Potential Habitat and Priority Conservation Areas for Endangered Species in South Korea
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Species
2.3. Species Distribution Prediction
2.3.1. MaxEnt Model
2.3.2. Species Occurrence Data
2.3.3. Environmental Variables
2.3.4. Spatial Prioritization
2.3.5. Gap Analysis
3. Results and Discussion
3.1. Distribution of Endangered Mammal Species
3.2. Distribution of Endangered Bird Species
3.3. Distribution of Endangered Amphibian and Reptile Species
3.4. Gap Analysis Results and Priority Conservation Areas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Class | Species Name | IUCN Criteria | MOE Class | Species Ecology | |
---|---|---|---|---|---|
Common Name | Scientific Name | ||||
Mammalia | Leopard cat | Prionailurus bengalensis | LC | II |
|
Eurasian otter | Lutra lutra | NT | I |
| |
Yellow-throated marten | Martes flavigula | LC | II |
| |
Siberian Flying squirrel | Pteromys volans | LC | II |
| |
Long-tailed goral | Naemorhedus caudatus | VU | I |
| |
Aves | Eurasian hobby | Falco subbuteo | LC | II |
|
Chinese sparrowhawk | Accipiter soloensis | LC | II |
| |
Eurasian sparrowhawk | Accipiter nisus | LC | II |
| |
Northern goshawk | Accipiter gentilis | LC | II |
| |
Amphibia | Narrow-mouthed toad | Kaloula borealis | LC | II |
|
Korean golden frog | Pelophylax chosenicus | VU | II |
| |
Suweon tree frog | Dryophytes suweonensis | EN | I |
| |
Reptilia | Rat snake | Elaphe schrenckii | LC | II |
|
Korean tiger lizard | Eremias argus | LC | II |
| |
Reeve’s turtle | Mauremys reevesii | EN | II |
|
Code | Description |
---|---|
1 | 1–10-year-old tree canopy occupation ratio of 50% or more |
2 | 11–20-year-old tree canopy occupation ratio of 50% or more |
3 | 21–30-year-old tree canopy occupation ratio of 50% or more |
4 | 31–40-year-old tree canopy occupation ratio of 50% or more |
5 | 41–50-year-old tree canopy occupation ratio of 50% or more |
6 | 51–60-year-old tree canopy occupation ratio of 50% or more |
7 | 61–70-year-old tree canopy occupation ratio of 50% or more |
8 | 71–80-year-old tree canopy occupation ratio of 50% or more |
9 | 81–90-year-old tree canopy occupation ratio of 50% or more |
Classification | Variable | Description | Data Type | Data Source |
---|---|---|---|---|
Topography | DEM | Elevation | Continuous | National Geographic Information Institute (2014) (https://map.ngii.go.kr, accessed on 11 October 2023) |
Slope | Gradient | |||
Aspect | Aspect | |||
TWI | Topographic wetness index | Korea Institute of Geoscience and Mineral Resources (2020) (https://www.bigdata-environment.kr, accessed on 20 June 2024) | ||
Distance | Resid | Distance from residential area | Environmental Geographic Information Service (2023) (https://egis.me.go.kr, accessed on 9 May 2024) | |
Water | Distance from water | |||
Used | Distance from used area | |||
Agri | Distance from agricultural area | |||
Road | Distance from road | |||
Climate | Bio3 | Isothermality (Bio2)/(Bio7) | Worldclim (1970–2000) (https://worldclim.org, accessed on 20 June 2024) | |
Bio4 | Temperature seasonality (standard deviation ×100) | |||
Bio16 | Precipitation in wettest quarter | |||
Bio17 | Precipitation in driest quarter | |||
Vegetation | NDVI | Normalized difference vegetation index | Korea Institute of Geoscience and Mineral Resources (2022) (https://www.bigdata-environment.kr, accessed on 20 June 2024) | |
AGCLS | Forest age class | Categorical | Korea Forest Service (2023) (https://map.forest.go.kr, accessed on 21 September 2023) | |
Land cover | LULC | Land use and land cover | Environmental Geographic Information Service (2023) (https://egis.me.go.kr, accessed on 9 May 2024) |
References
- Woodley, S.; Bertzky, B.; Crawhall, N.; Dudley, N.; Londoño, J.M.; MacKinnon, K.; Redford, K.; Sandwith, T. Meeting Aichi Target 11: What does success look like for protected area systems. Parks 2012, 18, 23–36. [Google Scholar] [CrossRef]
