Safety and Digestibility of a Novel Ingredient, Brewed Lamb Protein, in Healthy Adult Dogs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Test Ingredient Details
2.3. Food and Study Design
2.4. Body Weight, Food Intakes, Body Condition Scores, Body Composition Analyses
2.5. Sample Collection and Analysis
2.6. Digestibility Analysis
2.7. Statistical Analysis
3. Results
3.1. Nutrient Profiles of the Study Foods
3.2. Study Animals, Body Weight, Body Condition, Body Composition, and Food Intake
3.3. Hematological and Biochemical Parameters in Dogs That Consumed Foods with the Test Ingredient
3.4. Urinary Parameters in Dogs That Consumed Foods with the Test Ingredient
3.5. Fecal Analysis in Dogs That Consumed Foods with the Test Ingredient
3.6. Digestibility of the Foods Containing the Test Ingredient
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Veterinary Medical Association. AVMA 2024 Pet Ownership and Demographic Sourcebook; American Veterinary Medical Association: Schaumberg, IL, USA, 2024. [Google Scholar]
- Okin, G.S. Environmental impacts of food consumption by dogs and cats. PLoS ONE 2017, 12, e0181301. [Google Scholar] [CrossRef]
- Conway, D.M.P.; Saker, K.E. Consumer attitude toward the environmental sustainability of grain-free pet foods. Front. Vet. Sci. 2018, 5, 170. [Google Scholar] [CrossRef]
- Pedrinelli, V.; Teixeira, F.A.; Queiroz, M.R.; Brunetto, M.A. Environmental impact of diets for dogs and cats. Sci. Rep. 2022, 12, 18510. [Google Scholar] [CrossRef] [PubMed]
- Friel, S.; Dangour, A.D.; Garnett, T.; Lock, K.; Chalabi, Z.; Roberts, I.; Butler, A.; Butler, C.D.; Waage, J.; McMichael, A.J.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Food and agriculture. Lancet 2009, 374, 2016–2025. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Gaillac, R.; Marcbach, S. The carbon footprint of meat and dairy proteins: A practical perspective to guide low carbon footprint dietary choices. J. Clean. Prod. 2021, 321, 128766. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Dodd, S.A.S.; Shoveller, A.K.; Fascetti, A.J.; Yu, Z.Z.; Ma, D.W.L.; Verbrugghe, A. A comparison of key essential nutrients in commercial plant-based pet foods sold in Canada to American and European canine and feline dietary recommendations. Animals 2021, 11, 2348. [Google Scholar] [CrossRef] [PubMed]
- Zafalon, R.V.A.; Risolia, L.W.; Vendramini, T.H.A.; Ayres Rodrigues, R.B.; Pedrinelli, V.; Teixeira, F.A.; Rentas, M.F.; Perini, M.P.; Alvarenga, I.C.; Brunetto, M.A. Nutritional inadequacies in commercial vegan foods for dogs and cats. PLoS ONE 2020, 15, e0227046. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, J.H.; Cheung, L.K.Y.; Newman, L.; Dee, D.R.; Yada, R.Y. Precision cellular agriculture: The future role of recombinantly expressed protein as food. Compr. Rev. Food Sci. Food Saf. 2023, 22, 882–912. [Google Scholar] [CrossRef]
- Pang, Y.; Zhang, H.; Wen, H.; Wan, H.; Wu, H.; Chen, Y.; Li, S.; Zhang, L.; Sun, X.; Li, B.; et al. Yeast probiotic and yeast products in enhancing livestock feeds utilization and performance: An overview. J. Fungi 2022, 8, 1191. [Google Scholar] [CrossRef] [PubMed]
- Sampath, V.; Sureshkumar, S.; Kim, I.H. The efficacy of yeast supplementation on monogastric animal performance-a short review. Life 2023, 13, 2037. [Google Scholar] [CrossRef] [PubMed]
- Maturana, M.; Castillejos, L.; Martin-Orue, S.M.; Minel, A.; Chetty, O.; Felix, A.P.; Adib Lesaux, A. Potential benefits of yeast Saccharomyces and their derivatives in dogs and cats: A review. Front. Vet. Sci. 2023, 10, 1279506. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration. Microorganisms & Microbial-Derived Ingredients Used in Food (Partial List). Available online: https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list (accessed on 29 October 2024).
