N6-Methyladenosine (m6A)-Circular RNA Pappalysin 1 (circPAPPA) from Cashmere Goats: Identification, Regulatory Network and Expression Potentially Regulated by Methylation in Secondary Hair Follicles Within the First Intron of Its Host Gene
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Nucleic Acid Samples and Cell Culture
2.2. Host Source Analysis of m6A-circPAPPA in Cashmere Goats Along with Its Sequence Structural Features
2.3. Validation of m6A Modification Sites of circPAPPA with Its Subcellular Localization
2.4. Regulatory Network Construction of circPAPPA Along with Enrichment Analysis of Signaling Pathways
2.5. Expression Detection of circPAPPA Along with Methylation Analysis Within First Intron of Its Host Gene (PAPPA) in Cashmere Goat SHFs
2.6. Statistical Analysis
3. Results and Discussion
3.1. Host Source Analysis of circPAPPA in Cashmere Goats with Its Sequence Structural Features
3.2. Validation of circPAPPA m6A Sites and Its Subcellular Localization Along with Potential Binding Structure with Target miRNAs
3.3. CeRNA Regulatory Network of circPAPPA Along with Pathway Enrichment on Its miRNA Mediated Target Genes
3.4. Regulatory Network and Pathway Enrichment of the Potential Regulatory Proteins of circPAPPA Molecule
3.5. Expression Pattern of m6A-circPAPPA and Its Potential Relationships with Methylation Within First Intron of PAPPA Gene in SHF Cycles of Cashmere Goats
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
m6A | N6-methyladenosine |
circRNA | Circular RNA |
Me-RIP | Methylation immunoprecipitation |
ceRNAs | Competing endogenous RNAs |
ORF | Open reading frame |
DIPs | Direct interaction proteins |
IRPs | Indirect regulatory proteins |
References
- Shen, J.C.; Wang, Y.R.; Bai, M.; Fan, Y.X.; Wang, Z.Y.; Bai, W.L. Novel circRNAs from cashmere goats: Discovery, integrated regulatory network, and their putative roles in the regeneration and growth of secondary hair follicles. Czech J. Anim. Sci. 2022, 67, 237–251. [Google Scholar] [CrossRef]
- Wu, J.H.; Zhang, Y.J.; Zhang, J.X.; Chang, Z.L.; Li, J.Q.; Yan, Z.W.; Husile; Zhang, W.G. Hoxc13/β-catenin Correlation with Hair Follicle Activity in Cashmere Goat. J. Integr. Agric. 2012, 11, 1159–1166. [Google Scholar] [CrossRef]
- Hu, S.L.; Li, C.; Wu, D.; Huo, H.Y.; Bai, H.H.; Wu, J.H. The Dynamic Change of Gene-Regulated Networks in Cashmere Goat Skin with Seasonal Variation. Biochem. Genet. 2022, 60, 527–542. [Google Scholar] [CrossRef]
- Wu, X.M.; Gu, Y.H.; Li, S.Q.; Guo, S.W.; Wang, J.Q.; Luo, Y.Z.; Hu, J.; Liu, X.; Li, S.B.; Hao, Z.Y.; et al. RNA-Seq Reveals the Roles of Long Non-Coding RNAs (lncRNAs) in Cashmere Fiber Production Performance of Cashmere Goats in China. Genes 2023, 14, 384. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Liu, Z.C.; Mu, Q.; Zhao, M.; Cai, T.; Xie, Y.C.; Zhao, C.; Qin, Q.; Zhang, C.Y.; Xu, X.L.; et al. Identification of key pathways and genes that regulate cashmere development in cashmere goats mediated by exogenous melatonin. Front. Vet. Sci. 2022, 9, 993773. [Google Scholar] [CrossRef]
- Zhang, C.M.; Liu, N. N6-methyladenosine (m6A) modification in gynecological malignancies. J. Cell. Physiol. 2022, 237, 3465–3479. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Liu, W.Q.; Ren, L.J. Role of m6A RNA Methylation in Ischemic Stroke. Mol. Neurobiol. 2024, 61, 6997–7008. [Google Scholar] [CrossRef]
