Identified Candidate Genes of Semen Trait in Three Pig Breeds Through Weighted GWAS and Multi-Tissue Transcriptome Analysis
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Population and Phenotype Data
2.2. Genotype Data
2.3. Variance Component Estimation and DEBV Calculation
2.4. Weighted Genome-Wide Association Study
2.5. Gene Annotation and Functional Enrichment Analysis
2.6. Integrative of GWAS Results and RNA-Seq Data
3. Results
3.1. Phenotypic Distribution and Variance Components Estimation
3.2. Weight Genome-Wide Association Study and Mining Candidate Genes
3.3. Functional Enrichment Analyses of Candidate Genes
3.4. GWAS and Transcriptome Co-Localization Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knox, R.V. Artificial insemination in pigs today. Theriogenology 2016, 85, 83–93. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Q.; Liao, W.; Zhang, W.; Li, T.; Li, J.; Zhang, Z.; Huang, X.; Zhang, H. Identification of new candidate genes related to semen traits in Duroc pigs through weighted single-step GWAS. Animals 2023, 13, 365. [Google Scholar] [CrossRef]
- Nagai, R.; Kinukawa, M.; Watanabe, T.; Ogino, A.; Kurogi, K.; Adachi, K.; Satoh, M.; Uemoto, Y. Genome-wide detection of non-additive quantitative trait loci for semen production traits in beef and dairy bulls. Animal 2022, 16, 100472. [Google Scholar] [CrossRef]
- Dehghan, A. Genome-Wide Association Studies. Methods Mol. Biol. 2018, 1793, 37–49. [Google Scholar] [CrossRef]
- Diniz, D.B.; Lopes, M.S.; Broekhuijse, M.L.; Lopes, P.S.; Harlizius, B.; Guimaraes, S.E.; Duijvesteijn, N.; Knol, E.F.; Silva, F.F. A genome-wide association study reveals a novel candidate gene for sperm motility in pigs. Anim. Reprod. Sci. 2014, 151, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Marques, D.B.D.; Bastiaansen, J.W.M.; Broekhuijse, M.; Lopes, M.S.; Knol, E.F.; Harlizius, B.; Guimaraes, S.E.F.; Silva, F.F.; Lopes, P.S. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genet. Sel. Evol. 2018, 50, 40. [Google Scholar] [CrossRef] [PubMed]
- Godia, M.; Reverter, A.; Gonzalez-Prendes, R.; Ramayo-Caldas, Y.; Castello, A.; Rodriguez-Gil, J.E.; Sanchez, A.; Clop, A. A systems biology framework integrating GWAS and RNA-seq to shed light on the molecular basis of sperm quality in swine. Genet. Sel. Evol. 2020, 52, 72. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Chen, Y.; Liu, X.; Zhao, Y.; Zhu, L.; Liu, A.; Jiang, W.; Peng, X.; Zhang, C.; Tang, Z.; et al. Weighted single-step GWAS identified candidate genes associated with semen traits in a Duroc boar population. BMC Genom. 2019, 20, 797. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, N.; Li, X.; El-Ashram, S.; Wang, Z.; Zhu, L.; Jiang, W.; Peng, X.; Zhang, C.; Chen, Y.; et al. Identifying candidate genes associated with sperm morphology abnormalities using weighted single-step GWAS in a Duroc boar population. Theriogenology 2020, 141, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Mei, Q.; Fu, C.; Sahana, G.; Chen, Y.; Yin, L.; Miao, Y.; Zhao, S.; Xiang, T. Identification of new semen trait-related candidate genes in Duroc boars through genome-wide association and weighted gene co-expression network analyses. J. Anim. Sci. 2021, 99, skab188. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Hu, L.; Brito, L.F.; Dou, J.; Sammad, A.; Chang, Y.; Ma, L.; Guo, G.; Liu, L.; Zhai, L.; et al. Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle. J. Anim. Sci. Biotechnol. 2022, 13, 108. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; VanRaden, P.M.; Null, D.J.; O’Connell, J.R.; Cole, J.B. Major quantitative trait loci influencing milk production and conformation traits in Guernsey dairy cattle detected on Bos taurus autosome 19. J. Dairy. Sci. 2021, 104, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lim, B.; Cho, J.; Lee, S.; Dang, C.G.; Jeon, J.H.; Kim, J.M.; Lee, J. Genome-wide identification of candidate genes for milk production traits in Korean Holstein cattle. Animals 2021, 11, 1392. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, Y.; Canela-Xandri, O.; Wang, S.; Yu, Y.; Cai, W.; Li, B.; Xiang, R.; Chamberlain, A.J.; Pairo-Castineira, E.; et al. A multi-tissue atlas of regulatory variants in cattle. Nat. Genet. 2022, 54, 1438–1447. [Google Scholar] [CrossRef]
- Teng, J.; Gao, Y.; Yin, H.; Bai, Z.; Liu, S.; Zeng, H.; Bai, L.; Cai, Z.; Zhao, B.; Li, X.; et al. A compendium of genetic regulatory effects across pig tissues. Nat. Genet. 2024, 56, 112–123. [Google Scholar] [CrossRef]
- Marques, D.B.D.; Lopes, M.S.; Broekhuijse, M.; Guimaraes, S.E.F.; Knol, E.F.; Bastiaansen, J.W.M.; Silva, F.F.; Lopes, P.S. Genetic parameters for semen quality and quantity traits in five pig lines. J. Anim. Sci. 2017, 95, 4251–4259. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Wei, H.; Zhou, Y.; Tan, J.; Sun, H.; Jiang, S.; Peng, J. Effects of feeding regimen on weight gain, semen characteristics, libido, and lameness in 170- to 250-kilogram Duroc boars. J. Anim. Sci. 2016, 94, 4666–4676. [Google Scholar] [CrossRef]
- Covarrubias-Pazaran, G. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLoS ONE 2016, 11, e0156744. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Madsen, P.; Srensen, P.; Su, G.; Damgaard, L.H.; Labouriau, R.E. DMU—A package for analyzing multivariate mixed models. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, 13–18 August 2006. [Google Scholar]
- VanRaden, P.M.; Van Tassell, C.P.; Wiggans, G.R.; Sonstegard, T.S.; Schnabel, R.D.; Taylor, J.F.; Schenkel, F.S. Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy. Sci. 2009, 92, 16–24. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, J. MMAP: Mixed Model Analysis for Pedigrees and Populations; University of Matyland School of Medicine: Baltimore, MD, USA, 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Yang, J.; Weedon, M.N.; Purcell, S.; Lettre, G.; Estrada, K.; Willer, C.J.; Smith, A.V.; Ingelsson, E.; O’Connell, J.R.; Mangino, M.; et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 2011, 19, 807–812. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- Hering, D.M.; Olenski, K.; Kaminski, S. Genome-wide association study for poor sperm motility in Holstein-Friesian bulls. Anim. Reprod. Sci. 2014, 146, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, B.; Wang, X.; Liu, X.; Zhang, Q.; Chen, Y. Estimation of genetic parameters and season effects for semen traits in three pig breeds of South China. J. Anim. Breed. Genet. 2019, 136, 183–189. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Shi, L.; Zhang, P.; Li, Y.; Li, M.; Tian, J.; Wang, L.; Zhao, F. GWAS of Reproductive Traits in Large White Pigs on Chip and Imputed Whole-Genome Sequencing Data. Int. J. Mol. Sci. 2022, 23, 13338. [Google Scholar] [CrossRef] [PubMed]
