The Vital Roles of Agricultural Crop Residues and Agro-Industrial By-Products to Support Sustainable Livestock Productivity in Subtropical Regions
Simple Summary
Abstract
1. Introduction
2. Agricultural Crops, Agro-Industrial Residues, Types, and Sources
2.1. Rice Straw as Agricultural Residue
2.2. Corn Stover as Agricultural Residue
2.3. Barley Straw as Agricultural Residue
2.4. Mixed Crop Leftover as Agricultural Residue
3. Sustainability of Feeding Systems for Ruminants Using Agricultural Biomass
3.1. Types of Crop Residue Used in Feed
3.1.1. Sorghum Residue
3.1.2. Millet Stover
3.1.3. Sugarcane Bagasse
3.1.4. Corn Stover
3.1.5. Rice Straw
3.1.6. Sugarcane Tops
3.1.7. Wheat Straw
3.2. Nutritional Benefits and Economic Implications of Agricultural Biomass in Ruminant Diets
3.3. Sustainable Feed Crop Residues Shrink Carbon and Water Footprints
4. Transforming Crop Residues into High-Value Feed for Improved Meat and Milk Production
4.1. Addition of Supplements in Crop Residues and Blending Crop Residue in the Diet of Cattle/Cow
4.2. Exogenous Fibrolytic Enzymes and Bacteria in the Diet of Cattle/Cows
4.3. Combination of Different Feed Residues and Use of Micronutrients in the Diet of the Animals
4.4. Effective Utilization of Agricultural Crop Residues in Enhancing Meat and Milk Production
S.No | Species | Diet + Dose | Duration | Findings | References |
---|---|---|---|---|---|
01 | Sheep (lamb) | Cabbage leaves 100 g/kg + basal diet | 60 days | Reduced the DMI, FCR, growth performance | [148] |
02 | Goats | Potato leaves (vine) + basal diet/poor quality hay | 70 days | Increased feed intake, FCR, digestibility, carcass weight | [149] |
03 | Sheep | sorghum stovers (Phule chitra cultivar) | 120 days | Increased Feed intake, Digestibility, body weight | [150] |
04 | Fish (Nile tilapia) | Sugarcane bagasse (SB) (20 g kg−1) | -- | Increased growth performance, immunity, and antioxidant profile | [151] |
05 | Poultry | Sugarcane bagasse (Lignin) | -- | Improved GIT bacterial growth, Health | [152] |
06 | Sheep | Sugarcane bagasse/rice husk treated with Trichoderma viride | -- | Increased feed intake apparent digestibility, improved growth performance | [153] |
07 | Dairy cows | Sugarcane bagasse Lactobacillus casei TH14, cellulase, and molasses | -- | Increased DMI, fibre digestibility, blood glucose, gross and metabolized energy | [154] |
08 | Pigs | Sugarcane bagasse treated lignocellulose 30 g/kg | 42 days | Improved the gut health and production of butyrate formation, reduced the pathogenic bacteria | [155] |
09 | Sheep | Corn Stover 100 g/kg | 56 days | No any negative effect on growth performance, DMI, digestibility | [156] |
10 | Dairy cows | Corn Stover + corn gluten (3.4%, 6.9%) | 14 days | Increased milk production and quality, lactation performance | [157] |
5. Anti-Nutritional Factors and Their Mitigation
5.1. Challenges in the Utilization of Crop Residues
5.1.1. Availability and Quality
5.1.2. Treatment and Supplementation
5.1.3. Economic Viability
5.1.4. Environmental and Economic Benefits
5.1.5. Waste Reduction
5.1.6. Environmental Impact
5.1.7. Technological Innovations and Future Prospects
5.1.8. Feed Formulation and Nutrient Optimization
5.1.9. Sustainable Livestock Management Systems
6. Conclusions and Future Recommendations
- Key takeaway
- Future research direction/Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choe, C.; Cheon, S.; Gu, J.; Lim, H. Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: Integrative assessment for potential renewable energy source. Renew. Sustain. Energy Rev. 2022, 161, 112398. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Paul, A.; Kumar, V.; Sar, T.; Kumar, D.; Sarsaiya, S.; Liu, H.; Zhang, Z.; Binod, P.; Sindhu, R. Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value added bioproducts: A review. Bioresour. Technol. 2022, 344, 126193. [Google Scholar]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef]
- Theagarajan, R.; Malur Narayanaswamy, L.; Dutta, S.; Moses, J.A.; Chinnaswamy, A. Valorisation of grape pomace (cv. Muscat) for development of functional cookies. Int. J. Food Sci. Technol. 2019, 54, 1299–1305. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Flora, G.; Venkatkarthick, R.; SenthilKannan, K.; Kuppam, C.; Stephy, G.M.; Kamyab, H.; Chen, W.-H.; Thomas, J.; Ngamcharussrivichai, C. Advanced technologies on the sustainable approaches for conversion of organic waste to valuable bioproducts: Emerging circular bioeconomy perspective. Fuel 2022, 324, 124313. [Google Scholar] [CrossRef]
- Pezo, D.; Ávalos, I.; Pulido, A.; Villanueva, C.; Peguero, F.; Sepúlveda, C.; Scudiero, L.; Arce, E.; Steinfeld, H. Key drivers of change that affect livestock systems and their impact on sustainability and resilience. Ser. Técnica. Inf. Técnico 2024. [Google Scholar]
- Ajila, C.; Brar, S.; Verma, M.; Tyagi, R.; Godbout, S.; Valéro, J. Bio-processing of agro-byproducts to animal feed. Crit. Rev. Biotechnol. 2012, 32, 382–400. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Dou, Z.; Shurson, G.C.; Hu, B. Bioprocessing to upcycle agro-industrial and food wastes into high-nutritional value animal feed for sustainable food and agriculture systems. Resour. Conserv. Recycl. 2024, 201, 107325. [Google Scholar] [CrossRef]
- Dou, Z.; Toth, J.D.; Westendorf, M.L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Glob. Food Secur. 2018, 17, 154–161. [Google Scholar] [CrossRef]
