysteroid dehydrogenase inhibitor trilostane in mice is related to changes in neuroactive steroid and monoamine levels. Neuropharmacology 2012, 62, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, R.M.; Livingood, M.R.; Rogawski, M.A. Allopregnanolone analogs that positively modulate GABAA receptors protect against partial seizures induced by 6-Hz electrical stimulation in mice. Epilepsia 2004, 45, 864–867. [Google Scholar] [CrossRef] [PubMed]
- Charalambous, M.; Fischer, A.; Potschka, H.; Walker, M.C.; Raedt, R.; Vonck, K.; Boon, P.; Lohi, H.; Löscher, W.; Worrell, G. Translational veterinary epilepsy: A win-win situation for human and veterinary neurology. Vet. J. 2023, 293, 105956. [Google Scholar] [CrossRef] [PubMed]
- Potts, G.; Creange, J.; Harding, H.; Schane, H. Trilostane, an orally active inhibitor of steroid biosynthesis. Steroids 1978, 32, 257–267. [Google Scholar] [CrossRef]
- Pang, S. The molecular and clinical spectrum of 3β-hydroxysteroid dehydrogenase deficiency disorder. Trends Endocrinol. Metab. 1998, 9, 82–86. [Google Scholar] [CrossRef]
- Teshima, T.; Matsumoto, H.; Kumagai, T.; Kurano, M.; Koyama, H. Expression of 11β-hydroxysteroid dehydrogenase isoforms in canine adrenal glands treated with trilostane. Vet. J. 2014, 200, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Malouitre, S.; Barker, S.; Puddefoot, J.; Jalili, J.; Glover, H.; Vinson, G. Regulation of hepatic steroid receptors and enzymes by the 3β-hydroxysteroid dehydrogenase inhibitor trilostane. J. Steroid Biochem. Mol. Biol. 2006, 101, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-L.; Bencic, D.; Lazorchak, J.; Villeneuve, D.; Ankley, G.T. Transcriptional regulatory dynamics of the hypothalamic–pituitary–gonadal axis and its peripheral pathways as impacted by the 3-beta HSD inhibitor trilostane in zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2011, 74, 1461–1470. [Google Scholar] [CrossRef]
- Robinson, D.; Earnshaw, R.; Mitchell, R.; Powles, P.; Andrews, R.; Robertson, W. The bioavailability and metabolism of trilostane in normal subjects, a comparative study using high pressure liquid chromatographic and quantitative cytochemical assays. J. Steroid Biochem. 1984, 21, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Lemetayer, J.; Blois, S. Update on the use of trilostane in dogs. Can. Vet. J. 2018, 59, 397. [Google Scholar]
- Mori, Y.; Tsuboi, M.; Suzuki, M.; Saito, A.; Ohnishi, H. Studies on the metabolism of trilostane, an inhibitor of adrenal steroidogenesis. Chem. Pharm. Bull. 1981, 29, 2646–2652. [Google Scholar] [CrossRef] [PubMed]
- McGraw, A.L.; Whitley, E.M.; Lee, H.P.; Boothe, D.M.; Behrend, E.N. Determination of the concentrations of trilostane and ketotrilostane that inhibit ex vivo canine adrenal gland synthesis of cortisol, corticosterone, and aldosterone. Am. J. Vet. Res. 2011, 72, 661–665. [Google Scholar] [CrossRef] [PubMed]
- McGee, J.P.; Shaw, P.N. The pharmacokinetics of trilostane and ketotrilostane in an interconverting system in the rat. Pharm. Res. 1992, 9, 464–468. [Google Scholar] [CrossRef]
- Neiger, R.; Hurley, K.; Ramsey, I.; O’Connor, J.; Mooney, C. Trilostane treatment of 78 dogs with pituitary-dependent hyperadrenocorticism. Vet. Rec. 2002, 150, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Braddock, J.; Church, D.; Robertson, I.; Watson, A. Trilostane treatment in dogs with pituitary-dependent hyperadreno-corticism. Aust. Vet. J. 2003, 81, 600–607. [Google Scholar] [CrossRef]
- Ruckstuhl, N.S.; Nett, C.S.; Reusch, C.E. Results of clinical examinations, laboratory tests, and ultrasonography in dogs with pituitary-dependent hyperadrenocorticism treated with trilostane. Am. J. Vet. Res. 2002, 63, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Wenger, M.; Sieber-Ruckstuhl, N.S.; Müller, C.; Reusch, C.E. Effect of trilostane on serum concentrations of aldosterone, cortisol, and potassium in dogs with pituitary-dependent hyperadrenocorticism. Am. J. Vet. Res. 2004, 65, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Tebb, A.; Arteaga, A.; Evans, H.; Ramsey, I. Canine hyperadrenocorticism: Effects of trilostane on parathyroid hormone, calcium and phosphate concentrations. J. Small Anim. Pract. 2005, 46, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Barker, E.; Campbell, S.; Tebb, A.; Neiger, R.; Herrtage, M.; Reid, S.; Ramsey, I. A comparison of the survival times of dogs treated with mitotane or trilostane for pituitary-dependent hyperadrenocorticism. J. Vet. Intern. Med. 2005, 19, 810–815. [Google Scholar] [CrossRef]