- AAFCO. Chapter Six: Official Feed Terms, Common or Usual Ingredient Names and Ingredient Definitions. In AAFCO Official Publication; Ten Eyck, R., Ed.; Association of American Feed Control Officials: Atlanta, GA, USA, 2023. [Google Scholar]
- Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Durjava, M.; Dusemund, B.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Safety and efficacy of a feed additive consisting of Saccharomyces cerevisiae CNCM I-1079 for dogs and all other Canidae (Danstar Ferment AG). EFSA J. 2024, 22, e8847. [Google Scholar] [CrossRef] [PubMed]
- Reilly, L.M.; He, F.; Rodriguez-Zas, S.L.; Southey, B.R.; Hoke, J.M.; Davenport, G.M.; de Godoy, M.R.C. Use of legumes and yeast as novel dietary protein sources in extruded canine diets. Front. Vet. Sci. 2021, 8, 667642. [Google Scholar] [CrossRef]
- Bedford, A.; Gong, J. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 2018, 4, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Davenport, G.M.; Block, S.S.; Adolphe, J.L. Effects of extruded pet foods containing dried yeast (Saccharomyces cerevisiae) on palatability, nutrient digestibility, and fecal quality in dogs and cats. Transl. Anim. Sci. 2023, 7, txad107. [Google Scholar] [CrossRef] [PubMed]
- Bastos, T.S.; Souza, C.M.M.; Kaelle, G.C.B.; do Nascimento, M.Q.; de Oliveira, S.G.; Félix, A.P. Diet supplemented with Saccharomyces cerevisiae from different fermentation media modulates the faecal microbiota and the intestinal fermentative products in dogs. J. Anim. Physiol. Anim. Nutr. 2023, 107 (Suppl. 1), 30–40. [Google Scholar] [CrossRef] [PubMed]
- Association of American Feed Control Officials. Official Publication; Association of American Feed Control Officials Inc.: Oxford, IN, USA, 2018. [Google Scholar]
- AAFCO. 2024 Official Publication: The Association of American Feed Control Officials; AAFCO: Oxford, IN, USA, 2024; Volume 174. [Google Scholar]
- Templeman, J.R.; Shoveller, A.K. Digestible indispensable amino acid scores of animal and plant ingredients potentially used in dog diet formulation: How this protein quality metric is affected by ingredient characteristics and reference amino acid profile. J. Anim. Sci. 2022, 100, skac279. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Offical Methods of Analysis of AOAC International, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Kendall, P.T.; Blaza, S.E.; Holme, D.W. Assessment of endogenous nitrogen output in adult dogs of contrasting size using a protein-free diet. J. Nutr. 1982, 112, 1281–1286. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Koller, M. robustlmm: An R package for robust estimation of linear mixed-effects models. J. Stat. Softw. 2016, 75, 1–24. [Google Scholar] [CrossRef]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.10.5. Available online: https://rvlenth.github.io/emmeans/ (accessed on 1 July 2024).
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: www.R-project.org (accessed on 14 June 2024).
- UC Davis Veterinary Medicine. Amino Acid Laboratory. Available online: https://www.vetmed.ucdavis.edu/labs/amino-acid-laboratory (accessed on 16 December 2024).
