Wearable Collar Technologies for Dairy Cows: A Systematized Review of the Current Applications and Future Innovations in Precision Livestock Farming
Simple Summary
Abstract
1. The Dairy Sector in the Global Economy
2. The Role of Precision Livestock Farming and Its Global Spread
3. PLF Collars: Typologies and Functions
4. Materials and Methods
5. Sensors Integrated in Wearable Collars
5.1. Accelerometer
5.1.1. Practical Applications
5.1.2. Existing Commercial Products
5.2. Gyroscope
5.2.1. Practical Applications
5.2.2. Existing Commercial Products
5.3. Magnetometer
5.3.1. Practical Applications
5.3.2. Existing Commercial Products
5.4. Microphone
5.4.1. Practical Applications
5.4.2. Existing Commercial Products
5.5. Radio Frequency Identification Tags
5.5.1. Practical Applications
5.5.2. Existing Commercial Products
5.6. Global Positioning System Receivers
5.6.1. Practical Applications
5.6.2. Existing Commercial Products
6. Smart Collars on the Market
Commercial Name | Sensors | Manufacturer | Related Studies |
---|---|---|---|
AfiCollar™ | Accelerometer | Afimilk | [37,59,60] |
RealTime SmartTag® | Accelerometer and RFID | BouMatic | [61] |
Cowlar® | Accelerometer | Cowlar | [71] |
MooMonitor+® | Accelerometer | Dairymaster | [62,63,64,65,66,67,68,69,70] |
Tru-test Active Collar Tag | RFID | Datamars | [127] |
DelPro™ | Accelerometer | DeLaval Inc. | [59] |
Digitanimal® | GPS | Digitanimal | [71,138] |
eSheperd® | GPS | Gallagher | [71,143] |
CowScout Neck® | Accelerometer | GEA Farm Technologies | [71] |
Halter® | GPS | Halter USA Inc. | [143] |
Qwes™ HR | Microphone, Accelerometer and RFID | Lely | [73,74] |
PinnaclePro Series | GPS | Lotek Engineering Inc. | [139] |
Vence® | GPS | Merck & Co., Inc. | [143] |
C-SENSE Cow collar | Accelerometer and RFID | Milkline | |
SmartTag neck® | Accelerometer | Nedap | [75,76,77,78,93] |
Nofence® | GPS | Nofence | [71,140,141,142,143] |
Heatime™ | Accelerometer | SCR Engineers Ltd. (Allflex) | [79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,144,145,146] |
Hi-Tag | Microphone | SCR Engineers Ltd. (Allflex) | [113,114,115,116,117,118] |
HR-tag | Accelerometer and RFID | SCR Engineers Ltd. (Allflex) | [94,95,128] |
SenseHub™ Dairy® | Accelerometer | SCR Engineers Ltd. (Allflex) | [96] |
CowTRAQ™ | Accelerometer | Waikato Milking Systems NZ |
7. Research Limitations
8. Future Perspective and Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- FAO. World Food and Agriculture—Statistical Yearbook 2023; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023. [Google Scholar]
- Barbaresi, A.; Bovo, M.; Torreggiani, D. The Dual Influence of the Envelope on the Thermal Performance of Conditioned and Unconditioned Buildings. Sustain. Cities Soc. 2020, 61, 102298. [Google Scholar] [CrossRef]
- Vastolo, A.; Serrapica, F.; Cavallini, D.; Fusaro, I.; Atzori, A.S.; Todaro, M. Editorial: Alternative and Novel Livestock Feed: Reducing Environmental Impact. Front. Vet. Sci. 2024, 11, 1441905. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, M.; Brambilla, G.; Menotta, S.; Albrici, G.; Avezzù, V.; Vitali, R.; Buonaiuto, G.; Lamanna, M.; Cavallini, D. Sustainable Dairy Farming and Fipronil Risk in Circular Feeds: Insights from an Italian Case Study. Food Addit. Contam. Part A 2024, 41, 1582–1593. [Google Scholar] [CrossRef]
- Koakoski, D.L.; Bordin, T.; Cavallini, D.; Buonaiuto, G. A Preliminary Study of the Effects of Gaseous Ozone on the Microbiological and Chemical Characteristics of Whole-Plant Corn Silage. Fermentation 2024, 10, 398. [Google Scholar] [CrossRef]
- Lamanna, M.; Buonaiuto, G.; Dalla Favera, F.; Romanzin, A.; Formigoni, A.; Cavallini, D. Precision Livestock Farming: Bridging the Gap Between Media Narratives and Scientific Realities in Climate Change Impact. In Proceedings of the 11th European Conference on Precision Livestock Farming, Bologna, Italy, 9–12 September 2024; ISBN 9791221067361. [Google Scholar]
- Liu, G.; Guo, H.; Ruchay, A.; Pezzuolo, A. Recent Advancements in Precision Livestock Farming. Agriculture 2023, 13, 1652. [Google Scholar] [CrossRef]
- Jiang, B.; Tang, W.; Cui, L.; Deng, X. Precision Livestock Farming Research: A Global Scientometric Review. Animals 2023, 13, 2096. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A Review on Dairy Cattle Farming: Is Precision Livestock Farming the Compromise for an Environmental, Economic and Social Sustainable Production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Stygar, A.H.; Gomez, Y.; Barteselli, G.V.; Dalla Costa, E.; Canali, E.; Niemi, J.K.; Lionch, P.; Pastell, M. A Systematic Review on Commercially Available and Validated Sensor Technologies for Welfare Assessment of Dairy Cattle. Front. Vet. Sci. 2021, 8, 634338. [Google Scholar] [CrossRef] [PubMed]