- Chapin III, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Kappelle, M.; Van Vuuren, M.M.; Baas, P. Effects of climate change on biodiversity: A review and identification of key research issues. Biodivers. Conserv. 1999, 8, 1383–1397. [Google Scholar] [CrossRef]
- Feeley, K.J.; Silman, M.R. Land-use and climate change effects on population size and extinction risk of Andean plants. Glob. Change Biol. 2010, 16, 3215–3222. [Google Scholar] [CrossRef]
- Scanes, C.G. Human activity and habitat loss: Destruction, fragmentation, and degradation. In Animals and Human Society; Scanes, C.G., Toukhsati, S.R., Eds.; Academic Press: London, UK, 2018; pp. 451–482. [Google Scholar] [CrossRef]
- Spiers, J.A.; Oatham, M.P.; Rostant, L.V.; Farrell, A.D. Applying species distribution modelling to improving conservation based decisions: A gap analysis of Trinidad and Tobago’s endemic vascular plants. Biodivers. Conserv. 2018, 27, 2931–2949. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Pilgrim, J.D.; Lamoreux, J.F.; Hoffmann, M.; Brooks, T.M. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 2006, 21, 71–76. [Google Scholar] [CrossRef]
- The IUCN Red List of Threatened Species. 2024. Available online: https://www.iucnredlist.org (accessed on 28 October 2024).
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Le Lay, G.; Helfer, V.; Randin, C.; Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 2006, 199, 142–152. [Google Scholar] [CrossRef]
- Su, H.; Bista, M.; Li, M. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Sci. Rep. 2021, 11, 14135. [Google Scholar] [CrossRef]
- Park, H.; Jeong, A.M.; Koo, S.K.; Lee, S.D. Conservation Strategies for Endangered Species in the Forests Utilizing Landscape Connectivity Models. Sustainability 2024, 16, 10970. [Google Scholar] [CrossRef]
- Regan, H.M.; Hierl, L.A.; Franklin, J.; Deutschman, D.H.; Schmalbach, H.L.; Winchell, C.S.; Johnson, B.S. Species prioritization for monitoring and management in regional multiple species conservation plans. Divers. Distrib. 2008, 14, 462–471. [Google Scholar] [CrossRef]
- Naoe, S.; Katayama, N.; Amano, T.; Akasaka, M.; Yamakita, T.; Ueta, M.; Matsuba, M.; Miyashita, T. Identifying priority areas for national-level conservation to achieve Aichi Target 11: A case study of using terrestrial birds breeding in Japan. J. Nat. Conserv. 2015, 24, 101–108. [Google Scholar] [CrossRef]
- Hong, J.P.; Shim, Y.J.; Heo, H.Y. Identifying other effective area-based conservation measures for expanding national protected areas. J. Korean Envron. Res. Technol. 2017, 20, 93–105. [Google Scholar] [CrossRef]
- Mo, Y. Spatial Conservation Prioritization Considering Development Impacts and Habitat Suitability of Endangered Species. Korean J. Environ. Ecol. 2021, 35, 193–203. [Google Scholar] [CrossRef]
- Moilanen, A.; Leathwick, J.R.; Quinn, J.M. Spatial prioritization of conservation management. Conserv. Lett. 2011, 4, 383–393. [Google Scholar] [CrossRef]
- Scott, J.M.; Davis, F.; Csuti, B.; Noss, R.; Butterfield, B.; Groves, C.; Anderson, H.; Caicco, S.; D’Erchia, F.; Edwards, T.C.; et al. Gap Analysis: A Geographic Approach to Protection of Biological Diversity. Wildl. Monogr. 1993, 123, 3–41. [Google Scholar]
- Mo, Y. Aichi Target 11 and Endangered Species, Finding the Protected Area Candidates to Achieve the Two Goals. JNPR 2018, 9, 322–328. [Google Scholar]
- Jeong, A.M.; Kim, M.K.; Lee, S.D. Analysis of Priority Conservation Areas Using Habitat Quality Models and MaxEnt Models. Animals 2024, 14, 1680. [Google Scholar] [CrossRef]
- NGII (National Geography Information Institute). The National Atlas of Korea; National Geography Information Institute: Suwon, Republic of Korea, 2022. Available online: http://nationalatlas.ngii.go.kr (accessed on 28 August 2024).