- Clemente, M.; De Andrés, P.; Arenas, C.; Melián, C.; Morales, M.; Pérez-Alenza, M. Comparison of non-selective adrenocorticolysis with mitotane or trilostane for the treatment of dogs with pituitary-dependent hyperadrenocorticism. Vet. Rec. 2007, 161, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Arenas, C.; Melián, C.; Pérez-Alenza, M. Long-term survival of dogs with adrenal-dependent hyperadrenocorticism: A comparison between mitotane and twice daily trilostane treatment. J. Vet. Intern. Med. 2014, 28, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Reine, N.J. Medical management of pituitary-dependent hyperadrenocorticism: Mitotane versus trilostane. Clin. Tech. Small Anim. Pract. 2007, 22, 18–25. [Google Scholar] [CrossRef]
- Tinted, N.; Pongcharoenwanit, S.; Ongvisespaibool, T.; Wachirodom, V.; Jumnansilp, T.; Buckland, N.; Chuchalermporn, P.; Soontararak, S.; Pairor, S.; Steiner, J.M. Serum Bile Acids Concentrations and Liver Enzyme Activities after Low-Dose Trilostane in Dogs with Hyperadrenocorticism. Animals 2023, 13, 3244. [Google Scholar] [CrossRef] [PubMed]
- Soares, F.; Kretzmann Filho, N.; Beretta, B.; Linden, T.; Pöppl, A.; González, F. Thiobarbituric acid reactive substances in dogs with spontaneous hypercortisolism. Domest. Anim. Endocrinol. 2021, 77, 106634. [Google Scholar] [CrossRef] [PubMed]
- Oda, H.; Mori, A.; Shono, S.; Onozawa, E.; Sako, T. The effect of 1 year of trilostane treatment on peripheral lymphocyte subsets in dogs with pituitary-dependent hyperadrenocorticism. J. Vet. Med. Sci. 2016, 78, 851–854. [Google Scholar] [CrossRef] [PubMed]
- McGrotty, Y.; Arteaga, A.; Knottenbelt, C.; Ramsey, I.; Eckersall, P. Haptoglobin concentrations in dogs undergoing trilostane treatment for hyperadrenocorticism. Vet. Clin. Pathol. 2005, 34, 255–258. [Google Scholar] [CrossRef]
- Nagata, N.; Kojima, K.; Yuki, M. Comparison of survival times for dogs with pituitary-dependent hyperadrenocorticism in a primary-care hospital: Treated with trilostane versus untreated. J. Vet. Intern. Med. 2017, 31, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Arenas, C.; Melian, C.; Perez-Alenza, M. Evaluation of 2 trilostane protocols for the treatment of canine pituitary-dependent hyperadrenocorticism: Twice daily versus once daily. J. Vet. Intern. Med. 2013, 27, 1478–1485. [Google Scholar] [CrossRef] [PubMed]
- García San José, P.; Arenas Bermejo, C.; Alonso-Miguel, D.; González Sanz, S.; Clares Moral, I.; Portero Fuentes, M.; Pérez-Alenza, M.D. Survival of dogs with pituitary-dependent hyperadrenocorticism treated twice daily with low doses of trilostane. Vet. Rec. 2022, 191, e1630. [Google Scholar] [CrossRef]
- Alenza, D.P.; Arenas, C.; Lopez, M.L.; Melian, C. Long-term efficacy of trilostane administered twice daily in dogs with pituitary-dependent hyperadrenocorticism. J. Am. Anim. Hosp. Assoc. 2006, 42, 269–276. [Google Scholar] [CrossRef]
- Bell, R.; Neiger, R.; McGrotty, Y.; Ramsey, I. Study of the effects of once daily doses of trilostane on cortisol concentrations and responsiveness to adrenocorticotrophic hormone in hyperadrenocorticoid dogs. Vet. Rec. 2006, 159, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.C. Evaluation of twice-daily lower-dose trilostane treatment administered orally in dogs with naturally occurring hyperadrenocorticism. J. Am. Vet. Med. Assoc. 2011, 238, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, M.A.; Feldman, E.C.; Hoar, B.R.; Nelson, R.W. Evaluation of twice-daily, low-dose trilostane treatment administered orally in dogs with naturally occurring hyperadrenocorticism. J. Am. Vet. Med. Assoc. 2008, 232, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Braun, C.; Boretti, F.S.; Reusch, C.E.; Sieber-Ruckstuhl, N.S. Comparison of two treatment regimens with trilostane in dogs with pituitary-dependent hyperadrenocorticism. Schweiz Arch Tierheilkd 2013, 155, 551–558. [Google Scholar] [CrossRef]