- Kleen, J.L.; Guatteo, R. Precision Livestock Farming: What Does It Contain and What Are the Perspectives? Animals 2023, 13, 779. [Google Scholar] [CrossRef] [PubMed]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental Impact of Livestock Farming and Precision Livestock Farming as a Mitigation Strategy. Sci. Total Environ. 2019, 650 Pt 2, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and Precision Livestock Farming (PLF): An Up-to-Date Overview Across Animal Productions. Sensors 2022, 22, 4319. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bovo, M.; Giannone, C.; Santolini, E.; Tassinari, P.; Guarino, M. Reducing Life Cycle Environmental Impacts of Milk Production Through Precision Livestock Farming. Sustain. Prod. Consum. 2024, 51, 303–314. [Google Scholar] [CrossRef]
- Pardo, G.; del Prado, A.; Fernández-Álvarez, J.; Yáñez-Ruiz, D.R.; Belanche, A. Influence of Precision Livestock Farming on the Environmental Performance of Intensive Dairy Goat Farms. J. Clean. Prod. 2022, 351, 131518. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Feng, H.; Huang, Q.; Xiao, X.; Zhang, X. Wearable Internet of Things Enabled Precision Livestock Farming in Smart Farms: A Review of Technical Solutions for Precise Perception, Biocompatibility, and Sustainability Monitoring. J. Clean. Prod. 2021, 312, 127712. [Google Scholar] [CrossRef]
- Chakravarty, P.; Maalberg, M.; Cozzi, G.; Ozgul, A.; Aminian, K. Behavioural Compass: Animal Behaviour Recognition Using Magnetometers. Mov. Ecol. 2019, 7, 28. [Google Scholar] [CrossRef]
- Knight, C.H. Review: Sensor Techniques in Ruminants: More than Fitness Trackers. Animal 2020, 14, 187–195. [Google Scholar] [CrossRef]
- de Freitas Curti, P.; Selli, A.; Lodi Pinto, D.; Merlos-Ruiz, A.; de Carvalho Balieiro, J.C.; Vieira Ventura, R. Applications of Livestock Monitoring Devices and Machine Learning Algorithms in Animal Production and Reproduction: An Overview. Anim. Reprod. 2023, 20, e2023-0077. [Google Scholar] [CrossRef]
- Rayas-Amor, A.A.; Morales-Almaráz, E.; Licona-Velázquez, G.; Vieyra-Alberto, R.; García-Martínez, A.; Martínez-García, C.G.; Cruz-Monterrosa, R.G.; Miranda-de la Lama, G.C. Triaxial Accelerometers for Recording Grazing and Ruminating Time in Dairy Cows: An Alternative to Visual Observations. J. Vet. Behav. 2017, 20, 102–108. [Google Scholar] [CrossRef]
- Kasfi, K.T.; Hellicar, A.; Rahman, A. Convolutional Neural Network for Time Series Cattle Behaviour Classification. In Proceedings of the Workshop on Time Series Analytics and Applications, Hobart, TAS, Australia, 5 December 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 8–12. [Google Scholar] [CrossRef]
- Hamilton, A.W.; Davison, C.; Tachtatzis, C.; Andonovic, I.; Michie, C.; Ferguson, H.J.; Somerville, L.; Jonsson, N.N. Identification of the Rumination in Cattle Using Support Vector Machines with Motion-Sensitive Bolus Sensors. Sensors 2019, 19, 1165. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Sun, Y.; Zhang, Y.; Fu, X.; Hou, H.; Kou, S.; Zhang, Y. Automatic Recognition Method of Cow Ruminating Behaviour Based on Edge Computing. Comput. Electron. Agric. 2021, 191, 106495. [Google Scholar] [CrossRef]
- Pavlovic, D.; Davison, C.; Hamilton, A.; Marko, O.; Atkinson, R.; Michie, C.; Crnojević, V.; Andonovic, I.; Bellekens, X.; Tachtatzis, C. Classification of Cattle Behaviours Using Neck-Mounted Accelerometer-Equipped Collars and Convolutional Neural Networks. Sensors 2021, 21, 4050. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, J.; Yubero, R.; Visitación, B.; Navarro-García, J.; Algar, M.J.; Cano, E.L.; Ortega, F. Analysis of Accelerometer and GPS Data for Cattle Behaviour Identification and Anomalous Events Detection. Entropy 2022, 24, 336. [Google Scholar] [CrossRef] [PubMed]
- González, L.; Bishop-Hurley, G.; Handcock, R.; Crossman, C. Behavioural Classification of Data from Collars Containing Motion Sensors in Grazing Cattle. Comput. Electron. Agric. 2015, 110, 91–102. [Google Scholar] [CrossRef]
- Brennan, J.; Johnson, P.; Olson, K. Classifying Season-Long Livestock Grazing Behaviour with the Use of a Low-Cost GPS and Accelerometer. Comput. Electron. Agric. 2021, 181, 105957. [Google Scholar] [CrossRef]
- Smith, D.; Rahman, A.; Bishop-Hurley, G.J.; Hills, J.; Shahriar, S.; Henry, D.; Rawnsley, R. Behaviour Classification of Cows Fitted with Motion Collars: Decomposing Multi-Class Classification into a Set of Binary Problems. Comput. Electron. Agric. 2016, 131, 40–50. [Google Scholar] [CrossRef]
- Andriamandroso, A.L.H.; Lebeau, F.; Beckers, Y.; Froidmont, E.; Dufrasne, I.; Heinesch, B.; Dumortier, P.; Blanchy, G.; Blaise, Y.; Bindelle, J. Development of an Open-Source Algorithm Based on Inertial Measurement Units (IMU) of a Smartphone to Detect Cattle Grass Intake and Ruminating Behaviours. Comput. Electron. Agric. 2017, 139, 126–137. [Google Scholar] [CrossRef]
- Guo, L.; Welch, M.; Dobos, R.; Kwan, P.; Wang, W. Comparison of Grazing Behaviour of Sheep on Pasture with Different Sward Surface Heights Using an Inertial Measurement Unit Sensor. Comput. Electron. Agric. 2018, 150, 394–401. [Google Scholar] [CrossRef]
- Mansbridge, N.; Mitsch, J.; Bollard, N.; Ellis, K.; Miguel-Pacheco, G.G.; Dottorini, T.; Kaler, J. Feature Selection and Comparison of Machine Learning Algorithms in Classification of Grazing and Rumination Behaviour in Sheep. Sensors 2018, 18, 3532. [Google Scholar] [CrossRef]
