Achieving Optimal Transfection Conditions in Chicken Primordial Germ Cells Under Feeder- and Serum-Free Medium
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. PGC Acquisition and Cell Culture
2.2. Vector Construction
2.3. Cell Transfection
2.4. Flow Cytometry Assay
2.5. RT-qPCR
2.6. Genotyping and Sequencing
2.7. Statistical Analysis
3. Results
3.1. Electroporation Efficiency of PGC Is Better than That of Lipofectamine
3.2. Optimization of Electroporation Efficiency
3.3. Effects of Transfection on Apoptosis and Gene Expression
3.4. Stable Transfection of PGCs with Lonza System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cullis, P.R.; Felgner, P.L. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat. Rev. Drug Discov. 2024, 23, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, M.J.; Chen, D.Y.; Peng, S.F.; Zhou, X.L.; Liao, Y.Y.; Yang, X.G.; Xu, H.Y.; Lu, S.S.; Zhang, M.; et al. Derivation and characterization of primordial germ cells from guangxi yellow-feather chickens. Poult. Sci. 2017, 96, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Naso, M.F.; Tomkowicz, B.; Perry, W.L.R.; Strohl, W.R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Gehl, J. Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 2003, 177, 437–447. [Google Scholar] [CrossRef]
- Shi, J.; Ma, Y.; Zhu, J.; Chen, Y.; Sun, Y.; Yao, Y.; Yang, Z.; Xie, J. A review on electroporation-based intracellular delivery. Molecules 2018, 23, 3044. [Google Scholar] [CrossRef]
- Atsuta, Y.; Suzuki, K.; Iikawa, H.; Yaguchi, H.; Saito, D. Prime editing in chicken fibroblasts and primordial germ cells. Dev. Growth Differ. 2022, 64, 548–557. [Google Scholar] [CrossRef]
- Nakamura, Y. Poultry genetic resource conservation using primordial germ cells. J. Reprod. Dev. 2016, 62, 431–437. [Google Scholar] [CrossRef]
- Nakamura, Y.; Usui, F.; Miyahara, D.; Mori, T.; Ono, T.; Takeda, K.; Nirasawa, K.; Kagami, H.; Tagami, T. Efficient system for preservation and regeneration of genetic resources in chicken: Concurrent storage of primordial germ cells and live animals from early embryos of a rare indigenous fowl (gifujidori). Reprod. Fertil. Dev. 2010, 22, 1237–1246. [Google Scholar] [CrossRef]
- Woodcock, M.E.; Gheyas, A.A.; Mason, A.S.; Nandi, S.; Taylor, L.; Sherman, A.; Smith, J.; Burt, D.W.; Hawken, R.; McGrew, M.J. Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds. Proc. Natl. Acad. Sci. USA 2019, 116, 20930–20937. [Google Scholar] [CrossRef]
- Lazar, B.; Molnar, M.; Sztan, N.; Vegi, B.; Drobnyak, A.; Toth, R.; Tokodyne Szabadi, N.; McGrew, M.J.; Gocza, E.; Patakine Varkonyi, E. Successful cryopreservation and regeneration of a partridge colored hungarian native chicken breed using primordial germ cells. Poult. Sci. 2021, 100, 101207. [Google Scholar] [CrossRef]
- Kinoshita, K.; Tanabe, K.; Nakamura, Y.; Nishijima, K.; Suzuki, T.; Okuzaki, Y.; Mizushima, S.; Wang, M.; Khan, S.U.; Xu, K.; et al. PGC-based cryobanking, regeneration through germline chimera mating, and CRISPR/cas9-mediated TYRP1 modification in indigenous chinese chickens. Commun. Biol. 2024, 7, 1127. [Google Scholar] [CrossRef] [PubMed]
- Schusser, B.; Collarini, E.J.; Yi, H.; Izquierdo, S.M.; Fesler, J.; Pedersen, D.; Klasing, K.C.; Kaspers, B.; Harriman, W.D.; van de Lavoir, M.; et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc. Natl. Acad. Sci. USA 2013, 110, 20170–20175. [Google Scholar] [CrossRef] [PubMed]
- Park, T.S.; Lee, H.J.; Kim, K.H.; Kim, J.; Han, J.Y. Targeted gene knockout in chickens mediated by TALENs. Proc. Natl. Acad. Sci. USA 2014, 111, 12716–12721. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, K.; Rudra, M.; Berghof, T.V.L.; Leitao, A.; Frankl-Vilches, C.; Dittrich, F.; Duda, D.; Klinger, R.; Schleibinger, S.; Sid, H.; et al. Unveiling the critical role of androgen receptor signaling in avian sexual development. Nat. Commun. 2024, 15, 8970. [Google Scholar] [CrossRef]
- Koslova, A.; Trefil, P.; Mucksova, J.; Reinisova, M.; Plachy, J.; Kalina, J.; Kucerova, D.; Geryk, J.; Krchlikova, V.; Lejckova, B.; et al. Precise CRISPR/cas9 editing of the NHE1 gene renders chickens resistant to the j subgroup of avian leukosis virus. Proc. Natl. Acad. Sci. USA 2020, 117, 2108–2112. [Google Scholar] [CrossRef]
- Zou, X.; He, Y.; Zhao, Z.; Li, J.; Qu, H.; Liu, Z.; Chen, P.; Ji, J.; Zhao, H.; Shu, D.; et al. Single-cell RNA-seq offer new insights into the cell fate decision of the primordial germ cells. Int. J. Biol. Macromol. 2024, 293, 139136. [Google Scholar] [CrossRef]