- MacPhail, C.M.; Lappin, M.R.; Meyer, D.J.; Smith, S.G.; Webster, C.R.; Armstrong, P.J. Hepatocellular toxicosis associated with administration of carprofen in 21 dogs. J. Am. Vet. Med. Assoc. 1998, 212, 1895–1901. [Google Scholar] [CrossRef]
- Friedrich, M.E.; Akimova, E.; Huf, W.; Konstantinidis, A.; Papageorgiou, K.; Winkler, D.; Toto, S.; Greil, W.; Grohmann, R.; Kasper, S. Drug-Induced Liver Injury during Antidepressant Treatment: Results of AMSP, a Drug Surveillance Program. Int. J. Neuropsychopharmacol. 2016, 19, pyv126. [Google Scholar] [CrossRef]
- Binder, H.J.; Mehta, P. Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology 1989, 96, 989–996. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Vendramini, T.H.A.; Amaral, A.R.; Rentas, M.F.; Ernandes, M.C.; da Silva, F.L.; Oba, P.M.; de Oliveira Roberti Filho, F.; Brunetto, M.A. Metabolic variables of obese dogs with insulin resistance supplemented with yeast beta-glucan. BMC Vet. Res. 2022, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Vetvicka, V.; Vetvickova, J. Effects of yeast-derived beta-glucans on blood cholesterol and macrophage functionality. J. Immunotoxicol. 2009, 6, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Kusmiati; Dhewantara, F.X. Cholesterol-lowering effect of beta glucan extracted from Saccharomyces cerevisiae in rats. Sci. Pharm. 2016, 84, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Qui, N.H.; Linh, N.T. Effects of dietary β-glucan and rice fermented on growth performance, fatty acids, and Newcastle disease immune response in turkey broilers. Saudi J. Biol. Sci. 2023, 30, 103736. [Google Scholar] [CrossRef] [PubMed]
- Nicolosi, R.; Bell, S.J.; Bistrian, B.R.; Greenberg, I.; Forse, R.A.; Blackburn, G.L. Plasma lipid changes after supplementation with beta-glucan fiber from yeast. Am. J. Clin. Nutr. 1999, 70, 208–212. [Google Scholar] [CrossRef]
- Strompfová, V.; Kubašová, I.; Mudroňová, D.; Štempelová, L.; Takáčová, M.; Gąsowski, B.; Čobanová, K.; Maďari, A. Effect of hydrolyzed yeast administration on faecal microbiota, haematology, serum biochemistry and cellular immunity in healthy dogs. Probiot. Antimicrob. Proteins 2021, 13, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Refsum, H.; Smith, A.D.; Ueland, P.M.; Nexo, E.; Clarke, R.; McPartlin, J.; Johnston, C.; Engbaek, F.; Schneede, J.; McPartlin, C.; et al. Facts and recommendations about total homocysteine determinations: An expert opinion. Clin. Chem. 2004, 50, 3–32. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.L.; Tiedeman, T.; Peterson, H.; Steiner, J.M.; Trepanier, L.A. Potential mechanism for hyperhomocysteinemia in Greyhound dogs. J. Vet. Intern. Med. 2023, 37, 960–967. [Google Scholar] [CrossRef]