- Reid, L.; Behrend, E.; Martin, L.; Kemppainen, R.; Ward, C.; Lurye, J.; Donovan, T.; Lee, H. Effect of trilostane and mitotane on aldosterone secretory reserve in dogs with pituitary-dependent hyperadrenocorticism. J. Vet. Intern. Med. 2014, 28, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Bonadio, C.; Feldman, E.; Cohen, T.; Kass, P. Comparison of adrenocorticotropic hormone stimulation test results started 2 versus 4 hours after trilostane administration in dogs with naturally occurring hyperadrenocorticism. J. Vet. Intern. Med. 2014, 28, 1239–1243. [Google Scholar] [CrossRef] [PubMed]
- Midence, J.; Drobatz, K.; Hess, R. Cortisol concentrations in well-regulated dogs with hyperadrenocorticism treated with trilostane. J. Vet. Intern. Med. 2015, 29, 1529–1533. [Google Scholar] [CrossRef]
- Macfarlane, L.; Parkin, T.; Ramsey, I. Pre-trilostane and three-hour post-trilostane cortisol to monitor trilostane therapy in dogs. Vet. Rec. 2016, 179, 597. [Google Scholar] [CrossRef]
- Boretti, F.; Musella, C.; Burkhardt, W.; Kuemmerle-Fraune, C.; Riond, B.; Reusch, C.; Sieber-Ruckstuhl, N. Comparison of two prepill cortisol concentrations in dogs with hypercortisolism treated with trilostane. BMC Vet. Res. 2018, 14, 417. [Google Scholar] [CrossRef] [PubMed]
- Boretti, F.S.; Holzthuem, J.; Reusch, C.E.; Sieber-Ruckstuhl, N.S. Lack of association between clinical signs and laboratory parameters in dogs with hyperadrenocorticism before and during trilostane treatment. Schweiz. Arch. Für Tierheilkd. 2016, 158, 631–638. [Google Scholar] [CrossRef]
- Wehner, A.; Glöckner, S.; Weiss, B.; Ballhausen, D.; Stockhaus, C.; Zablotski, Y.; Hartmann, K. Association between ACTH stimulation test results and clinical signs in dogs with hyperadrenocorticism treated with trilostane. Vet. J. 2021, 276, 105740. [Google Scholar] [CrossRef] [PubMed]
- Galac, S.; Buijtels, J.J.; Mol, J.A.; Kooistra, H.S. Effects of trilostane on the pituitary-adrenocortical and renin–aldosterone axis in dogs with pituitary-dependent hypercortisolism. Vet. J. 2010, 183, 75–80. [Google Scholar] [CrossRef]
- Cook, A.K.; Bond, K.G. Evaluation of the use of baseline cortisol concentration as a monitoring tool for dogs receiving trilostane as a treatment for hyperadrenocorticism. J. Am. Vet. Med. Assoc. 2010, 237, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, W.; Boretti, F.S.; Reusch, C.E.; Sieber-Ruckstuhl, N.S. Evaluation of baseline cortisol, endogenous ACTH, and cortisol/ACTH ratio to monitor trilostane treatment in dogs with pituitary-dependent hypercortisolism. J. Vet. Intern. Med. 2013, 27, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Gouvêa, F.N.; Vargas, A.M.; Guimarães, E.C.; Crivellenti, L.Z.; Pennacchi, C.S.; de Cerqueira, H.D.B.; de Oliveira Branco, L.; Reis, N.S.; Borin-Crivellenti, S. Association between post-ACTH cortisol and trilostane dosage in dogs with pituitary-dependent hypercortisolism. Domest. Anim. Endocrinol. 2024, 89, 106871. [Google Scholar] [CrossRef]
- Arenas Bermejo, C.; Pérez Alenza, D.; García San José, P.; Llauet, L.; Pérez-López, L.; Melián, C.; C Feldman, E. Laboratory assessment of trilostane treatment in dogs with pituitary-dependent hyperadrenocorticism. J. Vet. Intern. Med. 2020, 34, 1413–1422. [Google Scholar] [CrossRef]
- Golinelli, S.; de Marco, V.; Leal, R.O.; Barbarossa, A.; Aniballi, C.; Maietti, E.; Tardo, A.M.; Galac, S.; Fracassi, F. Comparison of methods to monitor dogs with hypercortisolism treated with trilostane. J. Vet. Intern. Med. 2021, 35, 2616–2627. [Google Scholar] [CrossRef] [PubMed]
- Woolcock, A.D.; Bugbee, A.C.; Creevy, K.E. Evaluation of baseline cortisol concentration to monitor efficacy of twice-daily administration of trilostane to dogs with pituitary-dependent hyperadrenocorticism: 22 cases (2008–2012). J. Am. Vet. Med. Assoc. 2016, 248, 814–821. [Google Scholar] [CrossRef]