- Du, A.S.; Li, S.Q.; Zhou, Y.Z.; Disoma, C.; Liao, Y.J.; Zhang, Y.X.; Chen, Z.P.; Yang, Q.L.; Liu, P.J.; Liu, S.X.; et al. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. Mol. Cancer 2022, 21, 109. [Google Scholar] [CrossRef]
- Shao, Y.J.; Liu, Z.H.; Song, X.; Sun, R.; Zhou, Y.; Zhang, D.C.; Sun, H.H.; Huang, J.C.; Wu, C.X.; Gu, W.D.; et al. ALKBH5/YTHDF2-mediated m6A modification of circAFF2 enhances radiosensitivity of colorectal cancer by inhibiting Cullin neddylation. Clin. Transl. Med. 2023, 13, e1318. [Google Scholar] [CrossRef]
- Qi, K.L.; Dou, Y.Q.; Zhang, Z.; Wei, Y.L.; Song, C.L.; Qiao, R.M.; Li, X.L.; Yang, F.; Wang, K.J.; Li, X.J.; et al. Expression Profile and Regulatory Properties of m6A-Modified circRNAs in the Longissimus Dorsi of Queshan Black and Large White Pigs. Animals 2023, 13, 2190. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.L.; Zhu, Y.S.; Li, J.; Zeng, J.; Wu, L.Y. ALKBH5-mediated m6A modification of circCCDC134 facilitates cervical cancer metastasis by enhancing HIF1A transcription. J. Exp. Clin. Cancer Res. 2022, 41, 261. [Google Scholar] [CrossRef]
- Xu, H.J.; Lin, C.J.; Li, T.; Zhu, Y.F.; Yang, J.H.; Chen, S.J.; Chen, J.G.; Chen, X.; Chen, Y.Y.; Guo, A.Z.; et al. Methyladenosine-Modified circRNA in the Bovine Mammary Epithelial Cells Injured by Staphylococcus aureus and Escherichia coli. Front. Immunol. 2022, 13, 873330. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.N.; Yang, S.T.; Gao, R.; Lv, X.Y.; Yang, Z.P.; Jiao, P.X.; Zhang, N.; Loor, J.J.; Chen, Z. m6A Methylation Mediates the Function of the circRNA-08436/miR-195/ELOVL6 Axis in Regards to Lipid Metabolism in Dairy Goat Mammary Glands. Animals 2024, 14, 1715. [Google Scholar] [CrossRef] [PubMed]
- Hui, T.Y.; Zhu, Y.B.; Shen, J.C.; Bai, M.; Fan, Y.X.; Feng, S.Y.; Wang, Z.Y.; Zhao, J.Y.; Zhang, Q.; Liu, X.W.; et al. Identification and Molecular Analysis of m6A-circRNAs from Cashmere Goat Reveal Their Integrated Regulatory Network and Putative Functions in Secondary Hair Follicle during Anagen Stage. Animals 2022, 12, 694. [Google Scholar] [CrossRef]
- Yin, R.H.; Yin, R.L.; Bai, M.; Fan, Y.X.; Wang, Z.Y.; Zhu, Y.B.; Zhang, Q.; Hui, T.Y.; Shen, J.C.; Feng, S.Y.; et al. N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats. Anim. Biosci. 2023, 36, 555–569. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, Y.X.; Bai, M.; Zhu, Y.B.; Wang, Z.Y.; Shen, J.C.; Xu, R.Q.; Zheng, W.X.; Bai, W.L. CircERCC6 Positively Regulates the Induced Activation of SHF Stem Cells in Cashmere Goats via the miR-412-3p/BNC2 Axis in an m6A-Dependent Manner. Animals 2024, 14, 187. [Google Scholar] [CrossRef]
- Yin, R.H.; Wang, Y.R.; Wang, Z.Y.; Zhu, Y.B.; Cong, Y.Y.; Wang, W.; Deng, L.; Liu, H.Y.; Guo, D.; Bai, W.L. Discovery and molecular analysis of conserved circRNAs from cashmere goat reveal their integrated regulatory network and potential roles in secondary hair follicle. Electron. J. Biotechnol. 2019, 41, 37–47. [Google Scholar] [CrossRef]
- Oxvig, C.; Conover, C.A. The Stanniocalcin-PAPP-A-IGFBP-IGF Axis. J. Clin. Endocrinol. Metab. 2023, 108, 1624–1633. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.H.; Li, J.L.; Chen, Q.R.; Yang, N.S.; Bao, Z.Y.; Hu, S.S.; Chen, Y.; Wu, X.S. A Treatment Combination of IGF and EGF Promotes Hair Growth in the Angora Rabbit. Genes 2021, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Hui, T.; Bai, M.; Fan, Y.; Zhu, Y.; Zhang, Q.; Xu, R.; Zhang, J.; Wang, Z.; Zheng, W.; et al. N6-methyladenosine (m6A)-circHECA from secondary hair follicle of cashmere goats: Identification, regulatory network and expression regulated potentially by methylation of its host gene promoter. Anim. Biosci. 2024, 37, 2066–2080. [Google Scholar] [CrossRef]