- NIMS (National Institute of Meteorological Sciences). Report on Climate Change for 100 Years over the Korean Peninsula; National Institute of Meteorological Sciences: Jeju, Republic of Korea, 2018. [Google Scholar]
- NGII (National Geography Information Institute). The National Atlas of Korea Ш; National Geographic Information Institute: Suwon, Republic of Korea, 2021. Available online: http://nationalatlas.ngii.go.kr (accessed on 28 August 2024).
- NGII (National Geography Information Institute). The National Atlas of Korea Ц; National Geographic Information Institute: Suwon, Republic of Korea, 2020. Available online: http://nationalatlas.ngii.go.kr (accessed on 28 August 2024).
- NIE (National Institute of Ecology). 2023. Available online: https://www.nie.re.kr (accessed on 24 July 2024).
- Anderson, R.P.; Gonzalez, I.J. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 2011, 222, 2796–2811. [Google Scholar] [CrossRef]
- Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Esfanjani, J.; Ghorbani, A.; Zare Chahouki, M.A. MaxEnt Modeling for Predicting Impacts of Environmental Factors on the Potential Distribution of Artemisia aucheri and Bromus tomentellus-Festuca ovina in Iran. Pol. J. Environ. Stud. 2018, 27, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, D.I. What are the issues with presence-absence data for wildlife managers? J. Wildl. Manag. 2005, 69, 849–860. [Google Scholar] [CrossRef]
- Kramer-Schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.; Heckmann, I.; Scharf, A.; Augeri, D.M.; et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 2013, 19, 1366–1379. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- NIE (National Institute of Ecology). The 5th Nationwide Natural Environmental Survey Guidelines; National Institute of Ecology: Seocheon, Republic of Korea, 2019. [Google Scholar]
- Kim, J.Y.; Seo, C.W.; Kwon, H.S.; Ryu, J.E.; Kim, M.J. A Study on the Species Distribution Modeling using National Ecosystem Survey Data. J. Environ. Impact Assess. 2012, 21, 593–607. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kwon, H.S.; Seo, C.W.; Kim, M.J. A nationwide analysis of mammalian biodiversity hotspots in South Korea. J. Environ. Impact Assess. 2014, 23, 453–465. [Google Scholar] [CrossRef]
- Shin, M.S. Species Distribution Model and Land Suitability Assessment: Focused on city in Boryeong. Master’s Thesis, Jeonbuk National University, Jeonju, Republic of Korea, 2013. [Google Scholar]
- Jeon, S.W.; Kim, J.U.; Jung, H.C.; Lee, W.K.; Kim, J.S. Species Distribution Modeling of Endangered Mammals for Ecosystem Services Valuation-Focused on National Ecosystem Survey Data. J. Korean Environ. Res. Technol. 2014, 17, 111–122. [Google Scholar] [CrossRef]
- Park, D.S.; Jeong, H.J.; Park, J.J.; Park, I.K. Distribution and habitat assessments of the Slender racer, Orientocoluber spinalis, for the registration of nationally endangered species in the Republic of Korea. Sci. Rep. 2023, 13, 12025. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.; Bai, Y.; Huang, Z.; Ali, M.; Wang, J.; Chen, H. Spatio-Temporal Changes and Habitats of Rare and Endangered Species in Yunnan Province Based on MaxEnt Model. Land 2024, 13, 240. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Syfert, M.M.; Smith, M.J.; Coomes, D.A. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 2013, 8, e55158. [Google Scholar] [CrossRef]
- Moilanen, A.; Lehtinen, P.; Kohonen, I.; Jalkanen, J.; Virtanen, E.A.; Kujala, H. Novel methods for spatial prioritization with applications in conservation, land use planning and ecological impact avoidance. Methods Ecol. Evol. 2022, 13, 1062–1072. [Google Scholar] [CrossRef]
- Moilanen, A. Landscape Zonation, benefit functions and target-based planning: Unifying reserve selection strategies. Biol. Conserv. 2007, 134, 571–579. [Google Scholar] [CrossRef]
- Lehtomäki, J.; Moilanen, A. Methods and workflow for spatial conservation prioritization using Zonation. Environ. Model. Softw. 2013, 47, 128–137. [Google Scholar] [CrossRef]
- Belote, R.T.; Barnett, K.; Dietz, M.S.; Burkle, L.; Jenkins, C.N.; Dreiss, L.; Aycrigg, J.L.; Aplet, G.H. Options for prioritizing sites for biodiversity conservation with implications for “30 by 30”. Biol. Conserv. 2021, 264, 109378. [Google Scholar] [CrossRef]
- Moilanen, A.; Lehtinen, P.; Kohonen, I.; Jalkanen, J.; Kivistö, I.; Virtanen, E.; Kujala, H. Zonation 5 v2.0 User Manual. 2024. Available online: https://zonationteam.github.io/Zonation5 (accessed on 6 March 2024).