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef]
- Leroy, F.; Cofnas, N. Should dietary guidelines recommend low red meat intake? Crit. Rev. Food Sci. Nutr. 2020, 60, 2763–2772. [Google Scholar] [CrossRef]
- Sirohi, S.K.; Navneet Goel, N.G. In vitro evaluation of Salinomycin addition in wheat straw based total mixed diets on rumen fermentation, methanogenesis and dry matter degradability in buffalo. Vet. World 2012, 5, 609–613. [Google Scholar] [CrossRef]
- Patra, K.; Parihar, C.; Nayak, H.; Rana, B.; Singh, V.; Krishnan, P.; Pandey, R.; Mandal, B.; Rathi, N.; Meena, B. Crop performance and nitrogen use-efficiency in maize under conservation agriculture coupled with sub-surface drip fertigation. Indian J. Agric. Sci. 2021, 91, 474–479. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Bernués, A.; Baltenweck, I.; Vervoort, J.; van de Steeg, J.; Makokha, S.; van Wijk, M.T.; Karanja, S.; Rufino, M.C. Exploring future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Glob. Environ. Change 2014, 24, 165–182. [Google Scholar] [CrossRef]
- Lohan, S.K.; Jat, H.; Yadav, A.K.; Sidhu, H.; Jat, M.; Choudhary, M.; Peter, J.K.; Sharma, P. Burning issues of paddy residue management in north-west states of India. Renew. Sustain. Energy Rev. 2018, 81, 693–706. [Google Scholar] [CrossRef]
- Van Zanten, H.H.; Herrero, M.; Van Hal, O.; Röös, E.; Muller, A.; Garnett, T.; Gerber, P.J.; Schader, C.; De Boer, I.J. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 2018, 24, 4185–4194. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H. Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef]
- Santana-Méridas, O.; González-Coloma, A.; Sánchez-Vioque, R. Agricultural residues as a source of bioactive natural products. Phytochem. Rev. 2012, 11, 447–466. [Google Scholar] [CrossRef]
- Souza, M.A.D.; Vilas-Boas, I.T.; Leite-da-Silva, J.M.; Abrahão, P.D.N.; Teixeira-Costa, B.E.; Veiga-Junior, V.F. Polysaccharides in agro-industrial biomass residues. Polysaccharides 2022, 3, 95–120. [Google Scholar] [CrossRef]
- Hamelin, L.; Borzęcka, M.; Kozak, M.; Pudełko, R. A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- Aquino, D.; Del Barrio, A.; Trach, N.X.; Hai, N.T.; Khang, D.N.; Toan, N.T.; Van Hung, N. Rice straw-based fodder for ruminants. Sustain. Rice Straw Manag. 2020, 111–129. [Google Scholar]
- Kadam, K.L.; Forrest, L.H.; Jacobson, W.A. Rice straw as a lignocellulosic resource: Collection, processing, transportation, and environmental aspects. Biomass Bioenergy 2000, 18, 369–389. [Google Scholar] [CrossRef]
- Devendra, C.; Leng, R.A. Feed resources for animals in Asia: Issues, strategies for use, intensification and integration for increased productivity. Asian-Australas. J. Anim. Sci. 2011, 24, 303–321. [Google Scholar] [CrossRef]
- Sarnklong, C.; Cone, J.; Pellikaan, W.; Hendriks, W. Utilization of rice straw and different treatments to improve its feed value for ruminants: A review. Asian-Australas. J. Anim. Sci. 2010, 23, 680–692. [Google Scholar] [CrossRef]
- Abdel-Mohdy, F.; Abdel-Halim, E.; Abu-Ayana, Y.; El-Sawy, S. Rice straw as a new resource for some beneficial uses. Carbohydr. Polym. 2009, 75, 44–51. [Google Scholar] [CrossRef]
- Van Soest, P. Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 2006, 130, 137–171. [Google Scholar] [CrossRef]
- Mann, L.; Tolbert, V.; Cushman, J. Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric. Ecosyst. Environ. 2002, 89, 149–166. [Google Scholar] [CrossRef]
- Smith, T.; Chakanyuka, C.; Sibanda, S.; Manyuchi, B. Maize stover as a feed for ruminants. In Overcoming Constraints to the Efficient Utilization of Agricultural By-Products as Animal Feed; Said, A.N., Dzowela, B., Eds.; ILCA: Addis Ababa, Ethiopia, 1989; pp. 218–231. [Google Scholar]
- Amede, T.; Auricht, C.; Boffa, J.-M.; Dixon, J.; Mallawaarachchi, T.; Rukuni, M.; Teklewold-Deneke, T. A Farming System Framework for Investment Planning and Priority Setting in Ethiopia; Technical Report; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2017. [Google Scholar]
- Begna, B.; Yami, M.; Lemma, E. Characterization of a barley-based farming system in the Arsi Highlands, Ethiopia. J. Agric. Ext. Rural Dev. 2014, 6, 309–320. [Google Scholar]
- Barbier, E.B. The economic determinants of land degradation in developing countries. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 1997, 352, 891–899. [Google Scholar] [CrossRef]
- Cipriano-Salazar, M.; Adegbeye, M.J.; Elghandour, M.M.; Barbabosa-Pilego, A.; Mellado, M.; Hassan, A.; Salem, A.Z. The dietary components and feeding management as options to offset digestive disturbances in horses. J. Equine Vet. Sci. 2019, 74, 103–110. [Google Scholar] [CrossRef]
- Wiśniewska, S.K.; Nalaskowski, J.; Witka-Jeżewska, E.; Hupka, J.; Miller, J.D. Surface properties of barley straw. Colloids Surf. B Biointerfaces 2003, 29, 131–142. [Google Scholar] [CrossRef]
- Jaleta, M.; Kassie, M.; Erenstein, O. Determinants of maize stover utilization as feed, fuel and soil amendment in mixed crop-livestock systems, Ethiopia. Agric. Syst. 2015, 134, 17–23. [Google Scholar] [CrossRef]
- Bisen, N.; Rahangdale, C. Crop residues management option for sustainable soil health in rice-wheat system: A review. Int. J. Chem. Stud. 2017, 5, 1038–1042. [Google Scholar]
- Enkhmaa, B.; Surampudi, P.; Anuurad, E.; Berglund, L. Lifestyle changes: Effect of diet, exercise, functional food, and obesity treatment on lipids and lipoproteins. In Endotext [Internet]; MDText.com, Inc.: South Dartmouth, MA, USA, 2018. [Google Scholar]