- Chen, Z.; Ling, K.J.; Zhu, Y.J.; Deng, L.; Li, Y.D.; Liang, Z.Q. circ0000069 promotes cervical cancer cell proliferation and migration by inhibiting miR-4426. Biochem. Biophys. Res. Commun. 2021, 551, 114–120. [Google Scholar] [CrossRef]
- Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Ideker, T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 2011, 27, 431–432. [Google Scholar] [CrossRef]
- Tang, D.D.; Chen, M.J.; Huang, X.H.; Zhang, G.C.; Zeng, L.; Zhang, G.S.; Wu, S.J.; Wang, Y.W. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Kumaki, Y.; Oda, M.; Okano, M. QUMA: Quantification tool for methylation analysis. Nucleic Acids Res. 2008, 36, W170–W175. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Chai, P.W.; Jia, R.B.; Jia, R.B. Novel insights on m6A RNA methylation in tumorigenesis: A double-edged sword. Mol. Cancer 2018, 17, 101. [Google Scholar] [CrossRef]
- Wen, S.Y.; Qadir, J.; Yang, B.B. Circular RNA translation: Novel protein isoforms and clinical significance. Trends Mol. Med. 2022, 28, 405–420. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.J.; Mao, M.W.; Song, X.W.; Wu, P.; Zhang, Y.; Jin, Y.F.; Yang, Y.; Chen, L.L.; Wang, Y.; et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017, 27, 626–641. [Google Scholar] [CrossRef]
- Sadhukhan, S.; Sinha, T.; Dey, S.; Panda, A.C. Subcellular localization of circular RNAs: Where and why. Biochem. Biophys. Res. Commun. 2024, 715, 149937. [Google Scholar] [CrossRef]
- Ala, U. Competing Endogenous RNAs, Non-Coding RNAs and Diseases: An Intertwined Story. Cells 2020, 9, 1574. [Google Scholar] [CrossRef]
- Kohansal, M.; Alghanimi, Y.K.; Banoon, S.R.; Ghasemian, A.; Afkhami, H.; Daraei, A.; Wang, Z.L.; Nekouian, N.; Xie, J.D.; Deng, X.P.; et al. CircRNA-associated ceRNA regulatory networks as emerging mechanisms governing the development and biophysiopathology of epilepsy. CNS Neurosci. Ther. 2024, 30, e14735. [Google Scholar] [CrossRef]
- Bai, W.L.; Dang, Y.L.; Yin, R.H.; Jiang, W.Q.; Wang, Z.Y.; Zhu, Y.B.; Wang, S.Q.; Zhao, Y.Y.; Deng, L.; Luo, G.B.; et al. Differential Expression of microRNAs and their Regulatory Networks in Skin Tissue of Liaoning Cashmere Goat during Hair Follicle Cycles. Anim. Biotechnol. 2016, 27, 104–112. [Google Scholar] [CrossRef]
- Shang, F.Z.; Wang, Y.; Ma, R.; Di, Z.Y.; Wu, Z.H.; Hai, E.R.; Rong, Y.J.; Pan, J.F.; Liang, L.L.; Wang, Z.Y.; et al. Expression Profiling and Functional Analysis of Circular RNAs in Inner Mongolian Cashmere Goat Hair Follicles. Front. Genet. 2021, 12, 678825. [Google Scholar] [CrossRef] [PubMed]
- Castela, M.; Linay, F.; Roy, E.; Moguelet, P.; Xu, J.; Holzenberger, M.; Khosrotehrani, K.; Aractingi, S. signalling acts on the anagen-to-catagen transition in the hair cycle. Exp. Dermatol. 2017, 26, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Zhai, B.; Zhang, L.C.; Wang, C.X.; Zhao, Z.; Zhang, M.X.; Li, X. Identification of microRNA-21 target genes associated with hair follicle development in sheep. PeerJ 2019, 7, e7167. [Google Scholar] [CrossRef]
