Modern Technologies for Improving Broiler Production and Welfare: A Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Searching Criteria
3. Precision Tools for the Control of Environmental Factors
4. Precision Tools for Assessing the Behaviour, Welfare, and Health of Birds
4.1. Sound Analysis
4.2. Image and Video Analysis
4.2.1. Three-Dimensional Vision Monitoring, Deep Learning, and Neural Networks
4.2.2. Optical Flow Analysis and Linear Models
4.2.3. Thermal Imaging
5. Tools for the Precision Feeding and Growth Estimation of Broiler Chickens
5.1. The Monitoring of Water and Feed Intake
5.2. The Monitoring of the Growth Rate
6. Limitations of PLF Technologies
7. Future Directions for Overcoming Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef]
- Gocsik, É.; Silvera, A.M.; Hansson, H.; Saatkamp, H.W.; Blokhuis, H.J. Exploring the Economic Potential of Reducing Broiler Lameness. Br. Poult. Sci. 2017, 58, 337–347. [Google Scholar] [CrossRef]
- Bracke, M.B.M.; Hopster, H. Assessing the importance of natural behavior for animal welfare. J. Agric. Environ. Ethics 2006, 19, 77–89. [Google Scholar] [CrossRef]
- Yitbarek, M. Livestock and livestock product trends by 2050: A review. Int. J. Anim. Res. 2019, 4, 30. [Google Scholar]
- Xiong, B.H.; Yang, L.; Zheng, S.S. Research progress on the application of information and intelligent equipment in animal husbandry in China. J. China Agric. Univ. Inf. Proc. Agric. 2018, 30, 17–34. [Google Scholar]
- Mollo, M.; Vendrametto, O.; Okano, M. Precision Livestock Tools to Improve Products and Processes in Broiler Production: A Review. Braz. J. Poult. Sci. 2009, 11, 211–218. [Google Scholar] [CrossRef]
- Fraess, G.A.; Bench, C.J.; Tierney, K.B. Automated behavioural response assessment to a feeding event in two heritage chicken breeds. Appl. Anim. Behav. Sci. 2016, 179, 74–81. [Google Scholar] [CrossRef]
- Dawkins, M.S.; Roberts, S.J.; Cain, R.J.; Nickson, T.; Donnelly, C.A. Early warning of footpad dermatitis and hockburn in broiler chicken flocks using optical flow, body weight and water consumption. Vet. Rec. 2017, 180, 499. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, P.; Liang, Y. Precision Livestock Farming: The Opportunities in Poultry Sector. J. Agric. Sci. Technol. A 2020, 10, 45–53. [Google Scholar] [CrossRef]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.M.; Berckmans, D. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Van Goor, A.; Chitnis, P.; Kirk Baer, C. Precision livestock farming: National Institute of Food and Agriculture contributions and opportunities. In Precision Livestock Farming’19, Proceedings of the 9th European Conference on Precision Livestock Farming, Cork, Ireland, 26–29 August 2019; O’Brien, B., Hennessy, D., Shalloo, L., Eds.; 2019; Available online: https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0%2C5&q=Precision+livestock+farming%3A+National+Institute+of+Food+and+Agriculture+contributions+and+opportunities&btnG= (accessed on 5 February 2024).
- Li, N.; Ren, Z.; Li, D.; Zeng, L. Review: Automated Techniques for Monitoring the Behaviour and Welfare of Broilers and Laying Hens: Towards the Goal of Precision Livestock Farming. Animal 2020, 14, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Buller, H.; Blokhuis, H.; Lokhorst, K.; Silberberg, M.; Veissier, I. Animal Welfare Management in a Digital World. Animals 2020, 10, 1779. [Google Scholar] [CrossRef]
- Wu, D.; Cui, D.; Zhou, M.; Ying, Y. Information perception in modern poultry farming: A review. Comput. Electron. Agric. 2022, 199, 107–131. [Google Scholar] [CrossRef]
- Demmers, T.G.M.; Dennis, I.C.; Norman, P.; Butler, M.; Clare, D. RoboChick: An autonomous roving platform for data collection in poultry buildings, operational parameters and bird behaviour. In Precision Livestock Farming’19, Proceedings of the 9th European Conference on Precision Livestock Farming, Cork, Ireland, 26–29 August 2019; O’Brien, B., Hennessy, D., Shalloo, L., Eds.; 2019; Available online: https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0%2C5&q=RoboChick%3A+An+autonomous+roving+platform+for+data+collection+in+poultry+buildings%2C+operational+parameters+and+bird+behaviour&btnG= (accessed on 5 February 2024).