- Iwuozor, K.O.; Emenike, E.C.; Ighalo, J.O.; Eshiemogie, S.; Omuku, P.E.; Adeniyi, A.G. Valorization of sugar industry’s by-products: A perspective. Sugar Tech. 2022, 24, 1052–1078. [Google Scholar] [CrossRef]
- Anandan, S.; Sampath, K. Scope for utilizing sugar cane bagasse as livestock feed–an Asian perspective. In Biofuel Co-Products as Livestock Feed; FAO: Rome, Italy, 2012; p. 291. [Google Scholar]
- Verma, D.; Gope, P.; Maheshwari, M.; Sharma, R. Bagasse fiber composites—A review. J. Mater. Environ. Sci. 2012, 3, 1079–1092. [Google Scholar]
- Ajala, E.; Ighalo, J.; Ajala, M.; Adeniyi, A.; Ayanshola, A. Sugarcane bagasse: A biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresour. Bioprocess. 2021, 8, 87. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Bagasse electricity potential of conventional sugarcane factories. J. Energy 2023, 2023, 5749122. [Google Scholar] [CrossRef]
- Deepchand, K.; Rao, P.M. Other Co-product Options From Cane Resources. In Bioenergy for Sustainable Development and International Competitiveness; Routledge: London, UK, 2013; pp. 186–208. [Google Scholar]
- Awulachew, M.T. Effects of blended fertilizer (nitrogen, phosphorus, sulfur and boron) rates on yield, yield components and grain quality of crop,(durum wheat). Acta Sci. Agric. 2019, 3, 91–99. [Google Scholar] [CrossRef]
- van Meijl, H.; Smeets, E.; Zilberman, D. Bioenergy economics and policies. Bioenergy Sustain. Bridg. Gaps 2015, 72, 682–709. [Google Scholar]
- Sukri, S.A.M.; Andu, Y.; Sarijan, S.; Khalid, H.-N.M.; Kari, Z.A.; Harun, H.C.; Rusli, N.D.; Mat, K.; Khalif, R.I.A.R.; Wei, L.S. Pineapple waste in animal feed: A review of nutritional potential, impact and prospects. Ann. Anim. Sci. 2023, 23, 339–352. [Google Scholar] [CrossRef]
- Atteya, A.K.; Albalawi, A.N.; Bayomy, H.M.; Alamri, E.S.; Genaidy, E.A. Maximizing leaves, inflorescences, and chemical composition production of Moringa oleifera trees under calcareous soil conditions. Plants 2022, 11, 234. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.G. Tikim: Essays on Philippine Food and Culture; Brill: Leiden, The Netherlands, 2019; Volume 3. [Google Scholar]
- Hossain, M. World pineapple production: An overview. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11443–11456. [Google Scholar] [CrossRef]
- Sheil, D.; Casson, A.; Meijaard, E.; Noordwijk, M.v.; Gaskell, J.; Sunderland-Groves, J.; Wertz, K.; Kanninen, M. The Impacts and Opportunities of Oil Palm in Southeast Asia: What Do We Know and What Do We Need to Know? CIFOR: Bogor, Indonesia, 2009. [Google Scholar]
- Hashim, K.; Tahiruddin, S.; Asis, A.J. Palm and palm kernel oil production and processing in Malaysia and Indonesia. In Palm Oil; Elsevier: Amsterdam, The Netherlands, 2012; pp. 235–250. [Google Scholar]
- Wan Zahari, M.; Abu Hassan, O.; Wong, H.; Liang, J. Utilization of oil palm frond-based diets for beef and dairy production in Malaysia. Asian-Australas. J. Anim. Sci. 2003, 16, 625–634. [Google Scholar] [CrossRef]
- Dahlan, I. Oil palm frond, a feed for herbivores. Asian-Australas. J. Anim. Sci. 2000, 13, 300–303. [Google Scholar]
- Charlton, P.; Vriesekoop, F. Brewery by-products. In Handbook of Brewing; CRC Press: Boca Raton, FL, USA, 2017; pp. 567–590. [Google Scholar]
- Vijayakumar, P. 13 Livestock in Sustainable. In Advances in Water Management Under Climate Change; CRC Press: Boca Raton, FL, USA, 2023; p. 236. [Google Scholar]
- Akintan, O.; Gebremedhin, K.G.; Uyeh, D.D. Animal feed formulation—Connecting technologies to build a resilient and sustainable system. Animals 2024, 14, 1497. [Google Scholar] [CrossRef]
- Fan, S.; Brzeska, J.; Keyzer, M.; Halsema, A. From Subsistence to Profit: Transforming Smallholder Farms; International Food Policy Research Institute: Dhaka, Bangladesh, 2013; Volume 26. [Google Scholar]
- Tan, F.; He, L.; Zhu, Q.; Wang, Y.; Hu, G.; He, M. Characterization of different types of agricultural biomass and assessment of their potential for energy production in China. BioResources 2019, 14, 6447–6464. [Google Scholar] [CrossRef]
- Praspaliauskas, M.; Pedišius, N.; Čepauskienė, D.; Valantinavičius, M. Study of chemical composition of agricultural residues from various agro-mass types. Biomass Convers. Biorefin. 2020, 10, 937–948. [Google Scholar] [CrossRef]
- Del Este, K. Sorghum production practices in an integrated crop-livestock production system in makueni county, Eastern Kenya. Trop. Subtrop. Agroecosyst. 2019, 22, 13–23. [Google Scholar]
- Singh, S.; Bhat, B.V.; Shukla, G.; Singh, K.; Gehrana, D. Variation in carbohydrate and protein fractions, energy, digestibility and mineral concentrations in stover of sorghum cultivars. Trop. Grassl.-Forrajes Trop. 2018, 6, 42–52. [Google Scholar] [CrossRef]
- Nenciu, F.; Paraschiv, M.; Kuncser, R.; Stan, C.; Cocarta, D.; Vladut, V.N. High-grade chemicals and biofuels produced from marginal lands using an integrated approach of alcoholic fermentation and pyrolysis of sweet sorghum biomass residues. Sustainability 2021, 14, 402. [Google Scholar] [CrossRef]
- Amuda, A.; Falola, O.; Tukura, D. Assessment of ensiled Pearl millet stover with or without legumes stover for quality and acceptability by West African dwarf goat. Niger. J. Anim. Prod. 2019, 46, 155–162. [Google Scholar] [CrossRef]