- Carslake, C.; Vázquez-Diosdado, J.A.; Kaler, J. Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving Beyond Classification in Precision Livestock. Sensors 2020, 21, 88. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shu, H.; Bindelle, J.; Xu, B.; Zhang, W.; Jin, Z.; Guo, L.; Wang, W. Classification and Analysis of Multiple Cattle Unitary Behaviours and Movements Based on Machine Learning Methods. Animals 2022, 12, 1060. [Google Scholar] [CrossRef]
- Kleanthous, N.; Hussain, A.; Mason, A.; Sneddon, J.; Shaw, A.; Fergus, P.; Chalmers, C.; Al-Jumeily, D. Machine Learning Techniques for Classification of Livestock Behaviour. In Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, 13–16 December 2018; Proceedings, Part IV; Springer: Berlin/Heidelberg, Germany, 2018; pp. 304–315. [Google Scholar] [CrossRef]
- Peng, Y.; Kondo, N.; Fujiura, T.; Suzuki, T.; Wulandari, Y.; Yoshioka, H.; Itoyama, E. Classification of Multiple Cattle Behaviour Patterns Using a Recurrent Neural Network with Long Short-Term Memory and Inertial Measurement Units. Comput. Electron. Agric. 2019, 157, 247–253. [Google Scholar] [CrossRef]
- Abeni, F.P.; Aquilani, C.; Bergero, D.; Bernabucci, U.; Biondi, A.; Borreani, G.; Bulgarelli, P.; Campanile, G.; Cavallini, D.; Cesari, V.; et al. Zootecnia di Precisione e Tecnologie Innovative in Allevamento; Le Point Veterinaire Italie: Milan, Italy, 2023; ISBN 9788899211905. [Google Scholar]
- Leso, L.; Becciolini, V.; Rossi, G.; Camiciottoli, S.; Barbari, M. Validation of a Commercial Collar-Based Sensor for Monitoring Eating and Ruminating Behaviour of Dairy Cows. Animals 2021, 11, 2852. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Chelotti, J.O.; Martinez-Rau, L.S.; Ferrero, M.; Vignolo, L.D.; Galli, J.R.; Planisich, A.M.; Rufiner, H.L.; Giovanini, L.L. Livestock Feeding Behaviour: A Review on Automated Systems for Ruminant Monitoring. Biosystems Eng. 2024, 246, 150–177. [Google Scholar] [CrossRef]
- Azarpajouh, S.; Calderon Diaz, J.; Bueso, I.; Taheri, H. Farm 4.0: Innovative Smart Dairy Technologies and Their Applications as Tools for Welfare Assessment in Dairy Cattle. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2021, 16, 45. [Google Scholar] [CrossRef]
- Yousefi, D.B.M.; Rafie, A.S.M.; Al-Haddad, S.A.R.; Azrad, S. A Systematic Literature Review on the Use of Deep Learning in Precision Livestock Detection and Localization Using Unmanned Aerial Vehicles. IEEE Access 2022, 10, 80071–80091. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, Y.; Wu, J.; Zhao, Q.; Zhang, X.; Luo, H. Improved Composite Deep Learning and Multi-Scale Signal Features Fusion Enable Intelligent and Precise Behaviour Recognition of Fattening Hu Sheep. Comput. Electron. Agric. 2024, 227, 109635. [Google Scholar] [CrossRef]
- Williams, H.J.; Holton, M.D.; Shepard, E.L.C.; Largey, N.; Norman, B.; Ryan, P.G.; Scantlebury, M.; Quintana, F.; Magowan, E.A.; Marks, N.J.; et al. Identification of Animal Movement Patterns Using Tri-Axial Magnetometry. Mov. Ecol. 2017, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Bouten, C.V.C.; Koekkoek, K.T.M.; Verduin, M.; Kodde, L.; Janssen, J.D. A Triaxial Accelerometer and Portable Data Processing Unit for the Assessment of Daily Physical Activity. IEEE Trans. Biomed. Eng. 1997, 44, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Aquilani, C.; Confessore, A.; Bozzi, R.; Sirtori, F.; Pugliese, C. Review: Precision Livestock Farming Technologies in Pasture-Based Livestock Systems. Animal 2022, 16, 100429. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, N.W.; Byrne, D.T.; O’Connor, A.H.; Shalloo, L. Invited Review: Cattle Lameness Detection with Accelerometers. J. Dairy Sci. 2020, 103, 3895–3911. [Google Scholar] [CrossRef]
- Poulopoulou, I.; Lambertz, C.; Gauly, M. Are Automated Sensors a Reliable Tool to Estimate Behavioural Activities in Grazing Beef Cattle? Appl. Anim. Behav. Sci. 2019, 216, 1–5. [Google Scholar] [CrossRef]
- Greenwood, P.L.; Paull, D.R.; McNally, J.; Kalinowski, T.; Ebert, D.; Little, B.; Smith, D.V.; Rahman, A.; Valencia, P.; Ingham, A.B.; et al. Use of Sensor-Determined Behaviours to Develop Algorithms for Pasture Intake by Individual Grazing Cattle. Crop Pasture Sci. 2017, 68, 109–121. [Google Scholar] [CrossRef]
- Oudshoorn, F.W.; Cornou, C.; Hellwing, A.L.F.; Hansen, H.H.; Munksgaard, L.; Lund, P.; Kristensen, T. Estimation of Grass Intake on Pasture for Dairy Cows Using Tightly and Loosely Mounted Di- and Tri-Axial Accelerometers Combined with Bite Count. Comput. Electron. Agric. 2013, 99, 227–235. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some Challenges and Opportunities for Grazing Dairy Cows on Temperate Pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.M.; Heins, B.J.; Endres, M.I. Technical Note: Validation of an Ear-Tag Accelerometer Sensor to Determine Rumination, Eating, and Activity Behaviours of Grazing Dairy Cattle. J. Dairy Sci. 2018, 101, 2492–2495. [Google Scholar] [CrossRef] [PubMed]
- Gou, X.; Tsunekawa, A.; Peng, F.; Zhao, X.; Li, Y.; Lian, J. Method for Classifying Behaviour of Livestock on Fenced Temperate Rangeland in Northern China. Sensors 2019, 19, 5334. [Google Scholar] [CrossRef] [PubMed]