- Lim, X.H.; Tan, S.H.; Yu, K.L.; Lim, S.B.H.; Nusse, R. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling. Proc. Natl. Acad. Sci. USA 2016, 113, E1498–E1505. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Z.; Li, H.J.; Zhou, R.J.; Ma, G.; Dekker, J.D.; Tucker, H.O.; Yao, Z.J.; Guo, X.Z. Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling. PLoS ONE 2015, 10, e0131674. [Google Scholar] [CrossRef]
- Sennett, R.; Wang, Z.C.; Rezza, A.; Grisanti, L.; Roitershtein, N.; Sicchio, C.; Mok, K.W.; Heitman, N.J.; Clavel, C.; Ma’ayan, A.; et al. An Integrated Transcriptome Atlas of Embryonic Hair Follicle Progenitors, Their Niche, and the Developing Skin. Dev. Cell 2015, 34, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Oshimori, N.; Fuchs, E. Paracrine TGF-β Signaling Counterbalances BMP-Mediated Repression in Hair Follicle Stem Cell Activation. Cell Stem Cell 2012, 10, 63–75. [Google Scholar] [CrossRef]
- Amoh, Y.; Hoffman, R.M. Hair follicle-associated-pluripotent (HAP) stem cells. Cell Cycle 2017, 16, 2169–2175. [Google Scholar] [CrossRef]
- Öztürk, Ö.; Pakula, H.; Chmielowiec, J.; Qi, J.J.; Stein, S.; Lan, L.X.; Sasaki, Y.; Rajewsky, K.; Birchmeier, W. Gab1 and Mapk Signaling Are Essential in the Hair Cycle and Hair Follicle Stem Cell Quiescence. Cell Rep. 2015, 13, 561–572. [Google Scholar]
- Zheng, S.L.; Zhang, X.J.; Odame, E.; Xu, X.L.; Chen, Y.; Ye, J.F.; Zhou, H.L.; Dai, D.H.; Kyei, B.; Zhan, S.Y.; et al. CircRNA-Protein Interactions in Muscle Development and Diseases. Int. J. Mol. Sci. 2021, 22, 3262. [Google Scholar] [CrossRef] [PubMed]
- Shahbazian, D.; Roux, P.P.; Mieulet, V.; Cohen, M.S.; Raught, B.; Taunton, J.; Hershey, J.W.B.; Blenis, J.; Pende, M.; Sonenberg, N. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J. 2006, 25, 2781–2791. [Google Scholar] [CrossRef]
- He, Z.Q.; Zhong, Y.H.; Regmi, P.; Lv, T.R.; Ma, W.J.; Wang, J.K.; Liu, F.; Yang, S.Q.; Zhong, Y.J.; Zhou, R.X.; et al. Exosomal long non-coding RNA TRPM2-AS promotes angiogenesis in gallbladder cancer through interacting with PABPC1 to activate NOTCH1 signaling pathway. Mol. Cancer 2024, 23, 65. [Google Scholar] [CrossRef]
- Wang, G.Q.; Wu, H.; Liang, P.; He, X.J.; Liu, D. Fus knockdown inhibits the profibrogenic effect of cardiac fibroblasts induced by angiotensin II through targeting Pax3 thereby regulating TGF-β1/Smad pathway. Bioengineered 2021, 12, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Wei, J.B.; Yu, F.; Xu, H.Z.; Yu, C.J.; Wu, Q.; Liu, Y.; Li, L.; Cui, X.L.; Gu, X.Y.; et al. A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex-mediated DNA replication. Blood 2021, 138, 2838–2852. [Google Scholar] [CrossRef]
- Liu, N.; Dai, Q.; Zheng, G.; He, C.; Parisien, M.; Pan, T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 2015, 518, 560–564. [Google Scholar] [CrossRef]
- Li, W.; Man, X.Y.; Li, C.M.; Chen, J.Q.; Zhou, J.; Cai, S.Q.; Lu, Z.F.; Zheng, M. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK. Exp. Cell Res. 2012, 318, 1633–1640. [Google Scholar] [CrossRef]
- Craven, A.J.; Ormandy, C.J.; Robertson, F.G.; Wilkins, R.J.; Kelly, P.A.; Nixon, A.J.; Pearson, A.J. Prolactin signaling influences the timing mechanism of the hair follicle: Analysis of hair growth cycles in prolactin receptor knockout mice. Endocrinology 2001, 142, 2533–2539. [Google Scholar] [CrossRef]