- Olejnik, K.; Popiela, E.; Opali’nski, S. Emerging Precision Management Methods in Poultry Sector. Agriculture 2022, 12, 718. [Google Scholar] [CrossRef]
- Aydin, A. Using 3D vision camera system to automatically assess the level of inactivity in broiler chickens. Comput. Electron. Agric. 2017, 135, 4–10. [Google Scholar] [CrossRef]
- De Montis, A.; Pinna, A.; Barra, M.; Vranken, E.V. Analysis of poultry eating and drinking behavior by software eYeNamic. J. Agric. Eng. 2013, 44, 2. [Google Scholar] [CrossRef]
- Sadeghi, M.; Banakar, A.; Khazaee, M.; Soleimani, M.R. An intelligent procedure for the detection and classification of chickens infected by Clostridium perfringens based on their vocalization. Braz. J. Poult. Sci. 2015, 17, 537–544. [Google Scholar] [CrossRef]
- Hartung, H.; Lehr, H.; Rosés, D.; Mergeay, M.; van den Bossche, J. ChickenBoy: A farmer assistance system for better animal welfare, health and farm productivity. In Precision Livestock Farming’19, Proceedings of the 9th European Conference on Precision Livestock Farming, Cork, Ireland, 26–29 August 2019; O’Brien, B., Hennessy, D., Shalloo, L., Eds.; 2019; Available online: https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0%2C5&q=ChickenBoy%3A+A+farmer+assistance+system+for+better+animal+welfare%2C+health+and+farm+productivity.&btnG= (accessed on 5 February 2024).
- De Wet, L.; Vranken, E.; Chedad, A.; Aerts, J.-M.; Ceunen, J.; Berckmans, D. Computer-assisted image analysis to quantify daily growth rates of broiler chickens. Br. Poult. Sci. 2003, 44, 524–532. [Google Scholar] [CrossRef]
- Wang, K.; Pan, J.; Rao, X.; Yang, Y.; Wang, F.; Zheng, R.; Ying, Y. An image-assisted rod-platform weighing system for weight information sampling of broilers. Trans. ASABE 2018, 61, 631–640. [Google Scholar] [CrossRef]
- Fontana, I.; Tullo, E.; Carpentier, L.; Berckmans, D.; Butterworth, A.; Vranken, E.; Norton, T.; Berckmans, D.; Guarino, M. Sound analysis to model weight of broiler chickens. Poult. Sci. 2017, 96, 3938–3943. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed]
- He, S.P.; Arowolo, M.A.; Medrano, R.F.; Li, S.; Yu, Q.F.; Chen, J.Y.; He, J.H. Impact of heat stress and nutritional interventions on poultry production. World’s Poult. Sci. J. 2018, 74, 647–664. [Google Scholar] [CrossRef]
- Corkery, G.; Ward, S.; Kenny, C.; Hemmingway, P. Incorporating Smart Sensing Technologies into the Poultry Industry. J. World’s Poult. Res. 2013, 3, 106–128. [Google Scholar]
- European Union Council Directive 2007/43/EC of 28 June 2007 Laying down Minimum Rules for the Protection of Chickens Kept for Meat Production. Off. J. Eur. Union 2007, 182, 19–28.
- Gautam, K.R.; Rong, L.; Zhang, G.; Abkar, M. Comparison of analysis methods for wind-driven cross ventilation through large openings. Build. Environ. 2019, 154, 375–388. [Google Scholar] [CrossRef]
- Jones, T.A.; Donnelly, C.A.; Dawkins, M.S. Environmental and Management Factors Affecting the Welfare of Chickens on Commercial Farms in the United Kingdom and Denmark Stocked at Five Densities. Poult. Sci. 2005, 84, 1155–1165. [Google Scholar] [CrossRef]
- Park, S.O. Application strategy for sustainable livestock production with farm animal algorithms in response to climate change up to 2050: A review. Czech J. Anim. Sci. 2022, 67, 425–441. [Google Scholar] [CrossRef]
- Patel, H.; Samad, A.; Hamza, M.; Muazzam, A.; Harahap, M.K. Role of Artificial Intelligence in Livestock and Poultry Farming. Sinkron 2022, 7, 2425–2429. [Google Scholar] [CrossRef]
- Meluzzi, A.; Sirri, F. Welfare of Broiler Chickens. Ital. J. Anim. Sci. 2009, 8, 161–173. [Google Scholar] [CrossRef]
- Ferreira, V.M.O.S.; Francisco, N.S.; Belloni, M.; Aguirre, G.M.Z.; Caldara, F.R.; Nääs, I.; Garcia, R.; Paz, I.A.; Polycarpo, G. Infrared Thermography Applied to the Evaluation of Metabolic Heat Loss of Chicks Fed with Different Energy Densities. Braz. J. Poult. Sci. 2011, 13, 113–118. [Google Scholar] [CrossRef]