- Cho, K.D.; Kang, J.H.; Chang, D.; Na, K.J.; Yang, M.P. Efficacy of low-and high-dose trilostane treatment in dogs (< 5 kg) with pituitary-dependent hyperadrenocorticism. J. Vet. Intern. Med. 2013, 27, 91–98. [Google Scholar] [PubMed]
- Augusto, M.; Burden, A.; Neiger, R.; Ramsey, I. A comparison of once and twice daily administration of trilostane to dogs with hyperadrenocorticism. Tierärztliche Prax. Ausg. K Kleintiere/Heimtiere 2012, 40, 415–424. [Google Scholar]
- Feldman, E.; Kass, P. Trilostane dose versus body weight in the treatment of naturally occurring pituitary-dependent hyperadrenocorticism in dogs. J. Vet. Intern. Med. 2012, 26, 1078–1080. [Google Scholar] [CrossRef]
- Cerundolo, R.; Lloyd, D.H.; Persechino, A.; Evans, H.; Cauvin, A. Treatment of canine Alopecia X with trilostane. Vet. Dermatol. 2004, 15, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Leone, F.; Cerundolo, R.; Vercelli, A.; Lloyd, D. The use of trilostane for the treatment of alopecia X in Alaskan malamutes. J. Am. Anim. Hosp. Assoc. 2005, 41, 336–342. [Google Scholar] [CrossRef] [PubMed]
- McGowan, C.; Neiger, R. Efficacy of trilostane for the treatment of equine Cushing’s syndrome. Equine Vet. J. 2003, 35, 414–418. [Google Scholar] [CrossRef]
- Neiger, R.; Witt, A.L.; Noble, A.; German, A.J. Trilostane therapy for treatment of pituitary-dependent hyperadrenocorticism in 5 cats. J. Vet. Intern. Med. 2004, 18, 160–164. [Google Scholar] [PubMed]
- Mellett Keith, A.; Bruyette, D.; Stanley, S. Trilostane therapy for treatment of spontaneous hyperadrenocorticism in cats: 15 cases (2004–2012). J. Vet. Intern. Med. 2013, 27, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Valentin, S.; Cortright, C.; Nelson, R.; Pressler, B.M.; Rosenberg, D.; Moore, G.; Scott-Moncrieff, J. Clinical findings, diagnostic test results, and treatment outcome in cats with spontaneous hyperadrenocorticism: 30 cases. J. Vet. Intern. Med. 2014, 28, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Winterberg, B.; Vetter, W.; Groth, H.; Greminger, P.; Vetter, H. Primary aldosteronism: Treatment with trilostane. Cardiology 1985, 72, 117–121. [Google Scholar] [CrossRef]
- Nomura, K.; Demura, H.; Horiba, N.; Shizume, K. Long-term treatment of idiopathic hyperaldosteronim using trilostane. Eur. J. Endocrinol. 1986, 113, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, D.; Weber, M. Therapy of Cushing’s syndrome with steroid biosynthesis inhibitors. J. Steroid Biochem. Mol. Biol. 1994, 49, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, D. Steroid biosynthesis inhibitors in Cushing’s syndrome. Clin. Investig. 1994, 72, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Sanchez, E.P.; Samuel, J.; Vergara, G.; Ahmad, N. Effect of 3β-hydroxysteroid dehydrogenase inhibition by trilostane on blood pressure in the Dahl salt-sensitive rat. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2005, 288, R389–R393. [Google Scholar] [CrossRef] [PubMed]
- García San José, P.; Arenas Bermejo, C.; Alonso-Miguel, D.; Clares Moral, I.; Cuesta-Alvaro, P.; Pérez Alenza, M.D. Changes in systolic blood pressure in dogs with pituitary dependent hyperadrenocorticism during the first year of trilostane treatment. J. Vet. Intern. Med. 2021, 35, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Harding, H.R.; Creange, J.E.; Potts, G.O.; Schane, H.P. Inhibition of furosemide-induced kaliuresis in the rat by trilostane, an inhibitor of adrenal steroidogenesis. Proc. Soc. Exp. Biol. Med. 1984, 177, 388–391. [Google Scholar] [CrossRef] [PubMed]