- Zhang, C.C.; Ma, L.F.; Niu, Y.J.; Wang, Z.X.; Xu, X.; Li, Y.; Yu, Y.C. Circular RNA in Lung Cancer Research: Biogenesis, Functions, and Roles. Int. J. Biol. Sci. 2020, 16, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadi, D.; Esteve-Codina, A.; Piferrer, F. Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenet. Chromatin 2018, 11, 37. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z.S.; Li, S.L.; Chen, J.; Zhang, J.W.; Jiang, C.J.; Zhao, Z.; Li, J.; Li, Y.S.; Li, X. Combinatorial epigenetic regulation of non-coding RNAs has profound effects on oncogenic pathways in breast cancer subtypes. Brief. Bioinform. 2018, 19, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Thölken, C.; Thamm, M.; Erbacher, C.; Lechner, M. Sequence and structural properties of circular RNAs in the brain of nurse and forager honeybees (Apis mellifera). BMC Genom. 2019, 20, 88. [Google Scholar] [CrossRef] [PubMed]
Gene/Site Name | References | Sequence (5′-3′) a | Primer Length (nt) | Amplicon Size (bp) | Annealing Temperature (°C) |
---|---|---|---|---|---|
m6A-circPAPPA (Divergent primers) | Yin et al., 2019 [17] | F: CACCAAGACCTGTTTCGAGC R: GGTCACGTGAGGCATAAGAAC | 20 21 | 71 | 59 |
circPAPPA-m6A-450/456 | The present study | F: CCCCCAGGGCCCTCTACC R: GGCTGCTGCCGTCCTTCA | 18 18 | 89 | 58 |
circPAPPA-m6A-852 | The present study | F: GCCGCCGCCTCATCCTGG R: CGTGGCCGGTCAGCGTGT | 18 18 | 90 | 61 |
circPAPPA-m6A-900 | The present study | F: CCCCGAGTGCAACCACAC R: CCCCGTTCTGCTGCTTCT | 18 18 | 92 | 58 |
circPAPPA-m6A-963 | The present study | F: AGAAGCAGCAGAACGGGG R: GGTGATATTGGGGTCACA | 18 18 | 89 | 55 |
GAPDH | Yin et al., 2023 [15] | F: TGAACCACGAGAAGTATAACAACA R: GGTCATAAGTCCCTCCACGAT | 24 21 | 125 | 53 |
snRNA-U6 | Yin et al., 2020 [15] | F: CGCTTCGGCAGCACATATAC R: AAATATGGAACGCTTCACGA | 20 20 | Not available | 55 |
PAPPA (BSP-primers) | NC_030815.1 in Genbank b | F: TTTTTTTTAATGAATTTGTGGT R: AAACTCAATTTCCCTCTACTTCC | 22 23 | 546 | 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, M.; Shen, J.; Fan, Y.; Xu, R.; Hui, T.; Zhu, Y.; Zhang, Q.; Zhang, J.; Wang, Z.; Bai, W. N6-Methyladenosine (m6A)-Circular RNA Pappalysin 1 (circPAPPA) from Cashmere Goats: Identification, Regulatory Network and Expression Potentially Regulated by Methylation in Secondary Hair Follicles Within the First Intron of Its Host Gene. Animals 2025, 15, 581. https://doi.org/10.3390/ani15040581
Bai M, Shen J, Fan Y, Xu R, Hui T, Zhu Y, Zhang Q, Zhang J, Wang Z, Bai W. N6-Methyladenosine (m6A)-Circular RNA Pappalysin 1 (circPAPPA) from Cashmere Goats: Identification, Regulatory Network and Expression Potentially Regulated by Methylation in Secondary Hair Follicles Within the First Intron of Its Host Gene. Animals. 2025; 15(4):581. https://doi.org/10.3390/ani15040581
Chicago/Turabian StyleBai, Man, Jincheng Shen, Yixing Fan, Ruqing Xu, Taiyu Hui, Yubo Zhu, Qi Zhang, Jialiang Zhang, Zeying Wang, and Wenlin Bai. 2025. "N6-Methyladenosine (m6A)-Circular RNA Pappalysin 1 (circPAPPA) from Cashmere Goats: Identification, Regulatory Network and Expression Potentially Regulated by Methylation in Secondary Hair Follicles Within the First Intron of Its Host Gene" Animals 15, no. 4: 581. https://doi.org/10.3390/ani15040581
APA StyleBai, M., Shen, J., Fan, Y., Xu, R., Hui, T., Zhu, Y., Zhang, Q., Zhang, J., Wang, Z., & Bai, W. (2025). N6-Methyladenosine (m6A)-Circular RNA Pappalysin 1 (circPAPPA) from Cashmere Goats: Identification, Regulatory Network and Expression Potentially Regulated by Methylation in Secondary Hair Follicles Within the First Intron of Its Host Gene. Animals, 15(4), 581. https://doi.org/10.3390/ani15040581