- Taleb, H.; Mahrose, K.; Abdel-Halim, A.; Kasem, H.; Ramadan, G.; Fouad, A.; Khafaga, A.; Khalifa, N.E.; Kamal, M.; Salem, H.; et al. Using artificial intelligence to improve poultry productivity—A review. Ann. Anim. Sci. 2025, 25, 23–33. [Google Scholar] [CrossRef]
- Nääs, I.A.; Romanini, C.E.B.; Neves, D.P.; Nascimento, G.R.; Verceliino, R.A. Broiler surface temperature distribution of 42-day-old chickens. Sci. Agric. 2010, 67, 497–502. [Google Scholar] [CrossRef]
- Pereira, W.F.; Fonseca, L.S.; Putti, F.F.; Góes, B.C.; Naves, L.P. Environmental monitoring in a poultry farm using an instrument developed with the Internet of Things concept. Comput. Electron. Agric. 2020, 170, 105257. [Google Scholar] [CrossRef]
- Astill, J.; Dara, R.A.; Fraser, E.D.G.; Roberts, B.; Sharif, S. Smart poultry management: Smart sensors, big data, and the internet of things. Comput. Electron. Agric. 2020, 170, 105291. [Google Scholar] [CrossRef]
- Lahlouh, I.; Rerhrhaye, F.; Elakkary, A.; Sefiani, N. Experimental implementation of a new multi input multi output fuzzy-PID controller in a poultry house system. Heliyon 2020, 6, e04645. [Google Scholar] [CrossRef] [PubMed]
- Küçüktopcu, E.; Cemek, B. Comparison of neuro-fuzzy and neural networks techniques for estimating ammonia concentration in poultry farms. J. Environ. Chem. Eng. 2021, 9, 105699. [Google Scholar] [CrossRef]
- Debauche, O.; Mahmoudi, S.; Manneback, P.; Bindelle, J.; Lebeau, F. Edge computing and artificial intelligence for real-time poultry monitoring. Procedia Comput. Sci. 2020, 175, 534–541. [Google Scholar] [CrossRef]
- Ren, G.; Lin, T.; Ying, Y.; Chowdhary, G.; Ting, K.C. Agricultural robotics applicable to poultry production: A review. Comput. Electron. Agric. 2020, 169, 105216. [Google Scholar] [CrossRef]
- Manteuffel, G.; Puppe, B.; Schon, P.C. Vocalization of farm animals as a measure of welfare. Appl. Anim. Behav. Sci. 2004, 88, 163–182. [Google Scholar] [CrossRef]
- Weary, D.M.; Fraser, D. Calling by domestic piglets: Reliable signals of need? Anim. Behav. 1995, 50, 1047–1055. [Google Scholar] [CrossRef]
- Olczak, K.; Penar, W.; Nowicki, J.; Magiera, A.; Klocek, C. The Role of Sound in Livestock Farming—Selected Aspects. Animals 2023, 13, 2307. [Google Scholar] [CrossRef] [PubMed]
- Seyfarth, R.M.; Cheney, D.L. Meaning and emotion in animal vocalizations. Ann. N. Y. Acad. Sci. 2003, 1000, 32–55. [Google Scholar] [CrossRef]
- Evans, C.S.; Evans, L. Chicken food calls are functionally referential. Anim. Behav. 1999, 58, 307–319. [Google Scholar] [CrossRef]
- Wauters, A.M.; Richard-Yris, M.A.; Pierre, J.S.; Lunel, C.; Richard, J.P. Influence of Chicks and Food Quality on Food Calling in Broody Domestic Hens. Behaviour 1999, 136, 919–933. [Google Scholar] [CrossRef]
- Townsend, S.W.; Charlton, B.D.; Manser, M.B. Acoustic cues to identity and predator context in meerkat barks. Anim. Behav. 2014, 94, 143–149. [Google Scholar] [CrossRef]
- Gustison, M.L.; Townsend, S.W. A survey of the context and structure of high- and low-amplitude calls in mammals. Anim. Behav. 2015, 105, 281–288. [Google Scholar] [CrossRef]
- Reichard, D.G.; Anderson, R.C. Why signal softly? The structure, function and evolutionary significance of low-amplitude signals. Anim. Behav. 2015, 105, 253–265. [Google Scholar] [CrossRef]
- Clay, Z.; Smith, C.L.; Blumstein, D.T. Food-associated vocalizations in mammals and birds: What do these calls mean? Anim. Behav. 2012, 83, 323–330. [Google Scholar] [CrossRef]
- Dentressangle, F.; Aubin, T.; Mathevon, N. Males use time whereas females prefer harmony: Individual call recognition in the dimorphic blue-footed booby. Anim. Behav. 2012, 84, 413–420. [Google Scholar] [CrossRef]