- DeFelice, A.F.; Brousseau, A.C.; O′ Connor, B. Potassium-sparing effect of trilostane in hydrochlorothiazide-treated rats and dogs. Proc. Soc. Exp. Biol. Med. 1987, 184, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Shigetomi, S.; Fukuchi, S.; Haruyama, K.; Yamazaki, M. The effect of trilostane, a new inhibitor of adrenal steroid biosynthesis, on blood pressure, plasma aldosterone and other steroid hormones, serum potassium and plasma renin activity in primary aldosteronism (author’s transl). Nihon Naibunpi Gakkai Zasshi 1982, 58, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Griffing, G.T.; Melby, J.C. Reversal of diuretic-induced secondary hyperaldosteronism and hypokalemia by trilostane, an inhibitor of adrenal steroidogenesis. Metabolism 1989, 38, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Puddefoot, J.R.; Barker, S.; Vinson, G.P. Trilostane in advanced breast cancer. Expert Opin. Pharmacother. 2006, 7, 2413–2419. [Google Scholar] [CrossRef]
- Tueni, E.; Devleeschouwer, N.; Leclercq, G.; Nijs, M.; Coune, A.; Vermeulen, A.; Paridaens, R. Endocrine effects of trilostane: In vitro and in vivo studies. Eur. J. Cancer Clin. Oncol. 1987, 23, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Iino, Y.; Izuo, M.; Takikawa, H. Effects of trilostane on 7, 12-dimethylbenz [a] anthracene-induced rat mammary cancers and body weight of rats in relation to estrogen receptors. Oncology 1989, 46, 301–305. [Google Scholar] [PubMed]
- Barker, S.; Malouitre, S.D.; Glover, H.R.; Puddefoot, J.R.; Vinson, G.P. Comparison of effects of 4-hydroxy tamoxifen and trilostane on oestrogen-regulated gene expression in MCF-7 cells: Up-regulation of oestrogen receptor beta. J. Steroid Biochem. Mol. Biol. 2006, 100, 141–151. [Google Scholar] [CrossRef]
- Takizawa, I.; Nishiyama, T.; Hara, N.; Hoshii, T.; Ishizaki, F.; Miyashiro, Y.; Takahashi, K. Trilostane, an inhibitor of 3β-hydroxysteroid dehydrogenase, has an agonistic activity on androgen receptor in human prostate cancer cells. Cancer Lett. 2010, 297, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Evaul, K.; Li, R.; Papari-Zareei, M.; Auchus, R.J.; Sharifi, N. 3β-hydroxysteroid dehydrogenase is a possible pharmacological target in the treatment of castration-resistant prostate cancer. Endocrinology 2010, 151, 3514–3520. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-C.; Liu, C.-L.; Chang, Y.-C.; Cheng, S.-P.; Huang, W.-C.; Lin, C.-H.; Wu, C.-Y.; Chen, M.-J. Trilostane, a 3β-hydroxysteroid dehydrogenase inhibitor, suppresses growth of hepatocellular carcinoma and enhances anti-cancer effects of sorafenib. Investig. New Drugs 2021, 39, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Crawley, J.N.; Glowa, J.R.; Majewska, M.D.; Paul, S.M. Anxiolytic activity of an endogenous adrenal steroid. Brain Res. 1986, 398, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Bitran, D.; Purdy, R.H.; Kellog, C.K. Anxiolytic effect of progesterone is associated with increases in cortical alloprenanolone and GABAA receptor function. Pharmacol. Biochem. Behav. 1993, 45, 423–428. [Google Scholar] [CrossRef]
- Tung, D.; Ciallella, J.; Hain, H.; Cheung, P.H.; Saha, S. Possible therapeutic effect of trilostane in rodent models of inflammation and nociception. Curr. Ther. Res. 2013, 75, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Semple, C.; Weir, S.; Thomson, J.; Beastall, G. Trilostane and the normal hypothalamic-pituitary-testicular axis. Clin. Endocrinol. 1982, 17, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Jungmann, E.; Althoff, P.; Balzer-Kuna, S.; Magnet, W.; Rottmann-Kuhnke, U.; Sprey, R.; Schwedes, U.; Usadel, K.; Schöffling, K. The inhibiting effect of trilostane on testosterone synthesis. Hormonal and morphologic alterations induced by subchronic trilostane treatment in rats and healthy volunteers. Arzneimittelforschung 1983, 33, 754–756. [Google Scholar]
- Makimura, N.; Kato, K.; Seki, K.; Mitsui, C. Changes in the concentrations of plasma steroid hormone and plasma 13, 14-dihydro-15-oxo-prostaglandin F2α in late pregnancy rabbits treated with an inhibitor of 3β-hydroxysteroid dehydrogenase. Endocrinol. Jpn. 1984, 31, 349–353. [Google Scholar] [CrossRef]
- Le Roux, P.; Tregoning, S.; Zinn, P.; Van Der Spuy, Z. Inhibition of progesterone secretion with trilostane for mid-trimester termination of pregnancy: Randomized controlled trials. Hum. Reprod. 2002, 17, 1483–1489. [Google Scholar] [CrossRef]