- Terrasson, G.; Llària, A.; Marra, A.; Voaden, S. Accelerometer-Based Solution for Precision Livestock Farming: Geolocation Enhancement and Animal Activity Identification. IOP Conf. Ser. Mater. Sci. Eng. 2016, 138, 012004. [Google Scholar] [CrossRef]
- Williams, L.R.; Moore, S.T.; Bishop-Hurley, G.J.; Swain, D.L. A Sensor-Based Solution to Monitor Grazing Cattle Drinking Behaviour and Water Intake. Comput. Electron. Agric. 2020, 168, 105141. [Google Scholar] [CrossRef]
- Brassel, J.; Rohrssen, F.; Failing, K.; Wehrend, A. Automated Oestrus Detection Using Multimetric Behaviour Recognition in Seasonal-Calving Dairy Cattle on Pasture. N. Z. Vet. J. 2018, 66, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Adenuga, A.H.; Jack, C.; Olagunju, K.O.; Ashfield, A. Economic Viability of Adoption of Automated Oestrus Detection Technologies on Dairy Farms: A Review. Animals 2020, 10, 1241. [Google Scholar] [CrossRef] [PubMed]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; Trogh, J.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Calving and Estrus Detection in Dairy Cattle Using a Combination of Indoor Localization and Accelerometer Sensors. Comput. Electron. Agric. 2020, 168. [Google Scholar] [CrossRef]
- Abell, K.M.; Theurer, M.E.; Larson, R.L.; White, B.J.; Hardin, D.K.; Randle, R.F. Predicting Bull Behaviour Events in a Multiple-Sire Pasture with Video Analysis, Accelerometers, and Classification Algorithms. Comput. Electron. Agric. 2017, 136, 221–227. [Google Scholar] [CrossRef]
- Shergaziev, U.; Nurgaziev, R.; Baitemir, M.; Karybekov, A.; Sultangaziev, E. Electronic Tracking and Identification of Animals in Agriculture for Monitoring Herd Development and Health. Sci. Horiz. 2024, 27, 177–187. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Draganova, I.; Morel, P.C.H.; Morris, S.T. Associations of Grazing and Rumination Behaviours with Performance Parameters in Spring-Calving Dairy Cows in a Pasture-Based Grazing System. Animals 2023, 13, 3831. [Google Scholar] [CrossRef]
- Kapusniaková, M.; Juráček, M.; Hanušovský, O.; Rolinec, M.; Gálik, B.; Džima, M.; Duchoň, A.; Vavrišinová, K.; Madajová, V.; Šimko, M. Nutrition of Dairy Cows: How Starch and Fiber Influence Their Overall Activity. Acta Fytotech. Zootech. 2024, 27, 104–109. [Google Scholar] [CrossRef]
- Verdon, M.; Rawnsley, R.; Raedts, P.; Freeman, M. The Behaviour and Productivity of Mid-Lactation Dairy Cows Provided Daily Pasture Allowance Over 2 or 7 Intensively Grazed Strips. Animals 2018, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Grinter, L.N.; Campler, M.R.; Costa, J.H.C. Technical Note: Validation of a Behaviour-Monitoring Collar’s Precision and Accuracy to Measure Rumination, Feeding, and Resting Time of Lactating Dairy Cows. J. Dairy Sci. 2019, 102, 3487–3494. [Google Scholar] [CrossRef] [PubMed]
- Borghart, G.M.; O’Grady, L.E.; Somers, J.R. Prediction of Lameness Using Automatically Recorded Activity, Behaviour and Production Data in Post-Parturient Irish Dairy Cows. Irish Vet. J. 2021, 74, 4. [Google Scholar] [CrossRef]
- Krpálková, L.; O’Mahony, N.; Carvalho, A.; Campbell, S.; Walsh, J. Association of Rumination with Milk Yield of Early, Mid and Late Lactation Dairy Cows. Czech J. Anim. Sci. 2022, 67, 87–101. [Google Scholar] [CrossRef]
- Raedts, P.J.M.; Hills, J.L. Milk Yield and Feeding Behaviour Responses to Two Flat-Rate Levels of Concentrate Supplementation Fed Over a Period of 8 Months to Cohorts of Grazing Dairy Cows, Differing in Genotype, Bodyweight, or Milk Yield. Anim. Prod. Sci. 2024, 64, AN23142. [Google Scholar] [CrossRef]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Improved Cattle Behaviour Monitoring by Combining Ultra-Wideband Location and Accelerometer Data. Animal 2023, 17, 100730. [Google Scholar] [CrossRef] [PubMed]
- Werner, J.; Umstatter, C.; Leso, L.; Kennedy, E.; Geoghegan, A.; Shalloo, L.; Schick, M.; O’Brien, B. Evaluation and Application Potential of an Accelerometer-Based Collar Device for Measuring Grazing Behaviour of Dairy Cows. Animal 2019, 13, 2070–2079. [Google Scholar] [CrossRef]
- Moore, S.G.; Aublet, V.; Butler, S.T. Monitoring Estrous Activity in Pasture-Based Dairy Cows. Theriogenology 2021, 160, 90–94. [Google Scholar] [CrossRef]
- Beauchemin, K.A. Invited Review: Current Perspectives on Eating and Rumination Activity in Dairy Cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef]
- Nóbrega, L.; Gonçalves, P.; Pedreiras, P.; Pereira, J. An IoT-Based Solution for Intelligent Farming. Sensors 2019, 19, 603. [Google Scholar] [CrossRef] [PubMed]
- Madureira, A.M.L.; Burnett, T.A.; Pohler, K.G.; Guida, T.G.; Sanches, C.P., Jr.; Vasconcelos, J.L.M.; Cerri, R.L.A. Greater Intensity of Estrous Expression is Associated with Improved Embryo Viability from Superovulated Holstein Heifers. J. Dairy Sci. 2020, 103, 5641–5646. [Google Scholar] [CrossRef] [PubMed]
- Müschner-Siemens, T.; Hoffmann, G.; Ammon, C.; Amon, T. Daily Rumination Time of Lactating Dairy Cows Under Heat Stress Conditions. J. Therm. Biol. 2020, 88, 102484. [Google Scholar] [CrossRef] [PubMed]