- Lehtomäki, J.A.; Moilanen, A.J.; Toivonen, T.K.; Leathwick, J. Running a Zonation Planning Project; University of Helsinki: Helsinki, Finland, 2016. [Google Scholar]
- Wen, J.; Xi, J.; Pan, Y.; Wang, S.; Fan, Z.; Fu, W. Spatial Conservation Prioritization for Land in Megacity Facing Climate Change and Biodiversity Loss. Sustainability 2024, 16, 1392. [Google Scholar] [CrossRef]
- Freire Filho, R.; Palmeirim, J.M. Potential distribution of and priority conservation areas for the Endangered Caatinga howler monkey Alouatta ululata in north-eastern Brazil. Oryx 2020, 54, 794–802. [Google Scholar] [CrossRef]
- Li, D.; Li, B.; Hou, X.; Wang, X.; Li, X.; Zhang, Y. Habitat suitability assessment for Saunders’s Gull (Saundersilarus saundersi) in the Yellow River Delta, China. Ecol. Inf. 2024, 79, 102393. [Google Scholar] [CrossRef]
- Sher, A.A.; Primack, R.B.; Lee, S.D.; Kim, Y.H.; Kim, J.G.; Nam, D.H.; Park, J.H.; Bae, Y.J.; Seo, J.E.; Lee, G.S. Conservation Biology; Worldscience: Seoul, Republic of Korea, 2021; pp. 288–292. [Google Scholar]
- NIE (National Institute of Ecology). Guideline of the Ecology and Nature Map; National Institute of Ecology: Seocheon, Republic of Korea, 2022. [Google Scholar]
- Yoon, H.Y.; Hwang, S.Y.; Park, H.S. Spatial Distribution Status of Landform in 1st Grade Area of Ecology and Nature Map. GEO DATA 2024, 6, 87–99. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.E.; Choi, Y.Y.; Jeon, S.W.; Sung, H.C. Evaluation of Habitat Function of National Park Based on Biodiversity and Habitat Value. J. Korean Environ. Res. Technol. 2018, 21, 39–60. [Google Scholar] [CrossRef]
- Choi, T.Y.; Kwon, H.S.; Woo, D.G.; Park, C.H. Habitat Selection and Management of the Leopard Cat (Prionailurus bengalensis) in a Rural Area of Korea. Korean. J. Environ. Ecol. 2012, 26, 322–332. [Google Scholar]
- Woo, D.G. A study on Ecological Characteristics and Conservation of Yellow-Throated Marten (Martes flavigula) in Temperate Forests of Korea. Ph.D. Thesis, Seoul National University, Seoul, Republic of Korea, 2014. [Google Scholar]
- Woo, D.G.; Choi, T.Y.; Kwon, H.S.; Lee, S.G.; Lee, J.C. The Food Habits and Habitat Use of Yellow-Throated Martens (Martes flavigula) by Snow Tracking in Korean Temperate Forest During the Winter. J. Environ. Impact Assess. 2015, 24, 532–548. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, D.H.; Kang, T.H.; Kim, I.K.; Lee, J.W. Basic Research on the Habitat Characteristics of Endangered Species Pteromys volans. Korean J. Environ. Ecol. 2013, 27, 544–549. [Google Scholar] [CrossRef]
- Kim, J.U. Study on Morphology, Ecology and Genetics of Siberian Flying Squirrel (Pteromys volans) in Korea. Ph.D. Thesis, Seoul National University, Seoul, Republic of Korea, 2018. [Google Scholar]
- Jeong, S.G.; Park, C.H.; Woo, D.G.; Lee, D.K.; Seo, C.W.; Kim, H.G. Selecting Core Areas for Conserving Riparian Habitat Using Habitat Suitability Assessment for Eurasian Otter. J. Korean Environ. Res. Technol. 2015, 18, 19–32. [Google Scholar] [CrossRef]