- le Roux, P.A.; van der Spuy, Z.M. Labor induction abortion utilizing trilostane, a 3β-hydroxysteroid dehydrogenase inhibitor. Contraception 2005, 71, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Ouschan, C.; Lepschy, M.; Zeugswetter, F.; Möstl, E. The influence of trilostane on steroid hormone metabolism in canine adrenal glands and corpora lutea—An in vitro study. Vet. Res. Commun. 2012, 36, 35–40. [Google Scholar] [CrossRef]
- De Gier, J.; Wolthers, C.; Galac, S.; Okkens, A.; Kooistra, H. Effects of the 3β-hydroxysteroid dehydrogenase inhibitor trilostane on luteal progesterone production in the dog. Theriogenology 2011, 75, 1271–1279. [Google Scholar] [CrossRef]
- Binli, F.; İnan, İ.; Büyükbudak, F.; Gram, A.; Kaya, D.; Liman, N.; Aslan, S.; Fındık, M.; Ay, S.S. The efficacy of a 3β-hydroxysteroid dehydrogenase inhibitor for the termination of mid-term pregnancies in dogs. Animals 2022, 12, 2475. [Google Scholar] [CrossRef] [PubMed]
- Touitou, Y.; Auzeby, A.; Bogdan, A.; Luton, J.-P.; Galan, P. 11β-hydroxy-11-ketosteroids equilibrium, a source of misinterpretation in steroid synthesis: Evidence through the effects of trilostane on 11β-hydroxysteroid dehydrogenase in sheep and human adrenals in vitro. J. Steroid Biochem. 1984, 20, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Sieber-Ruckstuhl, N.; Boretti, F.; Wenger, M.; Maser-Gluth, C.; Reusch, C. Cortisol, aldosterone, cortisol precursor, androgen and endogenous ACTH concentrations in dogs with pituitary-dependant hyperadrenocorticism treated with trilostane. Domest. Anim. Endocrinol. 2006, 31, 63–75. [Google Scholar] [CrossRef]
- Griebsch, C.; Lehnert, C.; Williams, G.; Failing, K.; Neiger, R. Effect of trilostane on hormone and serum electrolyte concentrations in dogs with pituitary-dependent hyperadrenocorticism. J. Vet. Intern. Med. 2014, 28, 160–165. [Google Scholar] [CrossRef]
- Sieber-Ruckstuhl, N.S.; Boretti, F.S.; Wenger, M.; Maser-Gluth, C.; Reusch, C.E. Serum concentrations of cortisol and cortisone in healthy dogs and dogs with pituitary-dependent hyperadrenocorticism treated with trilostane. Vet. Rec. 2008, 163, 477–481. [Google Scholar] [CrossRef]
- Semple, C.; Thomson, J.; Stark, A.; And, M.M.; Beastall, G. Trilostane and the normal hypothalamic-pituitary-adrenocortical axis. Clin. Endocrinol. 1982, 17, 569–575. [Google Scholar] [CrossRef]
- Jungmann, E.; Magnet, W.; Rottmann-Kuhnke, U.; Sprey, R.; Schwedes, U.; Usadel, K.-H.; Schöffling, K. The inhibiting effect of trilostane on adrenal steroid synthesis: Hormonal and morphological alterations induced by subchronic trilostane treatment in normal rats. Res. Exp. Med. 1982, 180, 193–200. [Google Scholar] [CrossRef]
- Kawai, K.; Baba, K.; Senba, M.; Nakamura, T.; Doi, Y.; Yamaguchi, T.; Hashiba, K.; Tsuchiyama, H. Effect of the adrenal inhibitor trilostane on the morphology of the adrenocortical cells of Dahl salt-sensitive and Dahl salt-resistant rats. Int. J. Exp. Pathol. 1991, 72, 451. [Google Scholar]
- Friemann, J.; Müller, K. Effects of Trilostane in Normotensive and Hypertensive Rats. Cardiology 1985, 72, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Sillence, M.; Rodway, R. Age-and sex-dependent stimulation of growth rate in rats by the adrenal inhibitor trilostane. J. Endocrinol. 1987, 113, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Reusch, C.; Sieber-Ruckstuhl, N.; Wenger, M.; Lutz, H.; Perren, A.; Pospischil, A. Histological evaluation of the adrenal glands of seven dogs with hyperadrenocorticism treated with trilostane. Vet. Rec. 2007, 160, 219–224. [Google Scholar] [CrossRef]