- Pereira, E.M.; Naas, I.D.; Garcia, R.G. Vocalization of broilers can be used to identify their sex and genetic strain. Engen. Agric. 2015, 35, 192–196. [Google Scholar] [CrossRef]
- Carpentier, L.; Vranken, E.; Berckmans, D.; Paeshuyse, J.; Norton, T. Development of sound-based poultry health monitoring tool for automated sneeze detection. Comput. Electron. Agric. 2019, 162, 573–581. [Google Scholar] [CrossRef]
- Banakar, A.; Sadeghi, M.; Shushtari, A. An intelligent device for diagnosing avian diseases: Newcastle, infectious bronchitis, avian influenza. Comput. Electron. Agric. 2016, 127, 744–753. [Google Scholar] [CrossRef]
- Carroll, B.T.; Anderson, D.V.; Daley, W.; Harbert, S.; Britton, D.F.; Jackwood, M.W. Detecting symptoms of diseases in poultry through audio signal processing. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, USA, 3–5 December 2014. [Google Scholar] [CrossRef]
- Mahdavian, A.; Minaei, S.; Marchetto, P.M.; Almasganj, F.; Rahimi, S.; Yang, C. Acoustic features of vocalization signal in poultry health monitoring. Appl. Acoust. 2020, 175, 107756. [Google Scholar] [CrossRef]
- Moural, D.J.; Nääs, I.A.; Alves, E.C.S.; Carvalho, T.M.R.; Vale, M.M.; de Lima, K.A.O. Noise analysis to evaluate chick thermal comfort. Sci. Agric. 2008, 65, 438–443. [Google Scholar] [CrossRef]
- Exadaktylos, V.; Silva, M.; Berckmans, D. Real-time analysis of chicken embryo sounds to monitor different incubation stages. Comput. Electron. Agric. 2011, 75, 321–326. [Google Scholar] [CrossRef]
- Aydin, A.; Cangar, O.; Ozcan, S.E.; Bahr, C.; Berckmans, D. Application of a Fully Automatic Analysis Tool to Assess the Activity of Broiler Chickens with Different Gait Scores. Comput. Electron. Agric. 2010, 73, 194–199. [Google Scholar] [CrossRef]
- Hoffmann, G.; Ammon, C.; Volkamer, L.; Sürie, C.; Radko, D. Sensor-Based Monitoring of the Prevalence and Severity of Foot Pad Dermatitis in Broiler Chickens. Br. Poult. Sci. 2013, 54, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Haslam, S.M.; Knowles, T.G.; Brown, S.N.; Wilkins, L.J.; Kestin, S.C.; Warriss, P.D.; Nicol, C.J. Factors Affecting the Prevalence of Foot Pad Dermatitis, Hock Burn and Breast Burn in Broiler Chicken. Br. Poult. Sci. 2007, 48, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Bilgili, S.F.; Hess, J.B.; Blake, J.P.; Macklin, K.S.; Saenmahayak, B.; Sibley, J.L. Influence of Bedding Material on Footpad Dermatitis in Broiler Chickens. J. Appl. Poult. Res. 2009, 18, 583–589. [Google Scholar] [CrossRef]
- Amraei, S.; Abdanan, M.S.; Salari, S. Broiler weight estimation based on machine vision and artificial neural network. Br. Poult. Sci. 2017, 58, 200–205. [Google Scholar] [CrossRef]
- Peng, Y.; Zeng, Z.; Lv, E.; He, X.; Zeng, B.; Wu, F.; Guo, J.; Li, Z. A Real-Time Automated System for Monitoring Individual Feed Intake and Body Weight of Group-Housed Young Chickens. Appl. Sci. 2022, 12, 12339. [Google Scholar] [CrossRef]
- Stadig, L.M.; Rodenburg, T.B.; Ampe, B.; Reubens, B.; Tuyttens, F.A.M. An Automated Positioning System for Monitoring Chickens’ Location: Effects of Wearing a Backpack on Behaviour, Leg Health and Production. Appl. Anim. Behav. Sci. 2018, 198, 83–88. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhang, T. Detection of sick broilers by digital image processing and deep learning. Biosyst. Eng. 2019, 179, 106–116. [Google Scholar] [CrossRef]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object detection via region-based fully convolutional networks. arXiv 2016, arXiv:1605.06409. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. arXiv 2017, arXiv:1708.02002. [Google Scholar] [CrossRef]
- Ozenturk, U.; Chen, Z.; Jamone, L.; Versace, E. Robotics for poultry farming: Challenges and opportunities. arXiv 2023, arXiv:2311.05069. [Google Scholar] [CrossRef]
- Collins, L. Non-intrusive tracking of commercial broiler chickens in situ at different stocking densities. Appl. Anim. Behav. Sci. 2008, 112, 94–105. [Google Scholar] [CrossRef]