- Wu, C. Animals Genetics; Higher Education Press: Beijing, China, 2015; Volume 2, p. 382. [Google Scholar]
- Jeanson, L.; Copin, B.; Papon, J.F.; Dastot-Le Moal, F.; Duquesnoy, P.; Montantin, G.; Cadranel, J.; Corvol, H.; Coste, A.; Desir, J.; et al. RSPH3 mutations cause primary ciliary dyskinesia with central-complex defects and a near absence of radial spokes. Am. J. Hum. Genet. 2015, 97, 153–162. [Google Scholar] [CrossRef]
- Indu, S.; Sekhar, S.C.; Sengottaiyan, J.; Kumar, A.; Pillai, S.M.; Laloraya, M.; Kumar, P.G. Aberrant expression of dynein light chain 1 (DYNLT1) is associated with human male factor infertility. Mol. Cell Proteom. 2015, 14, 3185–3195. [Google Scholar] [CrossRef]
- Firat-Karalar, E.N.; Sante, J.; Elliott, S.; Stearns, T. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. J. Cell Sci. 2014, 127 Pt 19, 4128–4133. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Cong, J.; Zhang, Q.; He, X.; Zheng, R.; Yang, X.; Gao, Y.; Wu, H.; Lv, M.; Gu, Y.; et al. Bi-allelic mutations of DNAH10 cause primary male infertility with asthenoteratozoospermia in humans and mice. Am. J. Hum. Genet. 2021, 108, 1466–1477. [Google Scholar] [CrossRef]
- Freitas, M.J.; Silva, J.V.; Brothag, C.; Regadas-Correia, B.; Fardilha, M.; Vijayaraghavan, S. Isoform-specific GSK3A activity is negatively correlated with human sperm motility. Mol. Hum. Reprod. 2019, 25, 171–183. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Lin, S.; Yang, B.; Huang, W.; Wu, H.; Chen, Y.; Yang, L.; Luo, M.; Guo, H.; et al. A nonsense mutation in Ccdc62 gene is responsible for spermiogenesis defects and male infertility in repro29/repro29 mice. Biol. Reprod. 2017, 96, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Oud, M.S.; Okutman, O.; Hendricks, L.A.J.; de Vries, P.F.; Houston, B.J.; Vissers, L.; O’Bryan, M.K.; Ramos, L.; Chemes, H.E.; Viville, S.; et al. Exome sequencing reveals novel causes as well as new candidate genes for human globozoospermia. Hum. Reprod. 2020, 35, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhou, T.; Huang, Q.; Zhang, S.; Li, W.; Zhang, L.; Hess, R.A.; Pazour, G.J.; Zhang, Z. Intraflagellar transport protein 74 is essential for spermatogenesis and male fertility in micedagger. Biol. Reprod. 2019, 101, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Yuan, S.; Quan, C.; Huang, Q.; Zhou, Q.; Yap, Y.; Shi, L.; Zhang, D.; Guest, T.; Li, W.; et al. The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility. Am. J. Physiol. Cell Physiol. 2020, 318, C1092–C1106. [Google Scholar] [CrossRef] [PubMed]
- Yamano, Y.; Ohyama, K.; Sano, T.; Ohta, M.; Shimada, A.; Hirakawa, Y.; Sugimoto, M.; Morishima, I. A novel spermatogenesis-related factor-1 gene expressed in maturing rat testis. Biochem. Biophys. Res. Commun. 2001, 289, 888–893. [Google Scholar] [CrossRef]
- Yuan, S.; Stratton, C.J.; Bao, J.; Zheng, H.; Bhetwal, B.P.; Yanagimachi, R.; Yan, W. Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc. Natl. Acad. Sci. USA 2015, 112, E430–E439. [Google Scholar] [CrossRef] [PubMed]
- Sujit, K.M.; Singh, V.; Trivedi, S.; Singh, K.; Gupta, G.; Rajender, S. Increased DNA methylation in the spermatogenesis-associated (SPATA) genes correlates with infertility. Andrology 2020, 8, 602–609. [Google Scholar] [CrossRef]