- So, S.; Cherdthong, A.; Wanapat, M. Improving sugarcane bagasse quality as ruminant feed with Lactobacillus, cellulase, and molasses. J. Anim. Sci. Technol. 2020, 62, 648. [Google Scholar] [CrossRef]
- Mahmood Molaei Kermani, M.; Bahrololoum, S.; Koohzadi, F. Investigating the possibility of producing animal feed from sugarcane bagasse using oyster mushrooms: A case in rural entrepreneurship. J. Glob. Entrep. Res. 2019, 9, 52. [Google Scholar] [CrossRef]
- Khonkhaeng, B.; Cherdthong, A.; Chantaprasarn, N.; Harvatine, K.J.; Foiklang, S.; Chanjula, P.; Wanapat, M.; So, S.; Polyorach, S. Comparative effect of Volvariella volvacea-treated rice straw and purple corn stover fed at different levels on predicted methane production and milk fatty acid profiles in tropical dairy cows. Livest. Sci. 2021, 251, 104626. [Google Scholar] [CrossRef]
- Gou, G.; Shen, C.; Liu, Q.; Shao, T.; Wang, C.; Wang, Y.-X.; Xu, Q.-F.; Huo, W.-J. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. J. Integr. Agric. 2020, 19, 838–847. [Google Scholar]
- Tian, X.; Gao, C.; Hou, Z.; Wang, R.; Zhang, X.; Li, Q.; Wei, Z.; Wu, D.; Wang, M. Comparisons of ramie and corn stover silages: Effects on chewing activity, rumen fermentation, microbiota and methane emissions in goats. Fermentation 2022, 8, 432. [Google Scholar] [CrossRef]
- Murali, N.; Fernandez, S.; Ahring, B.K. Fermentation of wet-exploded corn stover for the production of volatile fatty acids. Bioresour. Technol. 2017, 227, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Khanh, T.D.; Duong, V.X.; Nguyen, P.C.; Xuan, T.D.; Trung, N.T.; Trung, K.H.; Gioi, D.H.; Hoang, N.H.; Tran, H.-D.; Trung, D.M. Rice breeding in Vietnam: Retrospects, challenges and prospects. Agriculture 2021, 11, 397. [Google Scholar] [CrossRef]
- Tran, D.D.; Huu, L.H.; Hoang, L.P.; Pham, T.D.; Nguyen, A.H. Sustainability of rice-based livelihoods in the upper floodplains of Vietnamese Mekong Delta: Prospects and challenges. Agric. Water Manag. 2021, 243, 106495. [Google Scholar] [CrossRef]
- Saeed, A.A.; Abid, S.I. Effect of Substitution of Urea With Different Type and Levels of Ruminant Manure on Nutritive Value of Rice Straw Silage. Cellulose 2019, 42, 31.06. [Google Scholar]
- Hu, Y.; He, Y.; Gao, S.; Liao, Z.; Lai, T.; Zhou, H.; Chen, Q.; Li, L.; Gao, H.; Lu, W. The effect of a diet based on rice straw co-fermented with probiotics and enzymes versus a fresh corn Stover-based diet on the rumen bacterial community and metabolites of beef cattle. Sci. Rep. 2020, 10, 10721. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal 2018, 12, s295–s309. [Google Scholar] [CrossRef]
- Johnson, J.M.-F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef]
- Black, J.L.; Davison, T.M.; Box, I. Methane emissions from ruminants in Australia: Mitigation potential and applicability of mitigation strategies. Animals 2021, 11, 951. [Google Scholar] [CrossRef]
- Cai, Y.; Du, Z.; Yamasaki, S.; Nguluve, D.; Tinga, B.; Macome, F.; Oya, T. Community of natural lactic acid bacteria and silage fermentation of corn stover and sugarcane tops in Africa. Asian-Australas. J. Anim. Sci. 2019, 33, 1252. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Nan, X.; Wang, K.; Zhao, Y.; Xiong, B. Evaluation of the digestibility of steam-exploded wheat straw by ruminal fermentation, sugar yield and microbial structure in vitro. RSC Adv. 2019, 9, 41775–41782. [Google Scholar] [CrossRef] [PubMed]
- Tufail, T.; Saeed, F.; Afzaal, M.; Ain, H.B.U.; Gilani, S.A.; Hussain, M.; Anjum, F.M. Wheat straw: A natural remedy against different maladies. Food Sci. Nutr. 2021, 9, 2335–2344. [Google Scholar] [CrossRef]
- Valizadeh, A.; Kazemi-Bonchenari, M.; Khodaei-Motlagh, M.; Moradi, M.; Salem, A. Effects of different rumen undegradable to rumen degradable protein ratios on performance, ruminal fermentation, urinary purine derivatives, and carcass characteristics of growing lambs fed a high wheat straw-based diet. Small Rumin. Res. 2021, 197, 106330. [Google Scholar] [CrossRef]
- Kara, K.; Aktuğ, E.; Özkaya, S. Ruminal digestibility, microbial count, volatile fatty acids and gas kinetics of alternative forage sources for arid and semi-arid areas as in vitro. Ital. J. Anim. Sci. 2016, 15, 673–680. [Google Scholar] [CrossRef]
- Lagrange, S.P.; MacAdam, J.W.; Villalba, J.J. The use of temperate tannin containing forage legumes to improve sustainability in forage–livestock production. Agronomy 2021, 11, 2264. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Chen, W.; Zhou, Z.; Meng, Q.; Wu, H. Effects of adding various silage additives to whole corn crops at ensiling on performance, rumen fermentation, and serum physiological characteristics of growing-finishing cattle. Animals 2019, 9, 695. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef]
- Kumar Sarangi, P.; Subudhi, S.; Bhatia, L.; Saha, K.; Mudgil, D.; Prasad Shadangi, K.; Srivastava, R.K.; Pattnaik, B.; Arya, R.K. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environ. Sci. Pollut. Res. 2023, 30, 8526–8539. [Google Scholar] [CrossRef] [PubMed]
- Bocquier, F.; González-García, E. Sustainability of ruminant agriculture in the new context: Feeding strategies and features of animal adaptability into the necessary holistic approach. Animal 2010, 4, 1258–1273. [Google Scholar] [CrossRef] [PubMed]