- Dawkins, M.S.; Cain, R.; Roberts, S.J. Optical flow, flock behaviour and chicken welfare. Anim. Behav. Sci. 2012, 84, 219–223. [Google Scholar] [CrossRef]
- Roberts, S.J.; Cain, R.; Dawkins, M.S. Prediction of welfare outcomes for broiler chickens using Bayesian regression on continuous optical flow data. J. R. Soc. Interface 2012, 9, 3436–3443. [Google Scholar] [CrossRef]
- Dawkins, M.S.; Lee, H.J.; Waitt, C.D.; Roberts, S.J. Optical Flow Patterns in Broiler Chicken Flocks as Automated Measures of Behaviour and Gait. Appl. Anim. Behav. Sci. 2009, 119, 203–209. [Google Scholar] [CrossRef]
- Eijk, J.A.J.; Oleksiy, G.; Schulte-Landwehr, J.; Giersberg, M.F.; Jacobs, L.; de Jong, I.C. Individuality of a group: Detailed walking ability analysis of broiler flocks using optical flow approach. Smart Agric. Technol. 2023, 5, 100298. [Google Scholar] [CrossRef]
- Corr, S.A.; McCorquodale, C.; McDonald, J.; Gentle, M.; McGovern, R. A force plate study of avian gait. J. Biomech. 2007, 40, 2037–2043. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, H.H.; Cornou, C. Automatic detection of deviations in activity levels in groups of broiler chickens—A pilot study. Biosyst. Eng. 2011, 109, 369–376. [Google Scholar] [CrossRef]
- Roush, W.B.; Tomiyama, K.; Garnaoui, K.H.; D’Alfonso, T.H.; Cravener, T.L. Kalman filter and an example of its use to detect changes in poultry production responses. Comput. Electron. Agric. 1992, 6, 347–356. [Google Scholar] [CrossRef]
- Baracho, M.S.; Naas, I.A.; Nachimento, G.R.; Cassiano, J.A.; Oliveira, K.R. Surface Temperature Distribution in Broiler Houses. Braz. J. Poult. Sci. 2011, 13, 177–182. [Google Scholar] [CrossRef]
- Shiomi, M.; Hagita, N. Finding a person with a wearable acceleration sensor using a 3D position tracking system in daily environments. Adv. Robot. 2015, 2, 1563–1574. [Google Scholar] [CrossRef]
- McManus, C.; Tanure, B.; Peripolli, V.; Seixas, L.; Fischer, V.; Gabbi, A.M.; Menegassi, S.R.; Stumpf, M.T.; Kolling, G.J.; Dias, E.; et al. Infrared thermography in animal production: An overview. Comput. Electron. Agric. 2016, 123, 10–16. [Google Scholar] [CrossRef]
- Lu, M.Z.; He, J.; Chen, C.; Okinda, C.; Shen, M.; Liu, L.; Yao, W.; Norton, T.; Berckmans, D. An automatic ear base temperature extraction method for top view piglet thermal image. Comput. Electron. Agric. 2018, 155, 339–347. [Google Scholar] [CrossRef]
- Yahav, S.; Giloh, M. Infrared Thermography—Applications in Poultry Biological Research. In Infrared Thermography; Prakash, R.V., Ed.; In Tech Open Publisher: London, UK, 2012; pp. 1–236. [Google Scholar] [CrossRef]
- Tessier, M.; Tremblay, D.D.; Klopfenstein, C.; Beauchamp, G.; Boulianne, M. Abdominal Skin Temperature Variation In Healthy Broiler Chickens As Determined By Thermography. Poult. Sci. 2003, 82, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.L.; Nigel, C.; Tessaro, S.; Deregt, D.; Desroches, G.; Dubeski, P.L.; Tong, A.K.W.; Godson, D.L. Early detection and prediction of infection using infrared thermography. Can. J. Anim. Sci. 2004, 84, 73–80. [Google Scholar] [CrossRef]
- Klir, J.J.; Heath, J.E. An infrared thermographic study of surface temperature in relation to thermal stress in three species of foxes: The red fox (Vulpes vulpes), arctic fox (Alopex lagopus), and kit fox (Vulpes macrotis). Phys. Zool. 1992, 65, 1011–1021. [Google Scholar] [CrossRef]
- Teunissen, L.P.J.; Daanen, H.A.M. Infrared thermal imaging of the inner canthus of the eye as an estimator of body core temperature. J. Med. Eng. Technol. 2011, 35, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.Y.; Kim, K.J.; Lee, S.H.; Kim, J.B.; Kim, D.H.; Youk, S.; Song, C.-S.; Nahm, S.-S. Thermal image scanning for the early detection of fever induced by highly pathogenic avian influenza virus infection in chickens and ducks and its application in farms. Front. Vet. Sci. 2021, 8, 616755. [Google Scholar] [CrossRef]