- Teshima, T.; Hara, Y.; Takekoshi, S.; Nezu, Y.; Harada, Y.; Yogo, T.; Teramoto, A.; Osamura, R.Y.; Tagawa, M. Trilostane-induced inhibition of cortisol secretion results in reduced negative feedback at the hypothalamic–pituitary axis. Domest. Anim. Endocrinol. 2009, 36, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, W.A.; Guscetti, F.; Boretti, F.S.; Todesco, A.I.; Aldajarov, N.; Lutz, T.A.; Reusch, C.E.; Sieber-Ruckstuhl, N.S. Adrenocorticotropic hormone, but not trilostane, causes severe adrenal hemorrhage, vacuolization, and apoptosis in rats. Domest. Anim. Endocrinol. 2011, 40, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Lamoureux, A.; Cadoré, J.; Hugonnard, M.; Chabanne, L.; Krafft, E. Iatrogenic symptomatic hypoadrenocorticism after treatment with trilostane for hyperadrenocorticism in dogs: Eight cases (2008–2019). J. Small Anim. Pract. 2023, 64, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Appleman, E.; Schrage, A.; Lamb, K.E.; Langston, C. Evaluation of iatrogenic hypocortisolemia following trilostane therapy in 48 dogs with pituitary-dependent hyperadrenocorticism. J. Am. Anim. Hosp. Assoc. 2021, 57, 217–224. [Google Scholar] [CrossRef]
- King, J.; Morton, J. Incidence and risk factors for hypoadrenocorticism in dogs treated with trilostane. Vet. J. 2017, 230, 24–29. [Google Scholar] [CrossRef]
- Baulieu, E.-E. Steroid hormones in the brain: Several mechanisms? In Steroid Hormone Regulation of the Brain; Pergamon–Elsevier: Amsterdam, The Netherlands, 1981; pp. 3–14. [Google Scholar]
- Reddy, D.S. Pharmacology of endogenous neuroactive steroids. Crit. Rev. Neurobiol. 2003, 15, 197–234. [Google Scholar] [CrossRef] [PubMed]
- Akk, G.; Bracamontes, J.; Steinbach, J.H. Pregnenolone sulfate block of GABAA receptors: Mechanism and involvement of a residue in the M2 region of the α subunit. J. Physiol. 2001, 532, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, C.; Karali, K.; Fodelianaki, G.; Gravanis, A.; Chavakis, T.; Charalampopoulos, I.; Alexaki, V.I. Neurosteroids as regulators of neuroinflammation. Front. Neuroendocrinol. 2019, 55, 100788. [Google Scholar] [CrossRef]
- Lee, M.; Schwab, C.; Mcgeer, P.L. Astrocytes are GABAergic cells that modulate microglial activity. Glia 2011, 59, 152–165. [Google Scholar] [CrossRef]
- Balan, I.; Beattie, M.C.; O’Buckley, T.K.; Aurelian, L.; Morrow, A.L. Endogenous neurosteroid (3α, 5α) 3-hydroxypregnan-20-one inhibits toll-like-4 receptor activation and pro-inflammatory signaling in macrophages and brain. Sci. Rep. 2019, 9, 1220. [Google Scholar] [CrossRef]
- Wang, M.J.; Kang, L.; Wang, Y.Z.; Yang, B.R.; Zhang, C.; Lu, Y.F.; Kang, L. Microglia in motor neuron disease: Signaling evidence from last 10 years. Dev. Neurobiol. 2022, 82, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Dengler, R.; Von Neuhoff, N.; Bufler, J.; Krampfl, K.; Peschel, T.; Grosskreutz, J. Amyotrophic lateral sclerosis: New developments in diagnostic markers. Neurodegener. Dis. 2006, 2, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.S. Neurosteroids: Endogenous role in the human brain and therapeutic potentials. Prog. Brain Res. 2010, 186, 113–137. [Google Scholar] [PubMed]
- Dodart, J.C.; Mathis, C.; Bales, K.; Paul, S. Does my mouse have Alzheimer’s disease? Genes Brain Behav. 2002, 1, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.K.; Uchida, K.; Nakayama, H. White matter myelin loss in the brains of aged dogs. Exp. Gerontol. 2012, 47, 263–269. [Google Scholar] [CrossRef]
- Braidy, N.; Poljak, A.; Jayasena, T.; Mansour, H.; Inestrosa, N.C.; Sachdev, P.S. Accelerating Alzheimer’s research through ‘natural’animal models. Curr. Opin. Psychiatry 2015, 28, 155–164. [Google Scholar] [CrossRef]
- Borras, D.; Ferrer, I.; Pumarola, M. Age-related changes in the brain of the dog. Vet. Pathol. 1999, 36, 202–211. [Google Scholar] [CrossRef]
- Toepper, M. Dissociating normal aging from Alzheimer’s disease: A view from cognitive neuroscience. J. Alzheimer’s Dis. 2017, 57, 331–352. [Google Scholar] [CrossRef] [PubMed]
- Tapp, P.D.; Siwak, C.T.; Gao, F.Q.; Chiou, J.-Y.; Black, S.E.; Head, E.; Muggenburg, B.A.; Cotman, C.W.; Milgram, N.W.; Su, M.-Y. Frontal lobe volume, function, and β-amyloid pathology in a canine model of aging. J. Neurosci. 2004, 24, 8205–8213. [Google Scholar] [CrossRef]