- Baldini, M.; Da Borso, F.; Rossi, A.; Taverna, M.; Bovolenta, S.; Piasentier, E.; Corazzin, M. Environmental sustainability assessment of dairy farms rearing the Italian Simmental dual-purpose breed. Animals 2020, 10, 296. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Ghosh, S.; Das, A.; Sen, S.; Datta, D.; Ghosh, S.; Raj, R.; Behera, B.; Roy, A.; Vyas, A. Conservation agriculture impacts on productivity, resource-use efficiency and environmental sustainability: A holistic review. Indian J. Agron. 2021, 66, S111–S127. [Google Scholar]
- Campus, D. Greenhouse Gas Emissions Inventory; UNFCCC: Bonn, Germany, 2004. [Google Scholar]
- Liu, C.; Cutforth, H.; Chai, Q.; Gan, Y. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agron. Sustain. Dev. 2016, 36, 69. [Google Scholar] [CrossRef]
- Gerber, P.J.; Benjamin, H.; Makkar, H.P. Mitigation of Greenhouse Gas Emission in Livestock Production; Food And Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Patra, A.K. Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants. Front. Vet. Sci. 2016, 3, 39. [Google Scholar] [CrossRef]
- Venkatramanan, V.; Shah, S.; Rai, A.K.; Prasad, R. Nexus between crop residue burning, bioeconomy and sustainable development goals over North-Western India. Front. Energy Res. 2021, 8, 614212. [Google Scholar] [CrossRef]
- Herrero, M.; Havlík, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blümmel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. The water footprint of animal products. In The Meat Crisis; Routledge: London, UK, 2017; pp. 21–30. [Google Scholar]
- Westhoek, H.; Lesschen, J.P.; Rood, T.; Wagner, S.; De Marco, A.; Murphy-Bokern, D.; Leip, A.; van Grinsven, H.; Sutton, M.A.; Oenema, O. Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Glob. Environ. Change 2014, 26, 196–205. [Google Scholar] [CrossRef]
- Lal, R. World water resources and achieving water security. Agron. J. 2015, 107, 1526–1532. [Google Scholar] [CrossRef]
- Win, K.S.; Ueda, K.; Kondo, S. Effects of soybean meal supplementation on ruminal kinetics of feed particle size reduction and passage in dairy cows fed rice straw. Anim. Sci. J. 2021, 92, e13590. [Google Scholar] [CrossRef] [PubMed]
- Van Nhiem, D.; Berg, J.; Kjos, N.P.; Trach, N.X.; Tuan, B.Q. Effects of replacing fish meal with soy cake in a diet based on urea-treated rice straw on performance of growing Laisind beef cattle. Trop. Anim. Health Prod. 2013, 45, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.-H.; Liang, S.-L.; Wang, D.-M.; Liu, H.-Y.; Wanapat, M.; Liu, J.-X. Lactation performance and rumen fermentation in dairy cows fed a diet with alfalfa hay replaced by corn stover and supplemented with molasses. Asian-Australas. J. Anim. Sci. 2019, 32, 1122. [Google Scholar] [CrossRef]
- Beauchemin, K.; Colombatto, D.; Morgavi, D.; Yang, W. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci. 2003, 81, E37–E47. [Google Scholar]
- Aboagye, I.; Lynch, J.; Church, J.; Baah, J.; Beauchemin, K. Digestibility and growth performance of sheep fed alfalfa hay treated with fibrolytic enzymes and a ferulic acid esterase producing bacterial additive. Anim. Feed Sci. Technol. 2015, 203, 53–66. [Google Scholar] [CrossRef]
- Feng, P.; Hunt, C.; Pritchard, G.; Julien, D.W. Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. J. Anim. Sci. 1996, 74, 1349–1357. [Google Scholar] [CrossRef]
- Wilkinson, J.; Rinne, M. Highlights of progress in silage conservation and future perspectives. Grass Forage Sci. 2018, 73, 40–52. [Google Scholar] [CrossRef]
- Kholif, A.E.; Elghandour, M.; Rodríguez, G.; Olafadehan, O.; Salem, A. Anaerobic ensiling of raw agricultural waste with a fibrolytic enzyme cocktail as a cleaner and sustainable biological product. J. Clean. Prod. 2017, 142, 2649–2655. [Google Scholar] [CrossRef]
- Jung, H.; Deetz, D. Cell wall lignification and degradability. In Forage Cell Wall Structure and Digestibility; American Society of Agronomy, Inc.: Madison, WI, USA, 1993; pp. 315–346. [Google Scholar]
- Yu, P.; McKinnon, J.; Christensen, D. Hydroxycinnamic acids and ferulic acid esterase in relation to biodegradation of complex plant cell walls. Can. J. Anim. Sci. 2005, 85, 255–267. [Google Scholar] [CrossRef]
- Silva, A.S.; Pereira, L.G.R.; Pedreira, M.d.S.; Machado, F.S.; Campos, M.M.; Cortinhas, C.S.; Acedo, T.S.; Dos Santos, R.D.; Rodrigues, J.P.P.; Maurício, R.M. Effects of exogenous amylase on the in vitro digestion kinetics of whole-crop maize silages made from flint or dent grain type at different phenological stages grown in tropical condition. J. Anim. Physiol. Anim. Nutr. 2020, 104, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Renouf, M.A. Greenhouse gas abatement from sugarcane bioenergy, biofuels, and biomaterials. In Sugarcane-Based Biofuels and Bioproducts; Wiley: Hoboken, NJ, USA, 2016; pp. 333–362. [Google Scholar]
- de Almeida, G.A.P.; de Andrade Ferreira, M.; de Lima Silva, J.; Chagas, J.C.C.; Véras, A.S.C.; de Barros, L.J.A.; de Almeida, G.L.P. Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system. Asian-Australas. J. Anim. Sci. 2017, 31, 379. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.; Nussio, L.G.; Queiroz, O.C.M.; Santos, M.C.; Zopollatto, M.; Toledo Filho, S.G.d.; Daniel, J.L.P. Effects of Lactobacillus buchneri on the nutritive value of sugarcane silage for finishing beef bulls. Rev. Bras. De Zootec. 2014, 43, 8–13. [Google Scholar] [CrossRef]
- Khiaosa-Ard, R.; Metzler-Zebeli, B.; Ahmed, S.; Muro-Reyes, A.; Deckardt, K.; Chizzola, R.; Böhm, J.; Zebeli, Q. Fortification of dried distillers grains plus solubles with grape seed meal in the diet modulates methane mitigation and rumen microbiota in Rusitec. J. Dairy Sci. 2015, 98, 2611–2626. [Google Scholar] [CrossRef]