- Prenda, J.; López-Nieves, P.; Bravo, R. Conservation of otter (Lutra lutra) in a Mediterranean area: The importance of habitat quality and temporal variation in water availability. Aquat. Conserv. Mar. Freshwater Ecosyst. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Silva, A.P.; Mukherjee, S.; Ramakrishnan, U.; Fernandes, C.; Björklund, M. Closely related species show species-specific environmental responses and different spatial conservation needs: Prionailurus cats in the Indian subcontinent. Sci. Rep. 2020, 10, 18705. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, B.J.; Bhang, K.J. Habitat Analysis of Endangered Korean Long-Tailed Goral (Naemorhedus caudatus raddeanus) with Weather Forecasting Model. Sustainability 2019, 11, 6086. [Google Scholar] [CrossRef]
- Park, H.B.; Hong, S.W. Habitat Characteristics Coincidence of Dead and Living Long-Tailed Gorals (Naemorhedus caudatus) According to Extreme Snowfall. Animals 2021, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Song, W.K. A Study on the Analytic Unit of Habitat Suitability Assessment and Selection in Conservation Areas for Leopard Cat (Prionailurus bengalensis)-Focus on Chungcheong Province Area. J. KILA 2008, 36, 64–72. [Google Scholar]
- Macdonald, S.M.; Mason, C.F. Some factors influencing the distribution of otters (Lutra lutra). Mammal Rev. 1983, 13, 1–10. [Google Scholar] [CrossRef]
- Kim, S.G.; Ko, G.Y.; Kim, C.; Ha, D.W. Analysis of Hydraulic and Ecological Environment of Eurasian Otter (Lutra lutra) Habitat Using River Spatial Information. J. Korean Soc. Environ. Technol. 2015, 16, 169–176. [Google Scholar]
- Chen, M.; Zhang, C.; Fu, A.; Shi, G.; Wang, J.; Zhan, Z.; Luan, X. Spatio-temporal distribution pattern and the correlation with key environmental factors of Eurasian otter (Lutra lutra) in Northeast China. Glob. Ecol. Conserv. 2023, 44, e02492. [Google Scholar] [CrossRef]
- Hanski, I.K.; Stevens, P.C.; Ihalempiä, P.; Selonen, V. Home-Range Size, Movements, and Nest-Site Use in the Siberian Flying Squirrel, Pteromys volans. J. Mammal. 2000, 81, 798–809. [Google Scholar] [CrossRef]
- Kim, G.C. Ecology and Conservation of Long-Tailed Goral (Naemorhedus caudatus) in South Korea. Ph.D. Thesis, Daegu University, Gyeongsan, Republic of Korea, 2023. [Google Scholar]
- Kim, H.G. A Study on the Method Establishing Protected Areas for the Prediction of Habitat Distribution Changes of Living Species by Climate Change: Focused on Forest Vegetations, Birds and Amphibians. Master’s Thesis, Seoul National University, Seoul, Republic of Korea, 2012. [Google Scholar]
- Cho, H.J. Potential Habitat Analysis and Preservation Guide Lines for Korean Endangered Raptorial by Applying Species Distribution Model, MaxEnt: Focused on Goshawk, Eagleowl, Tawnyowl. Ph.D. Thesis, Jeonbuk University, Jeonju, Republic of Korea, 2015. [Google Scholar]
- Go, J.B. Breeding season home ranges and potential habitat analysis of the Chinese Sparrowhawk (Accipiter soloensis). Master’s Thesis, Seoul National University, Seoul, Republic of Korea, 2024. [Google Scholar]
- Cho, H.J.; Kim, D.H.; Shin, M.S.; Kang, T.H.; Lee, M.W. Predicting the Goshawk’s habitat area using Species Distribution Modeling: Case Study area Chungcheongbuk-do, South Korea. Korean J. Environ. Ecol. 2015, 29, 333–343. [Google Scholar] [CrossRef]
- Runge, C.A.; Watson, J.E.; Butchart, S.H.; Hanson, J.O.; Possingham, H.P.; Fuller, R.A. Protected areas and global conservation of migratory birds. Science 2015, 350, 1255–1258. [Google Scholar] [CrossRef]
- Do, M.S.; Lee, J.W.; Jang, H.J.; Kim, D.I.; Park, J.W.; Yoo, J.C. Spatial Distribution Patterns and Prediction of Hotspot Area for Endangered Herpetofauna Species in Korea. Korean J. Environ. Ecol. 2017, 31, 381–396. [Google Scholar] [CrossRef]