- Gáspárdy, A.; Efrat, G.; Bajcsy, Á.C.; Fekete, S.G. Electronic Monitoring of Rumination Activity as an Indicator of Health Status and Production Traits in High-Yielding Dairy Cows. Acta Vet. Hung. 2014, 62, 452–462. [Google Scholar] [CrossRef]
- Quddus, R.A.; Ahmad, N.; Khalique, A.; Bhatti, J.A. Validation of NEDAP Monitoring Technology for Measurements of Feeding, Rumination, Lying, and Standing Behaviours, and Comparison with Visual Observation and Video Recording in Buffaloes. Animals 2022, 12, 578. [Google Scholar] [CrossRef] [PubMed]
- Dela Rue, B.; Lee, J.M.; Eastwood, C.R.; Macdonald, K.A.; Gregorini, P. Evaluation of an Eating Time Sensor for Use in Pasture-Based Dairy Systems. J. Dairy Sci. 2020, 103, 9488–9492. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xu, C.; Lopes, M.G.; Loor, J.J.; Shao, Y.; Jia, B.; Shao, G.; Huang, B. Characterization of the Physical and Ruminal Activities Related to Oestrus in Dairy Cows Raised on Chinese Commercial Farms. Vet. Arhiv 2023, 93, 143–158. [Google Scholar] [CrossRef]
- Thomas, M.; Occhiuto, F.; Green, M.; Vázquez-Diosdado, J.A.; Kaler, J. Repeatability and Predictability of Lying and Feeding Behaviours in Dairy Cattle. Prev. Vet. Med. 2024, 233, 106357. [Google Scholar] [CrossRef] [PubMed]
- Borchardt, S.; Tippenhauer, C.M.; Plenio, J.-L.; Bartel, A.; Madureira, A.M.L.; Cerri, R.L.A.; Heuwieser, W. Association of Estrous Expression Detected by an Automated Activity Monitoring System Within 40 Days in Milk and Reproductive Performance of Lactating Holstein Cows. J. Dairy Sci. 2021, 104, 9195–9204. [Google Scholar] [CrossRef]
- Holman, A.; Thompson, J.; Routly, J.E.; Cameron, J.; Jones, D.N.; Grove-White, D.; Smith, R.F.; Dobson, H. Comparison of Oestrus Detection Methods in Dairy Cattle. Vet. Rec. 2011, 169, 47. [Google Scholar] [CrossRef] [PubMed]
- Neves, R.C.; Leslie, K.E.; Walton, J.S.; LeBlanc, S.J. Reproductive Performance with an Automated Activity Monitoring System Versus a Synchronized Breeding Program. J. Dairy Sci. 2012, 95, 5683–5693. [Google Scholar] [CrossRef] [PubMed]
- Valenza, A.; Giordano, J.O.; Lopes, G.; Vincenti, L.; Amundson, M.C.; Fricke, P.M. Assessment of an Accelerometer System for Detection of Oestrus and Treatment with Gonadotropin-Releasing Hormone at the Time of Insemination in Lactating Dairy Cows. J. Dairy Sci. 2012, 95, 7115–7127. [Google Scholar] [CrossRef] [PubMed]
- Aungier, S.P.M.; Roche, J.F.; Duffy, P.; Scully, S.; Crowe, M.A. The Relationship Between Activity Clusters Detected by an Automatic Activity Monitor and Endocrine Changes During the Periestrous Period in Lactating Dairy Cows. J. Dairy Sci. 2015, 98, 1666–1684. [Google Scholar] [CrossRef]
- Silper, B.F.; Madureira, A.M.L.; Kaur, M.; Burnett, T.A.; Cerri, R.L.A. Short Communication: Comparison of Oestrus Characteristics in Holstein Heifers by Two Activity Monitoring Systems. J. Dairy Sci. 2015, 98, 3158–3165. [Google Scholar] [CrossRef]
- Madureira, A.M.L.; Silper, B.F.; Burnett, T.A.; Polsky, L.; Cruppe, L.H.; Veira, D.M.; Vasconcelos, J.L.M.; Cerri, R.L.A. Factors Affecting Expression of Oestrus Measured by Activity Monitors and Conception Risk of Lactating Dairy Cows. J. Dairy Sci. 2015, 98, 7003–7014. [Google Scholar] [CrossRef]
- Burnett, T.A.; Madureira, A.M.L.; Silper, B.F.; Fernandes, A.C.C.; Cerri, R.L.A. Integrating an Automated Activity Monitor into an Artificial Insemination Program and the Associated Risk Factors Affecting Reproductive Performance of Dairy Cows. J. Dairy Sci. 2017, 100, 5005–5018. [Google Scholar] [CrossRef] [PubMed]
- Moretti, R.; Biffani, S.; Chessa, S.; Bozzi, R. Heat Stress Effects on Holstein Dairy Cows’ Rumination. Animal 2017, 11, 2320–2325. [Google Scholar] [CrossRef]
- Veronese, A.; Marques, O.; Moreira, R.; Belli, A.L.; Bilby, T.R.; Chebel, R.C. Estrous Characteristics and Reproductive Outcomes of Holstein Heifers Treated with Two Prostaglandin Formulations and Detected in Oestrus by an Automated Detection or Mounting Device. J. Dairy Sci. 2019, 102, 6649–6659. [Google Scholar] [CrossRef] [PubMed]
- Plenio, J.L.; Bartel, A.; Madureira, A.M.L.; Cerri, R.L.A.; Heuwieser, W.; Borchardt, S. Application Note: Validation of BovHEAT—An Open-Source Analysis Tool to Process Data from Automated Activity Monitoring Systems in Dairy Cattle for Oestrus Detection. Comput. Electron. Agric. 2021, 188, 106323. [Google Scholar] [CrossRef]
- Reed, C.B.; Kuhn-Sherlock, B.; Burke, C.R.; Meier, S. Estrous Activity in Lactating Cows with Divergent Genetic Merit for Fertility Traits. J. Dairy Sci. 2022, 105, 1674–1686. [Google Scholar] [CrossRef] [PubMed]
- Macmillan, K.; Gobikrushanth, M.; Colazo, M.G. Activity and Rumination Changes as Predictors of Calving in Primiparous and Multiparous Holstein Cows. Livest. Sci. 2022, 260, 104944. [Google Scholar] [CrossRef]
- Vincze, B.; Kátai, L.; Deák, K.; Nagy, K.; Cseh, S.; Kovács, L. Pregnancy Rates of Holstein Friesian Cows with Cavitary or Compact Corpus Luteum. Vet. Sci. 2024, 11, 246. [Google Scholar] [CrossRef] [PubMed]