- Garg, M.; Bhanderi, B.; Sherasia, P. Macro and micro-mineral status of feeds and fodders in Kota district of Rajasthan. Indian J. Anim. Nutr. 2003, 20, 252–261. [Google Scholar]
- Gowda, N.; Ramana, J.; Prasad, C.; Singh, K. Micronutrient content of certain tropical conventional and unconventional feed resources of southern India. Trop. Anim. Health Prod. 2004, 36, 77–94. [Google Scholar] [CrossRef]
- Das, M.; Singh, K.; Rai, A.; Mahanta, S. Effect of feeding micronutrient fertilized sorghum hay based diet on nutrient utilization and mineral balance in sheep. Indian J. Anim. Sci. 2018, 88, 944–948. [Google Scholar] [CrossRef]
- Hossain, K.; Sarker, N.; Saadullah, M.; Beg, M.; Khan, T. Effect of feeding straw supplementing with urea molasses block lick on the performance of sheep. Asian-Australas. J. Anim. Sci. 1995, 8, 289–293. [Google Scholar] [CrossRef]
- Sahoo, A.; Elangovan, A.; Mehra, U.; Singh, U. Catalytic supplementation of urea-molasses on nutritional performance of male buffalo (Bubalus bubalis) calves. Asian-Australas. J. Anim. Sci. 2004, 17, 621–628. [Google Scholar] [CrossRef]
- Wynn, P.; Warriach, H.; Morgan, A.; McGill, D.; Hanif, S.; Sarwar, M.; Iqbal, A.; Sheehy, P.; Bush, R. Perinatal nutrition of the calf and its consequences for lifelong productivity. Asian-Australas. J. Anim. Sci. 2009, 22, 756–764. [Google Scholar] [CrossRef]
- Tanwar, P.; Kumar, Y.; Rathore, R. Effect of urea molasses mineral block (UMMB) supplementation on milk production in buffaloes under rural management practices. J. Rural Agric. Res. 2013, 13, 19–21. [Google Scholar]
- Alam, M.K.; Ogata, Y.; Sato, Y.; Sano, H. Effects of rice straw supplemented with urea and molasses on intermediary metabolism of plasma glucose and leucine in sheep. Asian-Australas. J. Anim. Sci. 2016, 29, 523. [Google Scholar] [CrossRef]
- Wanapat, M.; Sundstøl, F.; Garmo, T. A comparison of alkali treatment methods to improve the nutritive value of straw. I. Digestibility and metabolizability. Anim. Feed Sci. Technol. 1985, 12, 295–309. [Google Scholar] [CrossRef]
- Wanapat, M.; Polyorach, S.; Boonnop, K.; Mapato, C.; Cherdthong, A. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 2009, 125, 238–243. [Google Scholar] [CrossRef]
- Hart, F.; Wanapat, M. Physiology of digestion of urea-treated rice straw in swamp buffalo. Asian-Australas. J. Anim. Sci. 1992, 5, 617–622. [Google Scholar] [CrossRef]
- Pandya, P.; Patel, G.; Gupta, R.; Patel, D.; Pande, M.; Desai, M. Effect of Wheat straw based total mixed ration with Prosopis juliflora pods (Mesquite pods) on performance of lactating cows. Int. J. Cow Sci. 2005, 1, 66–72. [Google Scholar]
- Rota Graziosi, A.; Gislon, G.; Colombini, S.; Bava, L.; Rapetti, L. Partial replacement of soybean meal with soybean silage and responsible soybean meal in lactating cows diet: Part 2, environmental impact of milk production. Ital. J. Anim. Sci. 2022, 21, 645–658. [Google Scholar] [CrossRef]
- Kurian, J.K.; Nair, G.R.; Hussain, A.; Raghavan, G.V. Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review. Renew. Sustain. Energy Rev. 2013, 25, 205–219. [Google Scholar] [CrossRef]
- Preston, T. Strategies for optimising the utilization of crop residues and agro-industrial byproducts for livestock feeding in the tropics. In Towards Optimal Feeding of Agricultural Byproducts to Livestock in Africa; International Livestock Centre for Africa: Addis Ababa, Ethiopia, 1986; pp. 145–166. [Google Scholar]
- Bentsen, N.S.; Felby, C.; Thorsen, B.J. Agricultural residue production and potentials for energy and materials services. Prog. Energy Combust. Sci. 2014, 40, 59–73. [Google Scholar] [CrossRef]
- Fang, Y.R.; Wu, Y.; Xie, G.H. Crop residue utilizations and potential for bioethanol production in China. Renew. Sustain. Energy Rev. 2019, 113, 109288. [Google Scholar] [CrossRef]
- Singh, Y.; Sidhu, H. Management of cereal crop residues for sustainable rice-wheat production system in the Indo-Gangetic plains of India. Proc. Indian Natl. Sci. Acad. 2014, 80, 95–114. [Google Scholar] [CrossRef]
- Azadbakht, M.; Safieddin Ardebili, S.M.; Rahmani, M. Potential for the production of biofuels from agricultural waste, livestock, and slaughterhouse waste in Golestan province, Iran. Biomass Convers. Biorefin. 2021, 13, 3123–3133. [Google Scholar] [CrossRef]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Mahesh, M.; Mohini, M. Biological treatment of crop residues for ruminant feeding: A review. Afr. J. Biotechnol. 2013, 12, 4221–4231. [Google Scholar]
- Singh nee’ Nigam, P.; Gupta, N.; Anthwal, A. Pre-treatment of agro-industrial residues. In Biotechnology for Agro-Industrial Residues Utilisation; Springer: Berlin/Heidelberg, Germany, 2009; pp. 13–33. [Google Scholar]
- Moreira, L.M.; Leonel, F.d.P.; Vieira, R.A.M.; Pereira, J.C. A new approach about the digestion of fibers by ruminants. Rev. Bras. De Saúde E Produção Anim. 2013, 14, 382–395. [Google Scholar] [CrossRef]
- Rezaii, F.; Bayatkouhsar, J.; Ghanbari, F.; Arab, F. The effect of water, urea, sodium hydroxide, and hydrogen peroxide processing on the cumin residues animal digestibility. Int. J. Recycl. Org. Waste Agric. 2023, 12, 1–16. [Google Scholar]
- Rahmani, A.M.; Gahlot, P.; Moustakas, K.; Kazmi, A.; Ojha, C.S.P.; Tyagi, V.K. Pretreatment methods to enhance solubilization and anaerobic biodegradability of lignocellulosic biomass (wheat straw): Progress and challenges. Fuel 2022, 319, 123726. [Google Scholar] [CrossRef]