- Ko, S.B.; Ko, Y.M.; Oh, H.S. Distribution of spawning sites of Kaolula borealis in Jeju island. Korean J. Environ. Ecol. 2011, 25, 846–852. [Google Scholar]
- Jung, J.H.; Kim, W.Y.; Cho, H.G.; Cho, S.Y.; Kim, Y.J.; Kim, S.H. Distributional Characteristics of Amphibian and Reptile of the 17 Islands in Republic of Korea. Korean J. Herpetol. 2023, 13, 1–8. [Google Scholar]
- NIBR (National Institute of Biological Resources). Red Data Book of Endangered Amphibians and Reptiles in Korea; National Institute of Biological Resources: Incheon, Republic of Korea, 2011. [Google Scholar]
- Jang, H.J.; Kim, D.I.; Jang, M.H. Distribution of reptiles in South Korea: Based on the 3rd National Ecosystem Survey. Korean J. Herpetol. 2016, 7, 30–35. [Google Scholar]
- NIBR (National Institute of Biological Resources). Report on Reproduction and Restoration of Freshwater Turtle (Chinemys reevesii) Ⅲ; National Institute of Biological Resources: Incheon, Republic of Korea, 2012. [Google Scholar]
- Ahn, K.H.; Shin, Y.K.; Kim, J.Y.; Lee, Y.K.; Lim, J.C.; Ha, J.W.; Kwon, H.S.; Suh, J.H.; Kim, M.J. A Review on the Public Appeals of the Ecosystem and Nature Map. J. Environ. Impact Assess. 2015, 24, 99–109. [Google Scholar] [CrossRef]
- Pressey, R.L.; Cabeza, M.; Watts, M.E.; Cowling, R.M.; Wilson, K.A. Conservation planning in a changing world. Trends Ecol. Evol. 2007, 22, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Venne, S.; Currie, D.J. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Divers. Distrib. 2021, 27, 873–886. [Google Scholar] [CrossRef]
- Conover, R.R.; Dinsmore, S.J.; Burger, L.W.J. Effects of conservation practices on bird nest density and survival in intensive agriculture. Agric. Ecosyst. Environ. 2011, 141, 126–132. [Google Scholar] [CrossRef]
- Grüebler, M.U.; Schuler, H.; Horch, P.; Spaar, R. The effectiveness of conservation measures to enhance nest survival in a meadow bird suffering from anthropogenic nest loss. Biol. Conserv. 2012, 146, 197–203. [Google Scholar] [CrossRef]
- Clements, T.; Rainey, H.; An, D.; Rours, V.; Tan, S.; Thong, S.; Sutherland, W.J.; Milner-Gulland, E.J. An evaluation of the effectiveness of a direct payment for biodiversity conservation: The Bird Nest Protection Program in the Northern Plains of Cambodia. Biol. Conserv. 2013, 157, 50–59. [Google Scholar] [CrossRef]
- Park, C.D.; Son, S.H.; Hwang, H.S.; Lee, W.S.; Lee, E.J. Characteristics of Amphibian and Reptile Populations in a Coniferous Plantation and a Deciduous Forest. J. Korean Soc. For. Sci. 2014, 103, 147–151. [Google Scholar] [CrossRef]
- Song, W.K. Habitat Analysis of Hyla suweonensis in the Breeding Season Using Species Distribution Modeling. J. Korean Environ. Res. Technol. 2015, 18, 71–82. [Google Scholar] [CrossRef]
- Park, B.S. Herpetofauna of the Naesorak in Soraksan National Park. Korean. J. Environ. Ecol. 1998, 11, 391–396. [Google Scholar]
- Choi, W.J. Distribution and Prey, and Effect of Logging on Reptiles in Korean Forests. Ph.D. Thesis, Kangwon National University, Republic of Korea, 2019. [Google Scholar]
Taxon | Species | IUCN Criteria | MOE Class | Survey Records | Occurrence Points |
---|---|---|---|---|---|
Mammals | Prionailurus bengalensis | LC | II | 4410 | 2374 |