- Lee, C.M.; Jeong, D.M.; Kang, M.H.; Kim, S.G.; Han, J.I.; Park, H.M. Correlation between serum homocysteine concentration and severity of mitral valve disease in dogs. Am. J. Vet. Res. 2017, 78, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Giordano, A.; Breda, S.; Lisi, C.; Roura, X.; Zatelli, A.; Paltrinieri, S. Big-endothelin 1 (big ET-1) and homocysteine in the serum of dogs with chronic kidney disease. Vet. J. 2013, 198, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, J.G.; Smith, L.H. Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev. 1968, 48, 424–511. [Google Scholar] [CrossRef] [PubMed]
- Delaney, S.J.; Kass, P.H.; Rogers, Q.R.; Fascetti, A.J. Plasma and whole blood taurine in normal dogs of varying size fed commercially prepared food. J. Anim. Physiol. Anim. Nutr. 2003, 87, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Duval, J.; Hopper, K. Urine osmolality and electrolytes. In Small Animal Critical Care Medicine, 3rd ed.; Elsevier: St. Louis, MO, USA, 2022; pp. 369–372. [Google Scholar]
- van Vonderen, I.K.; Kooistra, H.S.; Rijnberk, A. Intra- and interindividual variation in urine osmolality and urine specific gravity in healthy pet dogs of various ages. J. Vet. Intern. Med. 1997, 11, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.N.; Ahmed, N.; Nath, A.J.; Mahanta, D.; Kalita, M.K. Urinalysis in dog and cat: A review. Vet. World 2020, 13, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.I.; Jewell, D.E. Balance of saccharolysis and proteolysis underpins improvements in stool quality induced by adding a fiber bundle containing bound polyphenols to either hydrolyzed meat or grain-rich foods. Gut Microbes 2019, 10, 298–320. [Google Scholar] [CrossRef]
- Simpson, J.M.; Martineau, B.; Jones, W.E.; Ballam, J.M.; Mackie, R.I. Characterization of fecal bacterial populations in canines: Effects of age, breed and dietary fiber. Microb. Ecol. 2002, 44, 186–197. [Google Scholar] [CrossRef]
- Lin, C.Y.; Alexander, C.; Steelman, A.J.; Warzecha, C.M.; de Godoy, M.R.C.; Swanson, K.S. Effects of a Saccharomyces cerevisiae fermentation product on fecal characteristics, nutrient digestibility, fecal fermentative end-products, fecal microbial populations, immune function, and diet palatability in adult dogs1. J. Anim. Sci. 2019, 97, 1586–1599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Sun, H.; Gao, Z.; Zhao, H.; Peng, Z.; Zhang, T. Evaluation of effective energy values of six protein ingredients fed to beagles and predictive energy equations for protein feedstuff. Animals 2024, 14, 1599. [Google Scholar] [CrossRef]
- Baer, D.J.; Rumpler, W.V.; Miles, C.W.; Fahey, G.C., Jr. Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. J. Nutr. 1997, 127, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Marx, F.R.; Machado, G.S.; Kessler, A.d.M.; Trevizan, L. Dietary fibre type influences protein and fat digestibility in dogs. Ital. J. Anim. Sci. 2022, 21, 1411–1418. [Google Scholar] [CrossRef]