- Takemoto, N.; Yoshimura, T.; Miyazaki, S.; Tashiro, F.; Miyazaki, J. Gtsf1l and Gtsf2 are specifically expressed in gonocytes and spermatids but are not essential for spermatogenesis. PLoS ONE 2016, 11, e0150390. [Google Scholar] [CrossRef]
- Olcese, C.; Patel, M.P.; Shoemark, A.; Kiviluoto, S.; Legendre, M.; Williams, H.J.; Vaughan, C.K.; Hayward, J.; Goldenberg, A.; Emes, R.D.; et al. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat. Commun. 2017, 8, 14279. [Google Scholar] [CrossRef] [PubMed]
- Pennarun, G.; Chapelin, C.; Escudier, E.; Bridoux, A.-M.; Dastot, F.; Cacheux, V.; Goossens, M.; Amselem, S.; Duriez, B. The human dynein intermediate chain 2 gene (DNAI2): Cloning, mapping, expression pattern, and evaluation as a candidate for primary ciliary dyskinesia. Hum Genet. 2000, 107, 642–649. [Google Scholar] [CrossRef]
- Loges, N.T.; Olbrich, H.; Fenske, L.; Mussaffi, H.; Horvath, J.; Fliegauf, M.; Kuhl, H.; Baktai, G.; Peterffy, E.; Chodhari, R.; et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am. J. Hum. Genet. 2008, 83, 547–558. [Google Scholar] [CrossRef]
- Al-Mutairi, D.A.; Alsabah, B.H.; Alkhaledi, B.A.; Pennekamp, P.; Omran, H. Identification of a novel founder variant in DNAI2 cause primary ciliary dyskinesia in five consanguineous families derived from a single tribe descendant of Arabian Peninsula. Front. Genet. 2022, 13, 1017280. [Google Scholar] [CrossRef]
- Xu, K.; Yang, Y.; Feng, G.H.; Sun, B.F.; Chen, J.Q.; Li, Y.F.; Chen, Y.S.; Zhang, X.X.; Wang, C.X.; Jiang, L.Y.; et al. Mettl3-mediated m(6)A regulates spermatogonial differentiation and meiosis initiation. Cell Res. 2017, 27, 1100–1114. [Google Scholar] [CrossRef]
- Nishimura, T.; Nagamori, I.; Nakatani, T.; Izumi, N.; Tomari, Y.; Kuramochi-Miyagawa, S.; Nakano, T. PNLDC1, mouse pre-piRNA Trimmer, is required for meiotic and post-meiotic male germ cell development. EMBO Rep. 2018, 19, e44957. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Liu, J.; Dong, K.; Midic, U.; Hess, R.A.; Xie, H.; Demireva, E.Y.; Chen, C. PNLDC1 is essential for piRNA 3′ end trimming and transposon silencing during spermatogenesis in mice. Nat. Commun. 2017, 8, 819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, R.; Cui, Y.; Zhu, Z.; Zhang, Y.; Wu, H.; Zheng, B.; Yue, Q.; Bai, S.; Zeng, W.; et al. An essential role for PNLDC1 in piRNA 3′ end trimming and male fertility in mice. Cell Res. 2017, 27, 1392–1396. [Google Scholar] [CrossRef]
- Bronkhorst, A.W.; Ketting, R.F. Trimming it short: PNLDC1 is required for piRNA maturation during mouse spermatogenesis. EMBO Rep. 2018, 19, e45824. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N. Novel insights into the molecular mechanism of sperm-egg fusion via IZUMO1. J. Plant Res. 2017, 130, 475–478. [Google Scholar] [CrossRef]
- Wang, H.; Hong, X.; Kinsey, W.H. Sperm-oocyte signaling: The role of IZUMO1R and CD9 in PTK2B activation and actin remodeling at the sperm binding sitedagger. Biol. Reprod. 2021, 104, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhao, H.; Chen, T.; Tian, Y.; Li, M.; Wu, K.; Bian, Y.; Su, S.; Cao, Y.; Ning, Y.; et al. Mutational analysis of IZUMO1R in women with fertilization failure and polyspermy after in vitro fertilization. J. Assist. Reprod. Genet. 2018, 35, 539–544. [Google Scholar] [CrossRef]
- Wang, W.; Qu, R.; Dou, Q.; Wu, F.; Wang, W.; Chen, B.; Mu, J.; Zhang, Z.; Zhao, L.; Zhou, Z.; et al. Homozygous variants in PANX1 cause human oocyte death and female infertility. Eur. J. Hum. Genet. 2021, 29, 1396–1404. [Google Scholar] [CrossRef] [PubMed]