- Sadeghi, M.; Banakar, A.; Minaei, S.; Orooji, M.; Shoushtari, A.; Li, G. Early Detection of Avian Diseases Based on Thermography and Artificial Intelligence. Animals 2023, 13, 2348. [Google Scholar] [CrossRef]
- Li, P.; Lu, H.; Wang, F.; Zaho, S.; Wang, N. Detection of Sick Laying Hens by Infrared Thermal Imaging and Deep learning. J. Phys. Conf. Ser. 2021, 2025, 012008. [Google Scholar] [CrossRef]
- Olugbenga, S.O.; Abayomi, O.O.; Oluseye, A.A.; Taiwo, A.T. Optimized nutrients diet formulation of broiler poultry rations in Nigeria using linear programming. J. Nutr. Food Sci. 2015, 14, 1. [Google Scholar] [CrossRef]
- Moss, A.; Chrystal, P.; Cadogan, D.; Wilkinson, S.; Crowley, T.; Choct, M. Precision feeding and precision nutrition: A paradigm shift in broiler feed formulation? Anim. Biosci. 2021, 34, 354–362. [Google Scholar] [CrossRef]
- Zuidhof, M.; Fedorak, M.; Ouellette, C.; Wenger, I. Precision feeding: Innovative management of broiler breeder feed intake and flock uniformity. Poult. Sci. 2017, 96, 2254–2263. [Google Scholar] [CrossRef]
- Xin, H.; Berry, I.L.; Barton, T.L.; Tabler, G.T. Feed and Water Consumption, Growth, and Mortality of Male Broilers1. Poult. Sci. 1994, 73, 610–616. [Google Scholar] [CrossRef]
- Xin, H.; Berry, I.L.; Barton, T.L.; Tabler, G.T. Feeding and drinking patterns of broilers subjected to different feeding and lighting programs. J. Appl. Poult. Res. 1993, 2, 365–372. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Y.; Hailey, R.; Zhang, N.; Liang, Y.; Purswell, J.L. An ultra-high frequency radio frequency identification system for studying individual feeding and drinking behaviors of group-housed broilers. Animal 2019, 13, 2060–2069. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Y.; Oliveira, J.; Verhoijsen, W.; Liu, K.; Xin, H. A UHF RFID system for studying individual feeding and nesting behaviors of group-housed laying hens. Trans. ASABE 2017, 60, 1337–1347. [Google Scholar] [CrossRef]
- Tu, X.; Du, S.; Tang, L.; Xin, H.; Wood, B. A real-time automated system for monitoring individual feed intake and body weight of group housed turkeys. Comput. Electron. Agric. 2011, 75, 313–320. [Google Scholar] [CrossRef]
- Maselyne, J.; Adriaens, I.; Huybrechts, T.; De Ketelaere, B.; Millet, S.; Vangeyte, J.; Van Nuffel, A.; Saeys, W. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID). Animal 2016, 10, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Liu, K. Precision Livestock Farming in Egg Production. Anim. Front. 2017, 7, 24–31. [Google Scholar] [CrossRef]
- Mohammadamin, K.; Arno, P.; Bahr, C.; Vranken, E.; Berckmans, D. Development of an early warning system for a broiler house using computer vision. Biosyst. Eng. 2013, 116, 36–45. [Google Scholar] [CrossRef]
- Pitla, S.; Bajwa, S.; Bhusal, S.; Brumm, T.; Brown-Brandl, T.M. Ground and Aerial Robots for Agricultural Production: Opportunities and Challenges; Counc Agricult Sci Techn (CAST): Ames, IA, USA, 2020; Volume 70. [Google Scholar]
- Aydin, A.; Bahr, C.; Viazzi, S.; Exadaktylos, V.; Buyse, J.; Berckmans, D. A novel method to automatically measure the feed intake of broiler chickens by sound technology. Comput. Electron. Agric. 2014, 101, 17–23. [Google Scholar] [CrossRef]
- Reis, M.P.; Gous, R.M.; Hauschild, L.; Sakomura, N.K. Evaluation of a mechanistic model that estimates feed intake, growth and body composition, nutrient requirements, and optimum economic response of broilers. Animal 2023, 17, 5. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, J.M.; Reis, M.P.; Gous, R.M.; Dorigam, J.C.P.; Leme, B.B.; Sakomura, N.K. Response of broilers to dietary balanced protein. 1. Feed intake and growth. Anim. Prod. Sci. 2021, 61, 1425–1434. [Google Scholar] [CrossRef]