Food with Test Ingredient | ||||
---|---|---|---|---|
Ingredient, % | Control Food | 15% | 30% | 40% |
Brewed lamb protein (test ingredient) | 0 | 15 | 30 | 40 |
Egg protein | 24.63 | 15.48 | 6.22 | 0.10 |
Brewer’s rice | 23.03 | 22.08 | 21.50 | 21.07 |
Whole wheat | 23.03 | 22.08 | 21.50 | 21.07 |
Cellulose | 11.21 | 7.08 | 2.89 | 0.10 |
Chicken fat | 5.98 | 5.62 | 5.25 | 5.00 |
Dicalcium phosphate | 3.03 | 2.00 | 2.00 | 2.00 |
Palatant | 2.75 | 2.75 | 2.75 | 2.75 |
Lactic acid | 1.20 | 1.20 | 1.20 | 1.20 |
Soybean oil | 1.00 | 1.00 | 1.00 | 1.00 |
Sodium chloride | 1.00 | 1.00 | 1.00 | 1.00 |
Potassium chloride | 1.00 | 1.00 | 1.00 | 1.00 |
Natural flavor | 0.75 | 0.75 | 0.75 | 0.75 |
Choline chloride | 0.50 | 0.50 | 0.50 | 0.50 |
Calcium carbonate | 0.44 | 2.00 | 2.00 | 2.00 |
Mineral premix | 0.25 | 0.25 | 0.25 | 0.25 |
Vitamin premix | 0.17 | 0.17 | 0.17 | 0.17 |
Antioxidant | 0.04 | 0.04 | 0.04 | 0.04 |
Food with Test Ingredient | ||||
---|---|---|---|---|
Analyte | Control Food | 15% | 30% | 40% |
Calories (modified Atwater), kcal/kg | 3128.48 | 3192.07 | 3281.55 | 3340.95 |
Choline, ppm | 3630.00 | 3720.00 | 3890.00 | 4060.00 |
Macronutrients | ||||
Ash | 6.01 | 6.81 | 7.06 | 7.29 |
Moisture | 7.95 | 7.69 | 7.89 | 8.37 |
Crude protein | 24.50 | 23.69 | 24.81 | 24.38 |
Crude fat | 9.47 | 10.12 | 9.77 | 9.71 |
Crude fiber | 7.80 | 4.80 | 2.50 | 0.90 |
NFE | 44.27 | 46.89 | 47.97 | 49.35 |
Total dietary fiber | 14.70 | 13.00 | 13.10 | 12.30 |
Insoluble fiber | 14.20 | 11.70 | 11.30 | 10.10 |
Soluble fiber | 0.50 | 1.30 | 1.80 | 2.20 |
Essential amino acids | ||||
Arginine | 1.31 | 1.34 | 1.40 | 1.35 |
Histidine | 0.60 | 0.52 | 0.51 | 0.48 |
Isoleucine | 1.25 | 1.23 | 1.29 | 1.26 |
Leucine | 2.10 | 2.00 | 2.06 | 1.99 |
Lysine | 1.70 | 1.71 | 1.85 | 1.81 |
Methionine | 0.77 | 0.58 | 0.48 | 0.37 |
Phenylalanine | 1.47 | 1.26 | 1.19 | 1.08 |
Threonine | 1.09 | 1.10 | 1.18 | 1.15 |
Tryptophan | 0.40 | 0.34 | 0.32 | 0.29 |
Valine | 1.74 | 1.46 | 1.36 | 1.20 |
Non-essential amino acids | ||||
Alanine | 1.50 | 1.42 | 1.45 | 1.38 |
Aspartic acid | 2.55 | 2.37 | 2.41 | 2.25 |
Cystine | 0.70 | 0.49 | 0.36 | 0.27 |
Glutamic acid | 3.70 | 3.50 | 3.53 | 3.39 |
Glycine | 0.95 | 0.99 | 1.07 | 1.08 |
Proline | 1.00 | 0.94 | 0.90 | 0.84 |
Serine | 1.66 | 1.40 | 1.32 | 1.17 |
Taurine, ppm | <100 | <100 | <100 | <100 |
Tyrosine | 0.59 | 0.69 | 0.73 | 0.67 |
Fatty acids | ||||
Omega-3 Sum | 0.15 | 0.16 | 0.13 | 0.15 |
Omega-6 Sum | 2.08 | 2.13 | 1.97 | 1.87 |
Omega-6: Omega-3 | 13.87 | 13.31 | 15.15 | 12.47 |
EPA (C20:5) | <0.02 | <0.02 | <0.02 | <0.02 |
DHA (C22:6) | <0.02 | <0.02 | <0.02 | <0.02 |
Minerals | ||||
Calcium | 1.00 | 1.18 | 1.27 | 1.09 |
Phosphorus | 0.83 | 0.74 | 0.94 | 1.01 |