- Tippenhauer, C.M.; Plenio, J.L.; Heuwieser, W.; Borchardt, S. Association of Activity and Subsequent Fertility of Dairy Cows After Spontaneous Oestrus or Timed Artificial Insemination. J. Dairy Sci. 2023, 106, 4291–4305. [Google Scholar] [CrossRef] [PubMed]
- Giaretta, E.; Mordenti, A.L.; Canestrari, G.; Palmonari, A.; Formigoni, A. Automatically Monitoring of Dietary Effects on Rumination and Activity of Finishing Heifers. Anim. Prod. Sci. 2019, 59, 1931–1940. [Google Scholar] [CrossRef]
- Teixeira, V.A.; Lana, A.M.Q.; Bresolin, T.; Tomich, T.R.; Souza, G.M.; Furlong, J.; Rodrigues, J.P.P.; Coelho, S.G.; Gonçalves, L.C.; Silveira, J.A.G.; et al. Using Rumination and Activity Data for Early Detection of Anaplasmosis Disease in Dairy Heifer Calves. J. Dairy Sci. 2022, 105, 4421–4433. [Google Scholar] [CrossRef]
- Lemal, P.; Tran, M.-N.; Atashi, H.; Schroyen, M.; Gengler, N. Adding Behaviour Traits to Select for Heat Tolerance in Dairy Cattle. JDS Commun. 2024, 5, 368–373. [Google Scholar] [CrossRef]
- Noorbin, F.; Layeghy, S.; Kusy, B.; Jurdak, R.; Bishop-Hurley, G.J.; Greenwood, P.L. Deep Learning-Based Cattle Behaviour Classification Using Joint Time-Frequency Data Representation. Comput. Electron. Agric. 2021, 187, 106241. [Google Scholar] [CrossRef]
- Schmeling, L.; Elmamooz, G.; Hoang, P.T.; Kozar, A.; Nicklas, D.; Sünkel, M.; Thurner, S.; Rauch, E. Training and Validating a Machine Learning Model for the Sensor-Based Monitoring of Lying Behaviour in Dairy Cows on Pasture and in the Barn. Animals 2021, 11, 2660. [Google Scholar] [CrossRef]
- Pukrongta, N.; Sangmahamad, P.; Pechrkool, T.; Kumkhet, B.; Pirajnanchai, V.; Thiamsinsangwon, P. Cattle Collars with a Low-Cost LPWAN-Based System for Cattle Estrous Monitoring. In Proceedings of the 2023 15th International Conference on Information Technology and Electrical Engineering (ICITEE), Chiang Mai, Thailand, 26–27 October 2023; p. 10317748. [Google Scholar] [CrossRef]
- Dang, T.H.; Dang, N.H.; Tran, V.T.; Chung, W.Y. A LoRaWAN-Based Smart Sensor Tag for Cow Behaviour Monitoring. IEEE Access 2023, 11, 29820–29833. [Google Scholar]
- Kunze, K.E. Large Scale Magnetic Fields from Gravitationally Coupled Electrodynamics. Phys. Rev. D 2010, 81, 043526. [Google Scholar] [CrossRef]
- Shorten, P.R.; Hunter, L.B. Acoustic sensors to detect the rate of cow vocalization in a complex farm environment. Appl. Anim. Behav. Sci. 2024, 278, 106377. [Google Scholar] [CrossRef]
- Laurijs, K.A.; Briefer, E.F.; Reimert, I.; Webb, L.E. Vocalisations in Farm Animals: A Step Towards Positive Welfare Assessment. Appl. Anim. Behav. Sci. 2021, 236, 105264. [Google Scholar] [CrossRef]
- Schön, P.C.; Hamel, K.; Puppe, B.; Tuchscherer, A.; Kanitz, W.; Manteuffel, G. Altered Vocalization Rate During the Estrous Cycle in Dairy Cattle. J. Dairy Sci. 2007, 90, 202–206. [Google Scholar] [CrossRef]
- Martinez-Rau, L.S.; Chelotti, J.O.; Giovanini, L.L.; Adin, V.; Oelmann, B.; Bader, S. On-Device Feeding Behavior Analysis of Grazing Cattle. IEEE Trans. Instrum. Meas. 2024, 73, 2512113. [Google Scholar] [CrossRef]
- Ferrero, M.; Vignolo, L.D.; Vanrell, S.R.; Martinez-Rau, L.S.; Chelotti, J.O.; Galli, J.R.; Giovanini, L.L.; Rufiner, H.L. A Full End-to-End Deep Approach for Detecting and Classifying Jaw Movements from Acoustic Signals in Grazing Cattle. Eng. Appl. Artif. Intell. 2023, 121. [Google Scholar] [CrossRef]
- Chelotti, J.O.; Vanrell, S.R.; Martinez-Rau, L.S.; Galli, J.R.; Utsumi, S.A.; Planisich, A.M.; Almirón, S.A.; Milone, D.H.; Giovanini, L.L.; Rufiner, H.L. Using Segment-Based Features of Jaw Movements to Recognize Foraging Activities in Grazing Cattle. Biosyst. Eng. 2023, 229, 69–84. [Google Scholar] [CrossRef]
- Ungar, E.D.; Ravid, N.; Zada, T.; Ben-Moshe, E.; Yonatan, R.; Baram, H.; Genizi, A. The Implications of Compound Chew–Bite Jaw Movements for Bite Rate in Grazing Cattle. Appl. Anim. Behav. Sci. 2006, 98, 183–195. [Google Scholar] [CrossRef]
- Galli, J.R.; Milone, D.H.; Cangiano, C.A.; Martínez, C.E.; Laca, E.A.; Chelotti, J.O.; Rufiner, H.L. Discriminative Power of Acoustic Features for Jaw Movement Classification in Cattle and Sheep. Bioacoustics 2019, 29, 602–616. [Google Scholar] [CrossRef]
- Clapham, W.M.; Fedders, J.M.; Beeman, K.; Neel, J.P.S. Acoustic Monitoring System to Quantify Ingestive Behaviour of Free-Grazing Cattle. Comput. Electron. Agric. 2011, 76, 96–104. [Google Scholar] [CrossRef]
- Navon, S.; Mizrach, A.; Hetzroni, A.; Ungar, E.D. Automatic Recognition of Jaw Movements in Free-Ranging Cattle, Goats and Sheep Using Acoustic Monitoring. Biosyst. Eng. 2013, 114, 474–483. [Google Scholar] [CrossRef]
- Chelotti, J.O.; Vanrell, S.R.; Galli, J.R.; Giovannini, L.L.; Rufiner, H.L. A Pattern Recognition Approach for Detecting and Classifying Jaw Movements in Grazing Cattle. Comput. Electron. Agric. 2018, 145, 83–91. [Google Scholar] [CrossRef]
- Schirmann, K.; von Keyserlingk, M.A.G.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Validation of a System for Monitoring Rumination in Dairy Cows. J. Dairy Sci. 2009, 92, 6052–6055. [Google Scholar] [CrossRef] [PubMed]