- Bowling, D.; Garcia, M.; Dunn, J.; Ruprecht, R.; Stewart, A.; Frommolt, K.H.; Fitch, W. Body size and vocalization in primates and carnivores. Sci. Rep. 2017, 7, 41070. [Google Scholar] [CrossRef]
- Ali, N.M. Variance in pig’s dimensions as measured by image analysis. In Proceedings of the Fourth International Livestock Environment Symposium, University of Warvick, Coventry, UK, 6–9 July 1993; pp. 151–158. [Google Scholar]
- Mollah, M.B.R.; Hasan, M.A.; Salam, M.A.; Ali, M.A. Digital image analysis to estimate the live weight of broiler. Comput. Electron. Agric. 2010, 72, 48–52. [Google Scholar] [CrossRef]
- Meyer, M.M.; Johnson, A.K.; Bobeck, E.A. A Novel Environmental Enrichment Device Increased Physical Activity and Walking Distance in Broilers. Poult. Sci. 2020, 99, 48–60. [Google Scholar] [CrossRef]
- Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. Sensors 2022, 22, 4319. [Google Scholar] [CrossRef]
- Tuyttens, F.A.M.; Molento, C.F.M.; Benaissa, S. Twelve Threats of Precision Livestock Farming (PLF) for Animal Welfare. Front. Vet. Sci. 2022, 9, 889623. [Google Scholar] [CrossRef] [PubMed]
- Hovinen, M.; Pyörälä, S. Invited review: Udder health of dairy cows in automatic milking. J. Dairy Sci. 2011, 94, 547–562. [Google Scholar] [CrossRef]
- Burton, R.J.F.; Peoples, S.; Cooper, M.H. Building cowshed culture: A cultural perspective on the promotion of stockmanship and animal welfare on dairy farms. J. Rural Stud. 2012, 28, 174–187. [Google Scholar] [CrossRef]
- Stygar, A.H.; Gómez, Y.; Berteselli, G.V.; Dalla Costa, E.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A Systematic Review on Commercially Available and Validated Sensor Technologies for Welfare Assessment of Dairy Cattle. Front. Vet. Sci. 2021, 8, 634338. [Google Scholar] [CrossRef] [PubMed]
- Schillings, J.; Bennett, R.; Rose, D.C. Exploring the potential of precision livestock farming technologies to help address farm animal welfare. Front. Anim. Sci. 2021, 2, 639678. [Google Scholar] [CrossRef]
- Gargiulo, J.I.; Eastwood, C.R.; Garcia, S.C.; Lyons, N.A. Dairy farmers with larger herd sizes adopt more precision dairy technologies. J. Dairy Sci. 2018, 101, 5466–5473. [Google Scholar] [CrossRef]
- Acheampong, S. Future of Broiler Farming: Trends, Challenges, and Opportunities. In Modern Technology and Traditional Husbandry of Broiler Farming; Al-Mazooqi, W., Ed.; Intech Open: London, UK, 2024. [Google Scholar] [CrossRef]
- Binngießer, J.; Randler, C. Association of the environmental attitudes “Preservation” and “Utilization” with pro-animal attitudes. Int. J. Environ. Sci. Educ. 2015, 10, 477–492. [Google Scholar] [CrossRef]
- Alatise, M.B.; Hancke, G.P. A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods. IEEE Access 2020, 8, 39830–39846. [Google Scholar] [CrossRef]
- Dennis, L.; Fisher, M. Verifiable Autonomy and Responsible Robotics. In Software Engineering for Robotics; Cavalcanti, A., Dongol, B., Hierons, R., Timmis, J., Woodcock, J., Eds.; Springer: Cham, Switzerland, 2021; pp. 189–217. [Google Scholar] [CrossRef]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, G.I.; Voulgarakis, N.; Terzidou, G.; Fotos, L.; Giamouri, E.; Papatsiros, V.G. Precision Livestock Farming Technology: Applications and Challenges of Animal Welfare and Climate Change. Agriculture 2024, 14, 620. [Google Scholar] [CrossRef]
- Berckmans, D. Basic principles of PLF: Gold standard, labelling and field data. In Proceedings of the 6th European Conference on Precision Livestock Farming, ECPLF2013, Leuven, Belgium, 10–12 September 2013; pp. 21–29. [Google Scholar]
- Zhang, M.; Wang, X.; Feng, H.; Huang, Q.; Xiao, X.; Zhang, X. Wearable Internet of Things enabled precision livestock farming in smart farms: A review of technical solutions for precise perception, biocompatibility, and sustainability monitoring. J. Clean. Prod. 2021, 312, 127712. [Google Scholar] [CrossRef]