Sodium | 0.61 | 0.52 | 0.51 | 0.48 |
Chloride | 1.36 | 1.35 | 1.33 | 1.36 |
Potassium | 0.82 | 0.93 | 1.13 | 1.16 |
Magnesium | 0.09 | 0.10 | 0.12 | 0.12 |
Sulfur | 0.48 | 0.37 | 0.31 | 0.27 |
Zinc, ppm | 425.00 | 398.00 | 445.00 | 445.00 |
Food with Test Ingredient | ||||
---|---|---|---|---|
Parameter | Control Food | 15% | 30% | 40% |
Body weight, kg | 9.89 ± 1.52 | 9.68 ± 1.25 | 9.73 ± 1.75 | 9.65 ± 1.26 |
Body condition score | 3.1 ± 0.32 | 3.11 ± 0.33 | 3.0 ± 0 | 3.0 ± 0 |
Food intake, % | 96.7 ± 5.7 | 95.7 ± 6.6 | 95.8 ± 6.6 | 97.4 ± 2.1 |
Reference Range | Food with Test Ingredient | ||||
---|---|---|---|---|---|
Parameter | Control Food | 15% | 30% | 40% | |
ALP, U/L | 17.4–135.2 | ||||
Day 0 | 114.47 ± 111.50 | 120.17 ± 70.52 | 141.96 ± 101.49 | 128.84 ± 68.0 | |
Day 177 | 98.98 ± 88.08 | 114.63 ± 119.92 | 120.31 ± 57.21 | 96.20 ± 51.36 | |
ALT, U/L | 22.3–90 | ||||
Day 0 | 78.13 ± 61.16 | 84.29 ± 80.33 | 69.88 ± 39.66 | 49.29 ± 20.46 | |
Day 177 | 110.87 ± 188.02 | 130.49 ± 256.12 | 52.58 ± 30.39 | 34.14 ± 11.72 | |
AST, U/L | 22–46 | ||||
Day 0 | 45.62 ± 23.28 | 37.43 ± 7.76 | 46.55 ± 19.42 | 35.34 ± 7.90 | |
Day 177 | 40.88 ± 24.85 | 44.92 ± 37.49 | 34.05 ± 9.95 | 29.69 ± 6.08 | |
Albumin, g/dL | 2.97–4.04 | ||||
Day 0 | 3.42 ± 0.21 | 3.45 ± 0.26 | 3.37 ± 0.35 | 3.54 ± 0.20 | |
Day 177 | 3.29 ± 0.19 | 3.47 ± 0.16 | 3.35 ± 0.43 | 3.40 ± 0.20 | |
Albumin:globulin ratio | 1.2–2.46 | ||||
Day 0 | 1.80 ± 0.26 | 1.63 ± 0.29 | 1.68 ± 0.39 | 1.75 ± 0.36 | |
Day 177 | 1.61 ± 0.21 | 1.54 ± 0.26 | 1.58 ± 0.32 | 1.54 ± 0.29 | |
BUN, mg/dL | 8–25.1 | ||||
Day 0 | 14.37 ± 1.73 | 13.86 ± 2.40 | 14.62 ± 2.92 | 14.01 ± 2.61 | |
Day 177 | 14.53 ± 1.54 | 12.52 ± 1.54 | 15.50 ± 2.71 | 13.90 ± 2.20 | |
Bilirubin total, mg/dL | 0–0.11 | ||||
Day 0 | 0.07 ± 0.01 | 0.06 ± 0.02 | 0.08 ± 0.03 | 0.07 ± 0.02 | |
Day 177 | 0.07 ± 0.01 | 0.07 ± 0.02 | 0.05 ± 0.02 | 0.06 ± 0.02 | |
Calcium, mg/dL | 9.2–10.7 | ||||
Day 0 | 9.76 ± 0.29 | 9.69 ± 0.30 | 9.70 ± 0.48 | 9.95 ± 0.31 | |
Day 177 | 9.92 ± 0.20 | 10.02 ± 0.16 | 10.08 ± 0.45 | 10.23 ± 0.31 | |
Chloride, mmol/L | 108.1–117 | ||||
Day 0 | 114.58 ± 1.29 | 114.06 ± 1.11 | 114.02 ± 2.02 | 113.92 ± 2.02 | |
Day 177 | 113.29 ± 1.12 | 111.41 ± 1.16 | 111.52 ± 1.47 | 111.53 ± 1.93 | |
Cholesterol, mg/dL | 136–328 | ||||
Day 0 | 217.4 ± 52.85 | 209.60 ± 72.84 | 193.7 ± 50.65 | 242.7 ± 58.35 | |
Day 177 | 253.1 ± 63.41 | 206.0 ± 54.12 * | 200.6 ± 63.52 * | 220.44 ± 62.72 * | |
Creatinine, mg/dL | 0.5–1.0 | ||||
Day 0 | 0.63 ± 0.10 | 0.58 ± 0.10 | 0.56 ± 0.08 | 0.63 ± 0.11 | |
Day 177 | 0.71 ± 0.10 | 0.67 ± 0.12 | 0.67 ± 0.10 | 0.72 ± 0.10 | |
Fructosamine, µmol/L | 228–314 | ||||
Day 0 | 284.4 ± 24.68 | 303.10 ± 37.49 | 289.40 ± 20.84 | 298.10 ± 22.05 | |
Day 177 | 278.0 ± 21.23 | 296.22 ± 42.76 | 277.7 ± 28.16 | 279.67 ± 25.49 | |