- Burfeind, O.; Schirmann, K.; von Keyserlingk, M.A.G.; Veira, D.M.; Weary, D.M.; Heuwieser, W. Evaluation of a System for Monitoring Rumination in Heifers and Calves. J. Dairy Sci. 2011, 94, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Andreen, D.M.; Haan, M.M.; Dechow, C.D.; Harvatine, K.J. Relationships Between Milk Fat and Rumination Time Recorded by Commercial Rumination Sensing Systems. J. Dairy Sci. 2020, 103, 8094–8104. [Google Scholar] [CrossRef]
- Vanrell, S.R.; Chelotti, J.O.; Galli, J.R.; Utsumi, S.A.; Giovanini, L.L.; Rufiner, H.L.; Milone, D.H. A Regularity-Based Algorithm for Identifying Grazing and Rumination Bouts from Acoustic Signals in Grazing Cattle. Comput. Electron. Agric. 2018, 151, 392–402. [Google Scholar] [CrossRef]
- Held-Montaldo, R.; Cartes, D.; Sepúlveda-Varas, P. Behavioural Changes in Dairy Cows with Metritis in Seasonal Calving Pasture-Based Dairy Systems. J. Dairy Sci. 2021, 104, 12066–12078. [Google Scholar] [CrossRef]
- Mirzaei, A.; Merenda, V.R.; Ferraretto, L.F.; Shaver, R.D.; Peñagaricano, F.; Chebel, R.C. Individual Animal Variability in Rumination, Activity, and Lying Behaviour During the Periparturient Period of Dairy Cattle. JDS Commun. 2023, 4, 205–209. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Lunadei, L. The Role of RFID in Agriculture: Applications, Limitations and Challenges. Comput. Electron. Agric. 2011, 79, 42–50. [Google Scholar] [CrossRef]
- Cavallini, D.; Raspa, F.; Marliani, G.; Nannoni, E.; Martelli, G.; Sardi, L.; Valle, E.; Pollesel, M.; Tassinari, M.; Buonaiuto, G. Growth Performance and Feed Intake Assessment of Italian Holstein Calves Fed a Hay-Based Total Mixed Ration: Preliminary Steps Towards a Prediction Model. Vet. Sci. 2023, 10, 554. [Google Scholar] [CrossRef] [PubMed]
- Ferlizza, E.; Fasoli, S.; Cavallini, D.; Bolcato, M.; Andreani, G.; Isani, G. Preliminary Study on Urine Chemistry and Protein Profile in Cows and Heifers. Pak. Vet. J. 2020, 40, 413–418. [Google Scholar] [CrossRef]
- Štoković, I.; Sušić, V.; Karadjole, I.; Ekert Kabalin, A.; Mikulec, Ž.; Kostelić, A. Problems with Readings of Electronic Tagged Sheep in Dairy Flocks. Ital. J. Anim. Sci. 2009, 8 (Suppl. S3), 157–159. [Google Scholar] [CrossRef]
- Pinna, W.; Sedda, P.; Moniello, G.; Ribó, O. Electronic Identification of Sarda Goats Under Extensive Conditions in the Island of Sardinia. Small Rumin. Res. 2006, 66, 286–290. [Google Scholar] [CrossRef]
- Mammi, L.M.E.; Cavallini, D.; Fustini, M.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Palmonari, A. Calving Difficulty Influences Rumination Time and Inflammatory Profile in Holstein Dairy Cows. J. Dairy Sci. 2021, 104, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Magro, S.; Costa, A.; Cavallini, D.; Chiarin, E.; De Marchi, M. Non-Invasive Monitoring of Dairy Cows’ Metabolic Status During the Transition Period Through Milk Mid-Infrared Spectroscopy. Front. Vet. Sci. 2024, 11, 1437352. [Google Scholar] [CrossRef]
- Menzies, D.; Patison, K.P.; Corbet, N.J.; Swain, D.L. Using Walk-over-Weighing Technology for Parturition Date Determination in Beef Cattle. Anim. Prod. Sci. 2018, 58, 1743–1750. [Google Scholar] [CrossRef]
- Williams, L.R.; Fox, D.R.; Bishop-Hurley, G.J.; Swain, D.L. Use of Radio Frequency Identification (RFID) Technology to Record Grazing Beef Cattle Water Point Use. Comput. Electron. Agric. 2019, 156, 193–202. [Google Scholar] [CrossRef]
- Lamanna, M.; Marliani, G.; Buonaiuto, G.; Cavallini, D.; Accorsi, P.A. Personality Traits of Dairy Cows: Relationship Between Boldness and Habituation to Robotic Milking to Improve Precision and Efficiency. In Proceedings of the 11th European Conference on Precision Livestock Farming, Bologna, Italy, 9–12 September 2024; ISBN 9791221067361. [Google Scholar]
- Karl, J.W.; Sprinkle, J.E. Low-Cost Livestock Global Positioning System Collar from Commercial Off-the-Shelf Parts. Rangel. Ecol. Manag. 2019, 72, 954–958. [Google Scholar] [CrossRef]
- Maroto-Molina, F.; Navarro-García, J.; Príncipe-Aguirre, K.; Gómez-Maqueda, I.; Guerrero-Ginel, J.E.; Garrido-Varo, A.; Pérez-Marín, D.C. A Low-Cost IoT-Based System to Monitor the Location of a Whole Herd. Sensors 2019, 19, 2298. [Google Scholar] [CrossRef]
- Dopico, N.I.; Gutiérrez, Á.; Zazo, S. Performance Assessment of a Kinetically-Powered Network for Herd Localization. Comput. Electron. Agric. 2012, 87, 74–84. [Google Scholar] [CrossRef]
- Anderson, D.M.; Winters, C.; Estell, R.E.; Fredrickson, E.L.; Doniec, M.; Detweiler, C.; Rus, D.; James, D.; Nolen, B. Characterising the Spatial and Temporal Activities of Free-Ranging Cows from GPS Data. Rangel. J. 2012, 34, 149–161. [Google Scholar] [CrossRef]
- Felini, R.; Cavallini, D.; Buonaiuto, G.; Bordin, T. Assessing the Impact of Thermoregulatory Mineral Supplementation on Thermal Comfort in Lactating Holstein Cows. Vet. Anim. Sci. 2024, 23, 100363. [Google Scholar] [CrossRef]
- El-Sabrout, K.; Sherasiya, A.; Ahmad, S.; Aggag, S.; Nannoni, E.; Cavallini, D.; Buonaiuto, G. Environmental Enrichment in Rabbit Husbandry: Comparative Impacts on Performance and Welfare. Animals 2024, 14, 2367. [Google Scholar] [CrossRef] [PubMed]