Lutra lutra | NT | I | 2401 | 1481 | |
Martes flavigula | LC | II | 755 | 446 | |
Pteromys volans | LC | II | 100 | 85 | |
Naemorhedus caudatus | VU | I | 128 | 51 | |
Total | 7794 | 4437 | |||
Birds | Falco subbuteo | LC | II | 738 | 488 |
Accipiter soloensis | LC | II | 626 | 466 | |
Accipiter nisus | LC | II | 337 | 284 | |
Accipiter gentilis | LC | II | 262 | 214 | |
Total | 1963 | 1452 | |||
Amphibians | Kaloula borealis | LC | II | 109 | 88 |
Pelophylax chosenicus | VU | II | 80 | 60 | |
Dryophytes suweonensis | EN | I | 30 | 26 | |
Total | 219 | 174 | |||
Reptiles | Elaphe schrenckii | LC | II | 82 | 63 |
Eremias argus | LC | II | 33 | 25 | |
Mauremys reevesii | EN | II | 18 | 15 | |
Total | 133 | 103 |
Taxon | Species | Test AUC | Logistic Threshold (MTSS) | Variable Contribution (%) |
---|---|---|---|---|
Mammals | Naemorhedus caudatus | 0.964 | 0.389 | Precipitation in driest quarter (32.3%) > elevation (11.8%) > forest age classes (10.9%) > topographic wetness index (7.7%) > gradient (7.5%) |
Martes flavigula | 0.823 | 0.434 | Elevation (42.9%) > isothermality (13.6%) > gradient (8.9%) > temperature seasonality (6.7%) > precipitation in driest quarter (6.6%) | |
Pteromys volans | 0.793 | 0.393 | Elevation (18.7%) > precipitation in driest quarter (15.1%) > land use and land cover (8.7%) > gradient (8.3%) > forest age classes (8.1%) | |
Lutra lutra | 0.743 | 0.445 | Distance from water (33.8%) > temperature seasonality (10.7%) > elevation (10.2%) > precipitation in driest quarter (8.1%) > precipitation in wettest quarter (7.7%) | |
Prionailurus bengalensis | 0.658 | 0.478 | Temperature seasonality (38.3%) > normalized difference vegetation index (9.5%) > gradient (9.0%) > isothermality (8.4%) > land use and land cover (7.3%) |
Province | Priority Rank | ||||
---|---|---|---|---|---|
Classification | 1 (Low) | 2 (Mid-Low) | 3 (Mid) | 4 (Mid-High) | 5 (High) |
Gangwon | 562 | 3989 | 1484 | 3163 | 7218 |
Gyeongbuk | 1924 | 2547 | 3536 | 4641 | 6973 |
Gyeongnam | 1343 | 1457 | 4054 | 3294 | 1419 |
Jeonbuk | 1251 | 1441 | 2010 | 2018 | 1145 |
Jeonnam | 1258 | 2256 | 4189 | 2504 | 898 |
Gyeonggi | 6540 | 2794 | 550 | 614 | 872 |
Chungbuk | 1082 | 2285 | 1373 | 1872 | 793 |
Chungnam | 3379 | 2223 | 1999 | 1075 | 263 |
Jeju | 1482 | 219 | 16 | 33 | 9 |
Total | 18,821 | 19,211 | 19,211 | 19,214 | 19,590 |
Taxon | Species | Test AUC | Logistic Threshold (MTSS) | Variable Contribution (%) |
---|---|---|---|---|
Birds | Accipiter soloensis | 0.755 | 0.471 | Elevation (41.8%) > precipitation in driest quarter (8.0%) > precipitation in wettest quarter (6.4%) > temperature seasonality (6.0%) > gradient (4.7%) |
Accipiter gentilis | 0.738 | 0.461 | Temperature seasonality (21.5%) > precipitation in wettest quarter (10.0%) > distance from road (9.7%) > normalized difference vegetation index (8.1%) > land use and land cover (0.7%) | |
Falco subbuteo | 0.725 | 0.473 | Elevation (14.9%) > land use and land cover (11.0%) > isothermality (10.0%) > distance from water (8.8%) > forest age classes (8.0%) | |
Accipiter nisus | 0.716 | 0.468 | Distance from water (14.9%) > land use and land cover (11.0%) > elevation (10.6%) > distance from agricultural area (9.2%) > temperature seasonality (8.5%) |
Province | Priority Rank | ||||
---|---|---|---|---|---|
Classification | 1 (Low) | 2 (Mid-Low) | 3 (Mid) | 4 (Mid-High) | 5 (High) |