GGT, U/L | 2.18–7.4 | ||||
Day 0 | 2.58 ± 2.07 | 0.01 ± 3.47 | 0.78 ± 2.68 | 2.17 ± 3.11 | |
Day 177 | 0.67 ± 3.59 | 0.54 ± 7.80 | 0.43 ± 0.85 | 0.99 ± 2.04 | |
Globulin, g/dL | 1.48–2.6 | ||||
Day 0 | 1.92 ± 0.20 | 2.16 ± 0.31 | 2.08 ± 0.34 | 2.08 ± 0.35 | |
Day 177 | 2.06 ± 0.18 | 2.29 ± 0.31 | 2.16 ± 0.29 | 2.26 ± 0.31 | |
Glucose, mg/dL | 73.6–112.5 | ||||
Day 0 | 92.69 ± 9.11 | 93.86 ± 8.39 | 94.98 ± 6.64 | 91.53 ± 8.47 | |
Day 177 | 88.59 ± 5.01 | 90.79 ± 5.02 | 98.16 ± 7.43 | 89.43 ± 6.92 | |
Homocysteine, µmol/L | 5.0–26.38 | ||||
Day 0 | 14.04 ± 7.89 | 16.41 ± 11.62 | 18.41 ± 9.19 | 12.50 ± 5.09 | |
Day 177 | 11.52 ± 4.59 | 8.05 ± 1.17 * | 9.73 ± 1.69 | 9.83 ± 2.61 | |
Phosphorus, mg/dL | 2.2–4.5 | ||||
Day 0 | 3.45 ± 0.39 | 3.62 ± 0.33 | 3.65 ± 0.51 | 3.56 ± 0.40 | |
Day 177 | 3.29 ± 0.37 | 3.40 ± 0.33 | 3.53 ± 0.39 | 3.51 ± 0.48 | |
Triglycerides, mg/dL | 25.0–133.0 | ||||
Day 0 | 68.33 ± 11.09 | 96.27 ± 34.36 | 80.11 ± 24.81 | 78.03 ± 52.39 | |
Day 177 | 71.64 ± 20.65 | 81.37 ± 24.39 | 76.29 ± 24.76 | 90.79 ± 32.62 |
Reference Range | Food with Test Ingredient | ||||
---|---|---|---|---|---|
Parameter | Control Food | 15% | 30% | 40% | |
CRP, µg/mL | <10 | ||||
Day 0 | 6.22 ± 4.85 | 4.68 ± 2.79 | 3.87 ± 2.01 | 4.57 ± 3.59 | |
Day 177 | 7.44 ± 9.0 | 4.88 ± 3.87 | 4.62 ± 7.07 | 3.40 ± 3.16 | |
IgE, µg/mL | 1–41 | ||||
Day 0 | 11.91 ± 12.86 | 19.56 ± 19.76 | 22.02 ± 18.07 | 10.71 ± 10.46 | |
Day 177 | 14.01 ± 11.97 | 18.85 ± 14.99 | 22.12 ± 18.18 | 13.14 ± 11.07 | |
Whole blood taurine, nmol/mL | >200 * | ||||
Day 0 | 306.3 ± 29.95 | 296.70 ± 45.57 | 285.30 ± 42.93 | 287.70 ± 56.35 | |
Day 177 | 219.0 ± 24.34 | 190.89 ± 27.65 | 180.80 ± 16.98 | 177.56 ± 24.72 |
Food with Test Ingredient | ||||
---|---|---|---|---|
Parameter | Control Food | 15% | 30% | 40% |
Fecal score, 1–5 scale | ||||
Day 0 | 4.90 ± 0.32 | 4.80 ± 0.63 | 5.0 ± 0 | 5.0 ± 0 |
Day 27 | 4.65 ± 0.47 | 4.05 ± 0.96 | 3.50 ± 1.0 * | 3.40 ± 1.07 * |
Day 54 | 4.80 ± 0.42 | 4.35 ± 0.88 | 3.94 ± 0.81 * | 3.65 ± 0.94 * |
Day 117 | 4.60 ± 0.52 | 4.60 ± 0.52 | 3.35 ± 0.53 * | 3.11 ± 0.60 * |
Day 174 | 4.80 ± 0.48 | 4.67 ± 0.50 | 3.70 ± 0.98 * | 3.83 ± 0.61 * |
pH | ||||
Day 0 | 6.13 ± 0.14 | 6.20 ± 0.20 | 6.20 ± 0.23 | 6.18 ± 0.25 |
Day 27 | 6.04 ± 0.13 | 5.78 ± 0.25 * | 5.52 ± 0.20 * | 5.52 ± 0.19 * |
Day 54 | 6.03 ± 0.18 | 5.77 ± 0.17 * | 5.61 ± 0.25 * | 5.47 ± 0.18 * |
Day 117 | 6.05 ± 0.19 | 5.65 ± 0.18 * | 5.65 ± 0.25 * | 5.40 ± 0.23 * |
Day 174 | 5.84 ± 0.34 | 5.59 ± 0.20 * | 5.61 ± 0.20 | 5.50 ± 0.17 * |
Calprotectin, ng/g | ||||
Day 0 | 45.40 ± 35.89 | 67.78 ± 51.53 | 95.26 ± 65.0 | 72.40 ± 64.96 |
Day 27 | 63.72 ± 50.32 | 148.93 ± 294.83 | 79.57 ± 68.85 | 298.34 ± 370.44 * |
Day 54 | 22.56 ± 27.46 | 74.10 ± 77.48 | 106.98 ± 110.66 | 84.97 ± 71.99 |
Day 117 | 62.52 ± 54.48 | 87.82 ± 86.49 | 122.06 ± 269.97 | 49.37 ± 55.99 |