- Ottolenghi, C.; Moreira-Filho, C.; Mendonça, B.B.; Barbieri, M.; Fellous, M.; Berkovitz, G.D.; McElreavey, K. Absence of mutations involving the LIM homeobox domain gene LHX9 in 46,XY gonadal agenesis and dysgenesis. J. Clin. Endocrinol. Metab. 2001, 86, 2465–2469. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Singh, D.; Modi, D. LIM Homeodomain (LIM-HD) genes and their co-regulators in developing reproductive system and disorders of sex development. Sex. Dev. 2021, 16, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Tajouri, A.; Kharrat, M.; Hizem, S.; Zaghdoudi, H.; M’Rad, R.; Simic-Schleicher, G.; Kaiser, F.J.; Hiort, O.; Werner, R. In vitro functional characterization of the novel DHH mutations p.(Asn337Lysfs*24) and p.(Glu212Lys) associated with gonadal dysgenesis. Hum. Mutat. 2018, 39, 2097–2109. [Google Scholar] [CrossRef] [PubMed]
- Elzaiat, M.; Flatters, D.; Sierra-Diaz, D.C.; Legois, B.; Laissue, P.; Veitia, R.A. DHH pathogenic variants involved in 46,XY disorders of sex development differentially impact protein self-cleavage and structural conformation. Hum. Genet. 2020, 139, 1455–1470. [Google Scholar] [CrossRef]
- Mehta, P.; Singh, P.; Gupta, N.J.; Sankhwar, S.N.; Chakravarty, B.; Thangaraj, K.; Rajender, S. Mutations in the desert hedgehog (DHH) gene in the disorders of sexual differentiation and male infertility. J. Assist. Reprod. Genet. 2021, 38, 1871–1878. [Google Scholar] [CrossRef]
- Bower, R.; Tritschler, D.; Mills, K.V.; Heuser, T.; Nicastro, D.; Porter, M.E. DRC2/CCDC65 is a central hub for assembly of the nexin-dynein regulatory complex and other regulators of ciliary and flagellar motility. Mol. Biol. Cell 2018, 29, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Horani, A.; Brody, S.L.; Ferkol, T.W.; Shoseyov, D.; Wasserman, M.G.; Ta-shma, A.; Wilson, K.S.; Bayly, P.V.; Amirav, I.; Cohen-Cymberknoh, M.; et al. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS ONE 2013, 8, e72299. [Google Scholar] [CrossRef]
Traits a | Breed | Number of Boars | Number of Records | Mean ± SD | Min | Max | (SE) | (SE) |
---|---|---|---|---|---|---|---|---|
SPMOT/% | Duroc | 382 | 14,071 | 81.25 a ± 12.36 | 10.00 | 100.00 | 0.33 (0.06) | 0.39 (0.02) |
Landrace | 290 | 7826 | 75.42 b ± 15.92 | 10.00 | 100.00 | 0.20 (0.07) | 0.33 (0.03) | |
Yorkshire | 264 | 6099 | 80.72 a ± 12.97 | 11.00 | 100.00 | 0.18 (0.04) | 0.34 (0.02) | |
SPPMOT/% | Duroc | 382 | 13,999 | 26.64 c ± 18.44 | 1.00 | 100.00 | 0.19 (0.04) | 0.23 (0.02) |
Landrace | 290 | 7793 | 38.85 b ± 21.19 | 1.00 | 100.00 | 0.20 (0.06) | 0.23 (0.02) | |
Yorkshire | 264 | 6089 | 41.21 a ± 19.82 | 1.00 | 100.00 | 0.18 (0.07) | 0.20 (0.02) | |
SPABR/% | Duroc | 382 | 14,128 | 28.13 a ± 12.37 | 2.00 | 100.00 | 0.35 (0.08) | 0.62 (0.02) |
Landrace | 290 | 7860 | 20.49 b ± 13.80 | 1.00 | 100.00 | 0.27 (0.13) | 0.71 (0.02) | |
Yorkshire | 264 | 6110 | 19.99 b ± 11.50 | 2.00 | 84.00 | 0.14 (0.09) | 0.54 (0.02) | |
SPCOUNT/billions/mL | Duroc | 382 | 13,877 | 34.97 b ± 18.85 | 5.00 | 177.90 | 0.25 (0.05) | 0.33 (0.02) |
Landrace | 290 | 7723 | 36.51 a ± 23.31 | 5.01 | 322.00 | 0.10 (0.05) | 0.20 (0.02) | |
Yorkshire | 264 | 6051 | 33.29 c ± 20.33 | 5.02 | 294.80 | 0.14 (0.06) | 0.20 (0.02) |
Breed | Trait a | Chr | Position | RS Number | MAF | p-Value | FDR | gVar(%) b | Number c | Candidate Genes d |