- Lewis, S.; Holzgraefe, D.; Berger, L.; Fahey, G., Jr.; Gould, J.; Fanta, G. Alkaline hydrogen peroxide treatments of crop residues to increase ruminal dry matter disappearance in sacco. Anim. Feed Sci. Technol. 1987, 17, 179–199. [Google Scholar] [CrossRef]
- Adebayo, E.; Martinez-Carrera, D. Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass. Afr. J. Biotechnol. 2015, 14, 52–67. [Google Scholar]
- Varma, V.S.; Ramu, K.; Kalamdhad, A.S. Carbon decomposition by inoculating Phanerochaete chrysosporium during drum composting of agricultural waste. Environ. Sci. Pollut. Res. 2015, 22, 7851–7858. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Bhattacharya, S.; Roopa, K.; Yashoda, S. Microbial utilization of agronomic wastes for cellulase production by Aspergillus niger and Trichoderma viride using solid-state fermentation. Dyn. Biochem. Process Biotech. Mol. Biol. 2011, 5, 18–22. [Google Scholar]
- Kaur, K.; Kaur, P.; Sharma, S. Management of crop residue through various techniques. Management 2019, 618–620. [Google Scholar]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy 2004, 27, 339–352. [Google Scholar] [CrossRef]
- Lopes, A.A.; Viriyavipart, A. Crop residue burning increased during the COVID-19 lockdown: A case study of rural India. Heliyon 2024, 10, e27910. [Google Scholar] [CrossRef]
- Hebbar, K.B.; Ramesh, S.V.; Bhat, R. Predicting current and future climate suitability for arecanut (Areca catechu L.) in India using ensemble model. Heliyon 2024, 10, e26382. [Google Scholar] [CrossRef]
- Xueqing, S.; Lijuan, C.; Dongxing, Z. Utilization of Livestock’s Dejection as Biogas Origin in Building New Countryside in Heilongjiang Province–Developing Utilization of Biogas and Promoting Energy–saving and Emission Reduction. J. Northeast Agric. Univ. (Engl. Ed.) 2011, 18, 91–96. [Google Scholar]
- Phillips, C.J. Principles of Cattle Production; CABI: Oxfordshire, UK, 2009. [Google Scholar]
- Dejene, M.; Kehaliew, A.; Feyissa, F.; Kebede, G.; Kitaw, G.; Terefe, G.; Walelegne, M.; Mekonnen, B.; Biratu, K.; Geleti, D. Enhancing Production, Nutritional Qualities and Utilization of Fibrous Crop Residues in Smallholder Crop-Livestock Systems: Potential Intervention Options and Progress Toward Sustainable Livestock Production; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar]
- Nkosi, B.; Ratsaka, M.; Langa, T.; Motiang, M.; Meeske, R.; Groenewald, I. Effects of dietary inclusion of discarded cabbage (Brassica oleracea var. capitata) on the growth performance of South African Dorper lambs. S. Afr. J. Anim. Sci. 2016, 46, 35–41. [Google Scholar] [CrossRef]
- Megersa, T.; Urge, M.; Nurfeta, A. Effects of feeding sweet potato (Ipomoea batatas) vines as a supplement on feed intake, growth performance, digestibility and carcass characteristics of Sidama goats fed a basal diet of natural grass hay. Trop. Anim. Health Prod. 2013, 45, 593–601. [Google Scholar] [CrossRef]
- Raju, J.; Narasimha, J.; Raghunanadan, T.; Ravikanth Reddy, P. Effect of complete diets containing different dual-purpose sorghum stovers on nutrient utilization and growth performance in sheep. Small Rumin. Res. 2021, 201, 106413. [Google Scholar]
- Lumsangkul, C.; Tapingkae, W.; Sringarm, K.; Jaturasitha, S.; Le Xuan, C.; Wannavijit, S.; Outama, P.; Van Doan, H. Effect of dietary sugarcane bagasse supplementation on growth performance, immune response, and immune and antioxidant-related gene expressions of Nile tilapia (Oreochromis niloticus) cultured under Biofloc system. Animals 2021, 11, 2035. [Google Scholar] [CrossRef]
- Fangueiro, J.F.; de Carvalho, N.M.; Antunes, F.; Mota, I.F.; Pintado, M.E.; Madureira, A.R.; Costa, P.S. Lignin from sugarcane bagasse as a prebiotic additive for poultry feed. Int. J. Biol. Macromol. 2023, 239, 124262. [Google Scholar] [CrossRef] [PubMed]
- Roba, R.B.; Letta, M.U.; Aychiluhim, T.N.; Minneeneh, G.A. Intake, digestibility, growth performance and blood profile of rams fed sugarcane bagasse or rice husk treated with Trichoderma viride and effective microorganisms. Heliyon 2022, 8, e11958. [Google Scholar] [CrossRef]
- So, S.; Wanapat, M.; Cherdthong, A. Effect of sugarcane bagasse as industrial by-products treated with Lactobacillus casei TH14, cellulase and molasses on feed utilization, ruminal ecology and milk production of mid-lactating Holstein Friesian cows. J. Sci. Food Agric. 2021, 101, 4481–4489. [Google Scholar] [CrossRef] [PubMed]
- Silva-Guillen, Y.V.; Almeida, V.V.; Nuñez, A.J.C.; Schinckel, A.P.; Thomaz, M.C. Effects of feeding diets containing increasing content of purified lignocellulose supplied by sugarcane bagasse to early-weaned pigs on growth performance and intestinal health. Anim. Feed Sci. Technol. 2022, 284, 115147. [Google Scholar] [CrossRef]
- Obeidat, B.S.; Ata, M.; Al-Lataifeh, F. Influence of corn stover on the growth and blood parameters of Awassi lambs fed a concentrate diet. Ital. J. Anim. Sci. 2022, 21, 702–707. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Zhao, C.; Fang, X.; Zhang, Y. Effect of substituting wet corn gluten feed and corn stover for alfalfa hay in total mixed ration silage on lactation performance in dairy cows. Animal 2021, 15, 100013. [Google Scholar] [CrossRef]
- Salim, R.; Nehvi, I.B.; Mir, R.A.; Tyagi, A.; Ali, S.; Bhat, O.M. A review on anti-nutritional factors: Unraveling the natural gateways to human health. Front. Nutr. 2023, 10, 1215873. [Google Scholar] [CrossRef]