Day 174 | 79.31 ± 80.43 | 103.13 ± 80.66 | 86.65 ± 88.66 | 107.50 ± 97.54 |
IgA, mg/g | ||||
Day 0 | 7.19 ± 4.99 | 5.83 ± 4.96 | 4.78 ± 3.40 | 4.47 ± 3.07 |
Day 27 | 4.35 ± 3.02 | 6.24 ± 5.10 | 6.99 ± 6.84 | 9.05 ± 5.13 * |
Day 54 | 4.72 ± 3.45 | 4.53 ± 3.67 | 8.28 ± 8.25 | 9.42 ± 5.76 * |
Day 117 | 9.82 ± 10.10 | 4.57 ± 1.82 | 13.84 ± 11.55 * | 10.27 ± 9.27 |
Day 174 | 6.39 ± 5.04 | 6.34 ± 6.94 | 12.0 ± 15.09 | 7.19 ± 5.06 |
Alpha 1-proteinase inhibitor, µg/g | ||||
Day 0 | 29.98 ± 18.42 | 57.74 ± 56.93 | 66.07 ± 59.82 | 57.11 ± 71.94 |
Day 27 | 59.54 ± 63.59 | 146.92 ± 338.50 | 65.63 ± 86.92 | 288.09 ± 507.97 |
Day 54 | 33.40 ± 47.97 | 93.07 ± 99.11 | 108.02 ± 130.68 | 48.84 ± 50.30 |
Day 117 | 57.76 ± 41.76 | 78.67 ± 96.86 | 147.25 ± 365.98 | 47.15 ± 49.23 |
Day 174 | 68.73 ± 65.86 | 74.65 ± 67.73 | 84.11 ± 72.39 | 80.74 ± 63.43 |
Food with test Ingredient | ||||
Parameter | Control Food | 15% | 30% | 40% |
True protein digestibility | 92.2 ± 6.1 | 91.1 ± 3.2 | 93.5 ± 1.6 | 91.4 ± 1.8 |
Apparent protein digestibility | 88.5 ± 5.7 | 87.1 ± 2.7 | 88.0 ± 1.0 | 86.7 ± 2.1 |
Apparent fat digestibility | 92.4 ± 2.6 | 85.9 ± 2.4 * | 84.0 ± 1.9 * | 81.0 ± 2.7 * |
Apparent crude fiber digestibility | 9.7 ± 8.3 | 4.2 ± 11.0 | 4.1 ± 12.8 | −5.0 ± 16.0 |
Apparent neutral detergent fiber digestibility | 18.6 ± 6.8 | 5.0 ± 12.5 | 18.8 ± 14.9 | 24.8 ± 12.3 |
Apparent dry matter digestibility | 79.3 ± 2.8 | 80.7 ± 2.7 | 83.2 ± 1.1 * | 85.0 ± 2.1 * |
Food digestible energy, kcal/kg | 3610.9 ± 127.4 | 3661.7 ± 125.1 | 3693.6 ± 35.7 | 3705.8 ± 84.8 |
Food gross energy, kcal/kg | 4361.2 ± 0 | 4383.3 ± 0 * | 4339.2 ± 0 * | 4295.1 ± 0 * |
Food metabolizable energy, kcal/kg | 3339.9 ± 110.8 | 3402.7 ± 117.2 | 3420.8 ± 35.1 | 3438.4 ± 78.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
French, S.; Cochrane, C.-Y.; Faurot, M.; Audibert, P.; Belloso, T.; Badri, D.V. Safety and Digestibility of a Novel Ingredient, Brewed Lamb Protein, in Healthy Adult Dogs. Animals 2025, 15, 427. https://doi.org/10.3390/ani15030427
French S, Cochrane C-Y, Faurot M, Audibert P, Belloso T, Badri DV. Safety and Digestibility of a Novel Ingredient, Brewed Lamb Protein, in Healthy Adult Dogs. Animals. 2025; 15(3):427. https://doi.org/10.3390/ani15030427
Chicago/Turabian StyleFrench, Stephen, Chun-Yen Cochrane, Michael Faurot, Pernilla Audibert, Tomas Belloso, and Dayakar V. Badri. 2025. "Safety and Digestibility of a Novel Ingredient, Brewed Lamb Protein, in Healthy Adult Dogs" Animals 15, no. 3: 427. https://doi.org/10.3390/ani15030427
APA StyleFrench, S., Cochrane, C.-Y., Faurot, M., Audibert, P., Belloso, T., & Badri, D. V. (2025). Safety and Digestibility of a Novel Ingredient, Brewed Lamb Protein, in Healthy Adult Dogs. Animals, 15(3), 427. https://doi.org/10.3390/ani15030427