---|---|---|---|---|---|---|---|---|---|---|
Duroc | SPPMOT | 5 | 87173753 | rs325309529 | 0.36 | 3.11 × 10−6 | 0.0114 | 0.067 | 15 | CCDC38 |
5 | 87197703 | rs80898749 | 0.35 | 1.12 × 10−6 | 0.0113 | 0.073 | 15 | |||
14 | 29085576 | rs81235122 | 0.29 | 7.47 × 10−6 | 0.0190 | 0.074 | 32 | DNAH10, SBNO1 | ||
14 | 29522138 | rs80960843 | 0.29 | 7.47 × 10−6 | 0.0190 | 0.074 | 37 | CCDC62 | ||
14 | 32290770 | rs80896540 | 0.29 | 7.47 × 10−6 | 0.0190 | 0.074 | 25 | IFT81 | ||
SPABR | 6 | 163993991 | rs326805894 | 0.28 | 4.92 × 10−6 | 0.0479 | 0.083 | 18 | SPATA6 | |
17 | 45749556 | rs81466649 | 0.21 | 2.28 × 10−6 | 0.0422 | 0.088 | 10 | GTSF1L | ||
Landrace | SPABR | 12 | 7629663 | rs81243902 | 0.22 | 8.56 × 10−6 | 0.0413 | 0.198 | 14 | DNAI2 |
12 | 7655010 | rs81437887 | 0.22 | 8.56 × 10−6 | 0.0413 | 0.198 | 13 | |||
12 | 7733404 | rs81438684 | 0.22 | 8.56 × 10−6 | 0.0413 | 0.198 | 12 | |||
SPCOUNT | 7 | 76901392 | rs332051246 | 0.28 | 2.37 × 10−6 | 0.0360 | 0.069 | 21 | METTL3 | |
1 | 7949224 | rs80814693 | 0.33 | 1.76 × 10−6 | 0.0360 | 0.049 | 41 | PNLDC1, RSPH3, DYNLT1 | ||
Yorkshire | SPMOT | 1 | 9066284 | rs81339403 | 0.18 | 6.41 × 10−6 | 0.0487 | 0.119 | 13 | RSPH3, DYNLT1 |
10 | 21117838 | rs81422002 | 0.16 | 7.23 × 10−7 | 0.0180 | 0.154 | 7 | LHX9 | ||
SPABR | 9 | 26895909 | rs81408354 | 0.21 | 3.31 × 10−9 | 0.0001 | 0.151 | 19 | IZUMO1R, PANX1 | |
SPCOUNT | 5 | 14274707 | rs81382568 | 0.15 | 4.51 × 10−8 | 0.0002 | 0.039 | 23 | DHH, CCDC65 |
Term a | Count | p Value | Candidate Genes |
---|---|---|---|
GO:0005813~centrosome | 7 | 1.21 × 10−5 | CCDC38, IFT52, STIL, IFT81, CEP295, CCDC92, CCT5 |
GO:0005814~centriole | 5 | 5.06 × 10−5 | NEDD1, IFT52, STIL, CEP295, CCDC92 |
GO:0007224~smoothened signaling pathway | 4 | 2.97 × 10−4 | IFT52, STIL, DHH, TCTN2 |
GO:0005930~axoneme | 3 | 4.61 × 10−4 | DNAI2, DNAH10, CCDC65 |
GO:0008233~peptidase activity | 2 | 0.0016 | DHH, USP44 |
GO:0036064~ciliary basal body | 4 | 0.0017 | NEDD1, IFT52, IFT81, CCDC65 |
GO:0060271~cilium assembly | 4 | 0.0044 | IFT52, IFT81, TCTN2, TCTN1 |
GO:0005929~cilium | 3 | 0.0218 | IFT52, DNAH10, IFT81 |
GO:0007342~fusion of sperm to the egg plasma membrane | 2 | 0.0355 | IZUMO1R, LLCFC1 |
ssc05014: amyotrophic lateral sclerosis | 3 | 0.0035 | DNAI2, ATXN2, DNAH10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xu, Z.; Lin, Q.; Gao, Y.; Qiu, X.; Li, J.; Xie, S. Identified Candidate Genes of Semen Trait in Three Pig Breeds Through Weighted GWAS and Multi-Tissue Transcriptome Analysis. Animals 2025, 15, 438. https://doi.org/10.3390/ani15030438
Zhang X, Xu Z, Lin Q, Gao Y, Qiu X, Li J, Xie S. Identified Candidate Genes of Semen Trait in Three Pig Breeds Through Weighted GWAS and Multi-Tissue Transcriptome Analysis. Animals. 2025; 15(3):438. https://doi.org/10.3390/ani15030438
Chicago/Turabian StyleZhang, Xiaoke, Zhiting Xu, Qing Lin, Yahui Gao, Xiaotian Qiu, Jiaqi Li, and Shuihua Xie. 2025. "Identified Candidate Genes of Semen Trait in Three Pig Breeds Through Weighted GWAS and Multi-Tissue Transcriptome Analysis" Animals 15, no. 3: 438. https://doi.org/10.3390/ani15030438
APA StyleZhang, X., Xu, Z., Lin, Q., Gao, Y., Qiu, X., Li, J., & Xie, S. (2025). Identified Candidate Genes of Semen Trait in Three Pig Breeds Through Weighted GWAS and Multi-Tissue Transcriptome Analysis. Animals, 15(3), 438. https://doi.org/10.3390/ani15030438