- Dehdilani, N.; Yousefi Taemeh, S.; Rival-Gervier, S.; Montillet, G.; Kress, C.; Jean, C.; Goshayeshi, L.; Dehghani, H.; Pain, B. Enhanced cultivation of chicken primordial germ cells. Sci. Rep. 2023, 13, 12323. [Google Scholar] [CrossRef]
- Whyte, J.; Glover, J.D.; Woodcock, M.; Brzeszczynska, J.; Taylor, L.; Sherman, A.; Kaiser, P.; McGrew, M.J. FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Rep. 2015, 5, 1171–1182. [Google Scholar] [CrossRef]
- Lee, H.J.; Yoon, J.W.; Jung, K.M.; Kim, Y.M.; Park, J.S.; Lee, K.Y.; Park, K.J.; Hwang, Y.S.; Park, Y.H.; Rengaraj, D.; et al. Targeted gene insertion into z chromosome of chicken primordial germ cells for avian sexing model development. FASEB J. 2019, 33, 8519–8529. [Google Scholar] [CrossRef]
- Dalby, B.; Cates, S.; Harris, A.; Ohki, E.C.; Tilkins, M.L.; Price, P.J.; Ciccarone, V.C. Advanced transfection with lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications. Methods 2004, 33, 95–103. [Google Scholar] [CrossRef]
- Macdonald, J.; Taylor, L.; Sherman, A.; Kawakami, K.; Takahashi, Y.; Sang, H.M.; McGrew, M.J. Efficient genetic modification and germ-line transmission of primordial germ cells using piggybac and tol2 transposons. Proc. Natl. Acad. Sci. USA 2012, 109, E1466–E1472. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Ochi, Y.; Kajihara, R.; Ichikawa, K.; Ezaki, R.; Matsuzaki, M.; Horiuchi, H. Lipofection with lipofectamine 2000 in a heparin-free growth medium results in high transfection efficiency in chicken primordial germ cells. Biotechnol. J. 2023, 18, e2300328. [Google Scholar] [CrossRef] [PubMed]
- Batista Napotnik, T.; Polajzer, T.; Miklavcic, D. Cell death due to electroporation—A review. Bioelectrochemistry 2021, 141, 107871. [Google Scholar] [CrossRef] [PubMed]
- Altgilbers, S.; Klein, S.; Dierks, C.; Weigend, S.; Kues, W.A. Cultivation and characterization of primordial germ cells from blue layer hybrids (araucana crossbreeds) and generation of germline chimeric chickens. Sci. Rep. 2021, 11, 12923. [Google Scholar] [CrossRef]
- Hohenstein, K.A.; Pyle, A.D.; Chern, J.Y.; Lock, L.F.; Donovan, P.J. Nucleofection mediates high-efficiency stable gene knockdown and transgene expression in human embryonic stem cells. Stem Cells 2008, 26, 1436–1443. [Google Scholar] [CrossRef]
- Li, L.H.; McCarthy, P.; Hui, S.W. High-efficiency electrotransfection of human primary hematopoietic stem cells. FASEB J. 2001, 15, 586–588. [Google Scholar] [CrossRef]
- Raucci, F.; Fuet, A.; Pain, B. In vitro generation and characterization of chicken long-term germ cells from different embryonic origins. Theriogenology 2015, 84, 732–742. [Google Scholar] [CrossRef]
- Walsh, R.M.; Hochedlinger, K. A variant CRISPR-cas9 system adds versatility to genome engineering. Proc. Natl. Acad. Sci. USA 2013, 110, 15514–15515. [Google Scholar] [CrossRef]
- Tang, W.W.C.; Dietmann, S.; Irie, N.; Leitch, H.G.; Floros, V.I.; Bradshaw, C.R.; Hackett, J.A.; Chinnery, P.F.; Surani, M.A. A unique gene regulatory network resets the human germline epigenome for development. Cell 2015, 161, 1453–1467. [Google Scholar] [CrossRef]
- Li, L.; Dong, J.; Yan, L.; Yong, J.; Liu, X.; Hu, Y.; Fan, X.; Wu, X.; Guo, H.; Wang, X.; et al. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 2017, 20, 858–873. [Google Scholar] [CrossRef]
- Xie, L.; Sun, J.; Mo, L.; Xu, T.; Shahzad, Q.; Chen, D.; Yang, W.; Liao, Y.; Lu, Y. HMEJ-mediated efficient site-specific gene integration in chicken cells. J. Biol. Eng. 2019, 13, 90. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zou, X.; Zhu, Y.; He, Y.; Jebessa, E.; Zhang, J.; Ji, J.; Chen, P.; Luo, C. Achieving Optimal Transfection Conditions in Chicken Primordial Germ Cells Under Feeder- and Serum-Free Medium. Animals 2025, 15, 590. https://doi.org/10.3390/ani15040590
Zhao Z, Zou X, Zhu Y, He Y, Jebessa E, Zhang J, Ji J, Chen P, Luo C. Achieving Optimal Transfection Conditions in Chicken Primordial Germ Cells Under Feeder- and Serum-Free Medium. Animals. 2025; 15(4):590. https://doi.org/10.3390/ani15040590
Chicago/Turabian StyleZhao, Zhifeng, Xian Zou, Ying Zhu, Yanhua He, Endashaw Jebessa, Jiannan Zhang, Jian Ji, Peng Chen, and Chenglong Luo. 2025. "Achieving Optimal Transfection Conditions in Chicken Primordial Germ Cells Under Feeder- and Serum-Free Medium" Animals 15, no. 4: 590. https://doi.org/10.3390/ani15040590
APA StyleZhao, Z., Zou, X., Zhu, Y., He, Y., Jebessa, E., Zhang, J., Ji, J., Chen, P., & Luo, C. (2025). Achieving Optimal Transfection Conditions in Chicken Primordial Germ Cells Under Feeder- and Serum-Free Medium. Animals, 15(4), 590. https://doi.org/10.3390/ani15040590