- Mukherjee, R.; Chakraborty, R.; Dutta, A. Role of fermentation in improving nutritional quality of soybean meal—A review. Asian-Australas. J. Anim. Sci. 2015, 29, 1523. [Google Scholar] [CrossRef]
- Yang, A.; Zuo, L.; Cheng, Y.; Wu, Z.; Li, X.; Tong, P.; Chen, H. Degradation of major allergens and allergenicity reduction of soybean meal through solid-state fermentation with microorganisms. Food Funct. 2018, 9, 1899–1909. [Google Scholar] [CrossRef]
- Zhang, L.; Li, D.; Qiao, S.; Wang, J.; Bai, L.; Wang, Z.; Han, I.K. The effect of soybean galactooligosaccharides on nutrient and energy digestibility and digesta transit time in weanling piglets. Asian-Australas. J. Anim. Sci. 2001, 14, 1598–1604. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, J.; Liu, H.; Yang, G. Soybean oligosaccharide, stachyose, and raffinose in broilers diets: Effects on odor compound concentration and microbiota in cecal digesta. Poult. Sci. 2020, 99, 3532–3539. [Google Scholar] [CrossRef] [PubMed]
- Mejicanos, G.; Sanjayan, N.; Kim, I.H.; Nyachoti, C.M. Recent advances in canola meal utilization in swine nutrition. J. Anim. Sci. Technol. 2016, 58, 7. [Google Scholar] [CrossRef]
- Heidari, F.; Øverland, M.; Hansen, J.Ø.; Mydland, L.T.; Urriola, P.E.; Chen, C.; Shurson, G.C.; Hu, B. Solid-state fermentation of Pleurotus ostreatus to improve the nutritional profile of mechanically-fractionated canola meal. Biochem. Eng. J. 2022, 187, 108591. [Google Scholar] [CrossRef]
- Akram, M.Z.; Fırıncıoğlu, S.Y. The use of agricultural crop residues as alternatives to conventional feedstuffs for ruminants: A review. Eurasian J. Agric. Res. 2019, 3, 58–66. [Google Scholar]
- Reddy, B.; Reddy, P.S.; Bidinger, F.; Blümmel, M. Crop management factors influencing yield and quality of crop residues. Field Crops Res. 2003, 84, 57–77. [Google Scholar] [CrossRef]
- Bhandari, B. Crop residue as animal feed. Pap. Rev. 2019, 1. [Google Scholar]
- Poggi-Varaldo, H.M. Agricultural wastes. Water Environ. Res. 1999, 71, 737–785. [Google Scholar] [CrossRef]
- Menzi, H.; Oenema, O.; Burton, C.; Shipin, O.; Gerber, P.; Robinson, T.; Franceschini, G. Impacts of intensive livestock production and manure management on the environment. Livest. Change Landsc. 2010, 1, 139–163. [Google Scholar]
- Devendra, C. Crop residues for feeding animals in Asia: Technology development and adoption in crop/livestock systems. In Crop Residuals in Sustainable Mixed Crop/livestock Farming System; Renard, C., Ed.; CAB International: Wallingford, UK, 1997; pp. 241–267. [Google Scholar]
- Kaitale, F. Optimization of the Feedstocks for Biogas Process. Master’s Thesis, Aalto University, Espoo, Finland, 2024. [Google Scholar]
- Gupta, V.; Rai, P.K.; Risam, K.S. Integrated crop-livestock farming systems: A strategy for resource conservation and environmental sustainability. Indian Res. J. Ext. Educ. Spec. Issue 2012, 2, 49–54. [Google Scholar]
Items | CP = Crude Protein | EE = Ether Extract; | CF = Crude Fiber | NDF = Neutral-Detergent Fiber. | ADF = Acid-Detergent Fiber. | Lignin | Total Ash |
---|---|---|---|---|---|---|---|
Whole sugar cane | 6.0 | 2.1 | 30.6 | 49.6 | 32.5 | 8.4 | 4.7 |
Bagasse | 3.7 | 1.1 | 44.2 | 92.3 | 81.5 | 25.7 | 5.0 |
Sugar cane tops | 5.9 | 1.7 | 33.5 | 65.3 | 40.4 | 4.8 | 8.5 |
Agriculture Biomass | Crops |
---|---|
Crop residues | Wheat straw, rice straw, barley, corn stover, and other remaining byproducts |
Forage crops | Alfaalfa, clover, and other legumes provide high nutritional values |
By Products | Derived from food processing, such as sugarcane bagasse, fruit pomace, and oilseed meals |
Types of Crop Residues | Crude Protein | Moisture Percentage | Dry Matter |
---|---|---|---|
Sorghum stover | 6.6% | ||
Sugarcane baggase | 3% | 89.8% | |
Corn stover | 4.05 | 5.35% | 93.38% |
Rice straw | 3.15% | 8% | 91.25% |
Wheat straw | 3.36% | 4.62% | |
Sugarcane tops | 7.85% | 55–50% | 41.86% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, A.M.; Zhang, H.; Shahid, M.; Ghazal, H.; Shah, A.R.; Niaz, M.; Naz, T.; Ghimire, K.; Goswami, N.; Shi, W.; et al. The Vital Roles of Agricultural Crop Residues and Agro-Industrial By-Products to Support Sustainable Livestock Productivity in Subtropical Regions. Animals 2025, 15, 1184. https://doi.org/10.3390/ani15081184
Shah AM, Zhang H, Shahid M, Ghazal H, Shah AR, Niaz M, Naz T, Ghimire K, Goswami N, Shi W, et al. The Vital Roles of Agricultural Crop Residues and Agro-Industrial By-Products to Support Sustainable Livestock Productivity in Subtropical Regions. Animals. 2025; 15(8):1184. https://doi.org/10.3390/ani15081184
Chicago/Turabian StyleShah, Ali Mujtaba, Huiling Zhang, Muhammad Shahid, Huma Ghazal, Ali Raza Shah, Mujahid Niaz, Tehmina Naz, Keshav Ghimire, Naqash Goswami, Wei Shi, and et al. 2025. "The Vital Roles of Agricultural Crop Residues and Agro-Industrial By-Products to Support Sustainable Livestock Productivity in Subtropical Regions" Animals 15, no. 8: 1184. https://doi.org/10.3390/ani15081184
APA StyleShah, A. M., Zhang, H., Shahid, M., Ghazal, H., Shah, A. R., Niaz, M., Naz, T., Ghimire, K., Goswami, N., Shi, W., Xia, D., & Zhao, H. (2025). The Vital Roles of Agricultural Crop Residues and Agro-Industrial By-Products to Support Sustainable Livestock Productivity in Subtropical Regions. Animals, 15(8), 1184. https://doi.org/10.3390/ani15081184