- Calcante, A.; Tangorra, F.M.; Marchesi, G.; Lazzari, M. A GPS/GSM-Based Birth Alarm System for Grazing Cows. Comput. Electron. Agric. 2014, 100, 123–130. [Google Scholar] [CrossRef]
- Sendra, S.; Ilario, F.; Parra, L.; Lloret, J. Smart Wireless Sensor Network to Detect and Protect Sheep and Goats to Wolf Attacks. Recent Adv. Commun. Netw. Technol. 2013, 2, 91–101. [Google Scholar] [CrossRef]
- Tangorra, F.M.; Calcante, A.; Nava, S.; Marchesi, G.; Lazzari, M. Design and Testing of a GPS/GSM Collar Prototype to Combat Cattle Rustling. J. Agric. Eng. 2013, 44, 71–76. [Google Scholar] [CrossRef]
- Hassan-Vásquez, J.A.; Maroto-Molina, F.; Guerrero-Ginel, J.E. GPS Tracking to Monitor the Spatiotemporal Dynamics of Cattle Behaviour and Their Relationship with Feces Distribution. Animals 2022, 12, 2383. [Google Scholar] [CrossRef]
- Sigüín, M.; Blanco, T.; Rossano, F.; Casas, R. Modular E-Collar for Animal Telemetry: An Animal-Centered Design Proposal. Sensors 2022, 22, 300. [Google Scholar] [CrossRef]
- Simonsen, P.A.; Husted, N.S.; Clausen, M.; Spens, A.-M.; Dyholm, R.M.; Thaysen, I.F.; Aaser, M.F.; Staahltoft, S.K.; Bruhn, D.; Alstrup, A.K.O. Effects of Social Facilitation and Introduction Methods for Cattle on Virtual Fence Adaptation. Animals 2024, 14, 1456. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, D.; Grinnell, N.A.; Komainda, M.; Wilms, L.; Riesch, F.; Horn, J.; Hamidi, M.; Traulsen, I.; Isselstein, J. Training Cattle for Virtual Fencing: Different Approaches to Determine Learning Success. Appl. Anim. Behav. Sci. 2024, 273, 106220. [Google Scholar] [CrossRef]
- Lund, S.M.; Jacobsen, J.H.; Nielsen, M.G.; Friis, M.R.; Nielsen, N.H.; Mortensen, N.Ø.; Skibsted, R.C.; Aaser, M.F.; Staahltoft, S.K.; Bruhn, D. Spatial Distribution and Hierarchical Behaviour of Cattle Using a Virtual Fence System. Animals 2024, 14, 2121. [Google Scholar] [CrossRef] [PubMed]
- Goliński, P.; Sobolewska, P.; Stefańska, B.; Golińska, B. Virtual Fencing Technology for Cattle Management in the Pasture Feeding System—A Review. Agriculture 2023, 13, 91. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Biagi, G.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Palmonari, A. Effects of 00-rapeseed meal inclusion in Parmigiano Reggiano hay-based ration on dairy cows’ production, reticular pH and fibre digestibility. Ital. J. Anim. Sci. 2021, 20, 295–303. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Palmonari, A.; García-González, R.; Chapman, J.D.; McLean, D.J.; Formigoni, A. Effect of an Immunomodulatory Feed Additive in Mitigating the Stress Responses in Lactating Dairy Cows to a High Concentrate Diet Challenge. Animals 2022, 12, 2129. [Google Scholar] [CrossRef]
- Buonaiuto, G.; Lopez-Villalobos, N.; Costa, A.; Niero, G.; Degano, L.; Mammi, L.M.E.; Cavallini, D.; Palmonari, A.; Formigoni, A.; Visentin, G. Stayability in Simmental cattle as affected by muscularity and body condition score between calvings. Front. Vet. Sci. 2023, 10, 1141286. [Google Scholar] [CrossRef] [PubMed]
- Bovo, M.; Santolini, E.; Barbaresi, A.; Tassinari, P.; Torreggiani, D. Assessment of Geometrical and Seasonal Effects on the Natural Ventilation of a Pig Barn Using CFD Simulations. Comput. Electron. Agric. 2022, 193, 106652. [Google Scholar] [CrossRef]
- Jasmin, K.; Seyed Mehdi, H.F.; Amiri-Zarandi, M.; Rozita, D. Protecting Farmers’ Data Privacy and Confidentiality: Recommendations and Considerations. Front. Sustain. Food Syst. 2022, 6, 903230. [Google Scholar] [CrossRef]
- Yatribi, T. Factors Affecting Precision Agriculture Adoption: A Systematic Literature Review. Econ.-Innov. Econ. Res. J. 2020, 8, 103–121. [Google Scholar] [CrossRef]
- Lamanna, M.; Muca, E.; Buonaiuto, G.; Formigoni, A.; Cavallini, D. From Posts to Practice—Instagram’s Role in Veterinary Dairy Cow Nutrition Education: How Does the Audience Interact and Apply Knowledge? A Survey Study. J. Dairy Sci. 2025; in press. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamanna, M.; Bovo, M.; Cavallini, D. Wearable Collar Technologies for Dairy Cows: A Systematized Review of the Current Applications and Future Innovations in Precision Livestock Farming. Animals 2025, 15, 458. https://doi.org/10.3390/ani15030458
Lamanna M, Bovo M, Cavallini D. Wearable Collar Technologies for Dairy Cows: A Systematized Review of the Current Applications and Future Innovations in Precision Livestock Farming. Animals. 2025; 15(3):458. https://doi.org/10.3390/ani15030458
Chicago/Turabian StyleLamanna, Martina, Marco Bovo, and Damiano Cavallini. 2025. "Wearable Collar Technologies for Dairy Cows: A Systematized Review of the Current Applications and Future Innovations in Precision Livestock Farming" Animals 15, no. 3: 458. https://doi.org/10.3390/ani15030458
APA StyleLamanna, M., Bovo, M., & Cavallini, D. (2025). Wearable Collar Technologies for Dairy Cows: A Systematized Review of the Current Applications and Future Innovations in Precision Livestock Farming. Animals, 15(3), 458. https://doi.org/10.3390/ani15030458