- Siwak-Tapp, C.T.; Head, E.; Muggenburg, B.A.; Milgram, N.W.; Cotman, C.W. Region specific neuron loss in the aged canine hippocampus is reduced by enrichment. Neurobiol. Aging 2008, 29, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Bain, M.J.; Hart, B.L.; Cliff, K.D.; Ruehl, W.W. Predicting behavioral changes associated with age-related cognitive impairment in dogs. J. Am. Vet. Med. Assoc. 2001, 218, 1792–1795. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.W.; Lee, J.; Pae, A.N. Mitochondrial dysfunction and Alzheimer’s disease: Prospects for therapeutic intervention. BMB Rep. 2020, 53, 47. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, G.; Kawamata, H. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis. Neurobiol. Dis. 2016, 90, 35–42. [Google Scholar] [CrossRef]
- Melchinger, P.; Garcia, B.M. Mitochondria are midfield players in steroid synthesis. Int. J. Biochem. Cell Biol. 2023, 160, 106431. [Google Scholar] [CrossRef]
- Wang, J.; Trivedi, A.; Carrillo, N.; Yang, J.; Schneider, A.; Giulivi, C.; Adams, P.; Tassone, F.; Kim, K.; Rivera, S. Open-label allopregnanolone treatment of men with fragile X-associated tremor/ataxia syndrome. Neurotherapeutics 2017, 14, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- He, X.-Y.; Wegiel, J.; Yang, S.-Y. Intracellular oxidation of allopregnanolone by human brain type 10 17beta-hydroxysteroid dehydrogenase. Brain Res. 2005, 1040, 29–35. [Google Scholar] [CrossRef] [PubMed]
- He, X.-Y.; Frackowiak, J.; Dobkin, C.; Brown, W.T.; Yang, S.-Y. Involvement of Type 10 17β-Hydroxysteroid Dehydrogenase in the Pathogenesis of Infantile Neurodegeneration and Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 17604. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Garay, L.I.; Kruse, M.S.; Lara, A.; Gargiulo-Monachelli, G.; Schumacher, M.; Guennoun, R.; Coirini, H.; De Nicola, A.F.; Deniselle, M.C.G. Protective effects of the neurosteroid allopregnanolone in a mouse model of spontaneous motoneuron degeneration. J. Steroid Biochem. Mol. Biol. 2017, 174, 201–216. [Google Scholar] [CrossRef]
- Deniselle, M.C.G.; Garay, L.; Gonzalez, S.; Saravia, F.; Labombarda, F.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. Progesterone modulates brain-derived neurotrophic factor and choline acetyltransferase in degenerating Wobbler motoneurons. Exp. Neurol. 2007, 203, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Uriarte, A.; Maestro Saiz, I. Canine versus human epilepsy: Are we up to date? J. Small Anim. Pract. 2016, 57, 115–121. [Google Scholar] [CrossRef] [PubMed]
Hormone | Effect of Trilostane Treatment | Post-ACTH Stimulation |
---|---|---|
Cortisol | Decreased significantly | Decreased significantly |
Aldosterone | Increased significantly | Decreased significantly |
17-OH-pregnenolone | Increased significantly | Increased significantly |
Dehydroepiandrostenedione | Increased significantly | Increased significantly |
17-OH-progesterone | No change | No change |
Androstenedione | No change | No change |
21-deoxycortisol | No change | Decreased significantly |
11-deoxycortisol | Increased significantly | No change |
Endogenous ACTH | Increased significantly | - |
Endocrine Alterations | Effect of Trilostane First Dose | Latency to the Effect (h) |
---|---|---|
Cortisol | Decreased significantly | 2–4 |
Endogenous ACTH | Increased significantly | 3–12 |
Aldosterone | Increased significantly | 16–20 |
Renin activity | Increased significantly | 6–20 |
Potassium (serum) | Decreased significantly | 0.5–2 |
Sodium (plasma) | No changes | - |
Free calcium (plasma) | No changes | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaimat, A.R.; Jafarzadehbalagafsheh, P.; Gol, M.; Costa, A.-M.; Biagini, G.; Lucchi, C. Trilostane: Beyond Cushing’s Syndrome. Animals 2025, 15, 415. https://doi.org/10.3390/ani15030415
Olaimat AR, Jafarzadehbalagafsheh P, Gol M, Costa A-M, Biagini G, Lucchi C. Trilostane: Beyond Cushing’s Syndrome. Animals. 2025; 15(3):415. https://doi.org/10.3390/ani15030415
Chicago/Turabian StyleOlaimat, Ali R., Parastoo Jafarzadehbalagafsheh, Mohammad Gol, Anna-Maria Costa, Giuseppe Biagini, and Chiara Lucchi. 2025. "Trilostane: Beyond Cushing’s Syndrome" Animals 15, no. 3: 415. https://doi.org/10.3390/ani15030415
APA StyleOlaimat, A. R., Jafarzadehbalagafsheh, P., Gol, M., Costa, A.-M., Biagini, G., & Lucchi, C. (2025). Trilostane: Beyond Cushing’s Syndrome. Animals, 15(3), 415. https://doi.org/10.3390/ani15030415