Gyeonggi | 590 | 1206 | 1983 | 2563 | 5056 |
Chungnam | 187 | 1000 | 1713 | 2256 | 3785 |
Gyeongbuk | 4292 | 4235 | 3830 | 3848 | 3420 |
Chungbuk | 807 | 1196 | 1549 | 1485 | 2365 |
Gangwon | 7250 | 3682 | 2412 | 1605 | 1464 |
Jeonbuk | 958 | 1924 | 1663 | 1893 | 1426 |
Gyeongnam | 2190 | 2950 | 2459 | 2743 | 1236 |
Jeonnam | 1798 | 2745 | 3504 | 2676 | 827 |
Jeju | 773 | 276 | 556 | 151 | 18 |
Total | 18,845 | 19,214 | 19,669 | 19,220 | 19,597 |
Taxon | Species | Test AUC | Logistic Threshold (MTSS) | Variable Contribution (%) |
---|---|---|---|---|
Amphibians | Dryophytes suweonensis | 0.962 | 0.503 | Temperature seasonality (32.5%) > elevation (32.0%) > isothermality (9.0%) > land use and land cover (6.1%) > distance from agricultural area (3.4%) |
Pelophylax chosenicus | 0.956 | 0.345 | Elevation (42.9%) > temperature seasonality (18.0%) > isothermality (16.3%) > land use and land cover (4.9%) > precipitation in driest quarter (3.9%) | |
Kaloula borealis | 0.856 | 0.391 | Elevation (35.1%) > land use and land cover (13.9%) > precipitation in driest quarter (11.3%) > gradient (6.8%) > forest age classes (6.2%) | |
Reptiles | Eremias argus | 0.968 | 0.491 | Elevation (25.6%) > temperature seasonality (18.9%) > land use and land cover (14.2%) > precipitation in driest quarter (9.0%) > forest age classes (6.4%) |
Mauremys reevesii | 0.778 | 0.398 | Land use and land cover (18.3%) > elevation (14.1%) > normalized difference vegetation index (9.7%) > gradient (9.4%) > temperature seasonality (8.4%) | |
Elaphe schrenckii | 0.724 | 0.440 | Land use and land cover (23.5%) > elevation (12.8%) > precipitation in driest quarter (12.2%) > aspect (8.9%) > distance from water (7.4%) |
Province | Priority Rank | ||||
---|---|---|---|---|---|
Classification | 1 (Low) | 2 (Mid-Low) | 3 (Mid) | 4 (Mid-High) | 5 (High) |
Gyeonggi | 820 | 1040 | 1481 | 2521 | 5502 |
Chungnam | 148 | 676 | 1281 | 1678 | 5149 |
Gyeongbuk | 3315 | 4975 | 4605 | 3515 | 3212 |
Jeonbuk | 1524 | 1678 | 1342 | 1345 | 1969 |
Gyeongnam | 2150 | 2440 | 2934 | 2677 | 1360 |
Jeonnam | 1083 | 2064 | 2870 | 4027 | 1032 |
Chungbuk | 1103 | 1809 | 1973 | 1645 | 872 |
Gangwon | 8406 | 4167 | 2168 | 1267 | 387 |
Jeju | 274 | 350 | 544 | 519 | 76 |
Total | 18,823 | 19,199 | 19,198 | 19,194 | 19,559 |
Classification | Mammals | Birds | Amphibians and Reptiles |
---|---|---|---|
High-priority areas (HPAs) | 19,590 | 19,597 | 19,559 |
Priority conservation areas (PCAs) | 3542 (41.2%) | 511 (5.9%) | 549 (6.3%) |
Total areas | 4334 (50.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Park, H.; Lee, S. Potential Habitat and Priority Conservation Areas for Endangered Species in South Korea. Animals 2025, 15, 1158. https://doi.org/10.3390/ani15081158
Park S, Park H, Lee S. Potential Habitat and Priority Conservation Areas for Endangered Species in South Korea. Animals. 2025; 15(8):1158. https://doi.org/10.3390/ani15081158
Chicago/Turabian StylePark, Soyeon, Hyomin Park, and Sangdon Lee. 2025. "Potential Habitat and Priority Conservation Areas for Endangered Species in South Korea" Animals 15, no. 8: 1158. https://doi.org/10.3390/ani15081158
APA StylePark, S., Park, H., & Lee, S. (2025). Potential Habitat and Priority Conservation Areas for Endangered Species in South Korea. Animals, 15(8), 1158. https://doi.org/10.3390/ani15081158