- Ojo, R.O.; Ajayi, A.O.; Owolabi, H.A.; Oyedele, L.O.; Akanbi, L.A. Internet of Things and Machine Learning techniques in poultry health and welfare management: A systematic literature review. Comput. Electron. Agric. 2022, 200, 107266. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital livestock farming. Sens. Bio-Sens. Res. 2021, 32, 100408. [Google Scholar] [CrossRef]
- Garcia, R.; Aguilar, J.; Toro, M.; Pinto, A.; Rodriguez, P. A systematic literature review on the use of machine learning in precision livestock farming. Comput. Electron. Agric. 2020, 179, 105826. [Google Scholar] [CrossRef]
Aim of Application | PLF Tool/System/Network | Advantage | Reference |
---|---|---|---|
Real-time or model-based detection of air conditions and light intensity | Computational fluid dynamics (CFD) | Cost-effective and time-saving compared to traditional study methods | [28,39] |
Machine learning (MIMO, ANFIS-SC, ANFIS-GP, MP, MLR, MFLPID, FLC) | Highest accuracy for ANFIS-SC of R2 = 0.86 R2 for MFLPID = 0.97 14 to 43% energy saving for MFLPID | [37,38] | |
2-dimensional data collection on climate conditions, air composition, bird distribution, and activity Information on gait score and hock burn | Sensors and ultrasonic anemometer (USA) | Low cost, fine temporal resolution (20 Hz) | [15,16] |
Optical flow analysis | Solid prediction of mortality, gait score and foot health Provides the assessment of several hundreds of animals together automatically and continuously | [72] | |
Robots for monitoring of air conditions, turning and sanitisation of the litter, dead birds, water dripping | Octopus Poultry Safe®, ChickenBoy®, ScoutTM, Robochick® | Work in the presence of birds Reduce moisture and pathogenic bacteria count Cost-effective, continuous information on environmental conditions and bird health | [41] |
[16,20] | |||
Robots for increasing bird movements | T-moov®, Spoutnic NAV®, AviSense Robot | Decreased escape distance | [15,70] |
Robots for the reduction of stress and fear | Mobile robot, Ground robot, Mobile Robotic Prototype, Robotic Vehicle | [90] | |
Early disease detection, monitoring of deep body temperature | Sound analysis (WSN) | Long battery life (2 years) | [58] |
Image analysis for health monitoring | RetinaNet®, R-FCN, Faster R-CNN, YOLO-V3 | High accuracies between 84% and 100% | [23,68] |
Precision feeding | Kai-Zen Feeding Robot® | Improvement of feed conversion rate (FCR) by 4% | [102] |
Feed Cast® | Self-sufficient and solar energy -powered, effective monitoring of feed level in silos | [96] | |
Detection of lameness and population densities Location tracking | EthnoVision®, TrackLab®, EyeNamic® | Accuracy of 95.24% | [19] |
3D-vision monitoring system | Accuracy of 93% for the detection of lying events | [60] | |
Weight monitoring | Sound analysis (Adobe® Audition™) | Accuracy of R2 = 0.98 | [24] |
Image analysis (IDRISI 32, MATLAB, LIBSVM) | Accuracy of R2 = 0.98–0.99 | [108] | |
Machine learning | Accuracies between 98–100% | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brassó, L.D.; Komlósi, I.; Várszegi, Z. Modern Technologies for Improving Broiler Production and Welfare: A Review. Animals 2025, 15, 493. https://doi.org/10.3390/ani15040493
Brassó LD, Komlósi I, Várszegi Z. Modern Technologies for Improving Broiler Production and Welfare: A Review. Animals. 2025; 15(4):493. https://doi.org/10.3390/ani15040493
Chicago/Turabian StyleBrassó, Lili D., István Komlósi, and Zsófia Várszegi. 2025. "Modern Technologies for Improving Broiler Production and Welfare: A Review" Animals 15, no. 4: 493. https://doi.org/10.3390/ani15040493
APA StyleBrassó, L. D., Komlósi, I., & Várszegi, Z. (2025). Modern Technologies for Improving Broiler Production and Welfare: A Review. Animals, 15(4), 493. https://doi.org/10.3390/ani15040493