Utilization of Wheat with Enhanced Carotenoid Levels and Various Fat Sources in Hen Diets
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Hens, Housing, Diets, and Performance
2.2. Physical Analysis of Eggs
2.3. Chemical Analyses of Diets and Eggs
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Englmaierová, M.; Skřivan, M.; Taubner, T.; Skřivanová, V.; Čermák, L. Effect of housing system and feed restriction on meat quality of medium-growing chickens. Poult. Sci. 2021, 100, 101223. [Google Scholar] [CrossRef] [PubMed]
- Karadas, F.; Grammenidis, E.; Surai, P.F.; Acamovic, T.; Sparks, C. Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. Br. Poult. Sci. 2006, 47, 561–566. [Google Scholar] [CrossRef]
- Zurak, D.; Svečnjak, Z.; Kiš, G.; Janječić, Z.; Bedeković, D.; Duvnjak, M.; Pirgozliev, V.; Grbeša, D.; Kljak, K. Carotenoid deposition in yolks of laying hens fed with corn diets differing in grain hardness and supplemented with rapeseed oil and emulsifier. Poult. Sci. 2024, 103, 103922. [Google Scholar] [CrossRef] [PubMed]
- Hamershøj, M.; Kidmose, U.; Steenfeldt, S. Deposition of carotenoids in egg yolk by short-term supplement of coloured carrot (Daucus carota) varieties as forage material for egg-laying hens. J. Sci. Food Agric. 2010, 90, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Kljak, K.; Carović-Stanko, K.; Kos, I.; Janječić, Z.; Kiš, G.; Duvnjak, M.; Safner, T.; Bedeković, D. Plant Carotenoids as Pigment Sources in Laying Hen Diets: Effect on Yolk Color, Carotenoid Content, Oxidative Stability and Sensory Properties of Eggs. Foods 2021, 10, 721. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.Y.; Xie, Q.M.; Ma, J.Y.; Zhang, X.B.; Zhu, J.M.; Shu, D.M.; Sun, B.L.; Jin, L.; Bi, Y.Z. Supplementation of xanthophylls increased antioxidant capacity and decreased lipid peroxidation in hens and chicks. Br. J. Nutr. 2013, 109, 977–983. [Google Scholar] [CrossRef]
- Dansou, D.M.; Zhang, H.; Yu, Y.; Wang, H.; Tang, C.; Zhao, Q.; Qin, Y.; Zhang, J. Carotenoid enrichment in eggs: From biochemistry perspective. Anim. Nutr. 2023, 14, 315–333. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.A.; Díaz-Gómez, J.; Nogareda, C.; Angulo, E.; Sandmann, G.; Portero-Otin, M.; Serrano, J.C.E.; Twyman, R.M.; Capell, T.; Zhu, C.; et al. The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption, resource allocation and storage. Sci. Rep. 2016, 6, 35346. [Google Scholar] [CrossRef]
- Becerra, M.O.; Contreras, L.M.; Lo, M.H.; Díaz, J.M.; Herrera, G.C. Lutein as a functional food ingredient: Stability and bioavailability. J. Funct. Food. 2020, 66, 103771. [Google Scholar] [CrossRef]
- Pandey, S.; Gupta, A.; Mahato, D.K.; Paul, V.; Tripathi, A.D.; Rasane, P.; Kumar, P.; Kamle, M.; Haque, S. Lutein and Zeaxanthin: Source, Extraction, Stability, Bioactivity, and Functional Food Applications. Curr. Pharm. Biotechnol. 2025; in press. [Google Scholar]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- Awulachew, M.T. The Role of Wheat in Human Nutrition and Its Medicinal Value. Glob. Acad. J. Med. Sci. 2020, 2, 50–54. [Google Scholar]
- Seal, C.J.; Courtin, C.M.; Venema, K.; de Vries, J. Health benefits of whole grain: Effects on dietarycarbohydrate quality, the gut microbiome, andconsequences of processing. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2742–2768. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Du, Y.; Rashid, A.; Ram, A.; Savasli, E.; Pieterse, P.J.; Ortiz-Monasterio, I.; Yazici, A.; Kaur, C.; Mahmood, K.; et al. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J. Agric. Food Chem. 2019, 67, 8096–8106. [Google Scholar] [CrossRef]
- Swamy, B.P.M.; Marundan, S.; Samia, M.; Ordonio, R.L.; Rebong, D.B.; Miranda, R.; Alibuyog, A.; Rebong, A.T.; Tabil, M.A.; Suralta, R.R.; et al. Development and characterization of GR2E Golden rice introgression lines. Sci. Rep. 2021, 11, 2496. [Google Scholar] [CrossRef]
- Sharma, R.; Bakshi, P.; Kumar, R.; Sharma, A.; Maanik; Thakur, N.; Kumar, V.; Gheware, K.M. Enhancing nutritional value in fruit crops through biofortification: A comprehensive review. Indian J. Agric. Sci. 2023, 93, 1167–1174. [Google Scholar] [CrossRef]
- Palomar, M.; Soler, M.D.; Roura, E.; Sala, R.; Piquer, O.; Garcés-Narro, C. Degree of saturation and free fatty acid content of fats determine dietary preferences in laying hens. Animals 2020, 10, 2437. [Google Scholar] [CrossRef]
- Zaazaa, A.; Sabbah, M.; Omar, J.A. Effects of Oil Source on Egg Quality and Yolk Fatty Acid Profile of Layer Hens. Braz. J. Poult. Sci. 2022, 24, eRBCA-2020-1434. [Google Scholar] [CrossRef]
- Van Dael, P. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: Review of recent studies and recommendations. Nutr. Res. Pract. 2021, 15, 137–159. [Google Scholar] [CrossRef]
- Konieczka, P.; Czauderna, M.; Smulikowska, S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed—Effect of feeding duration: Dietary fish oil, flaxseed, and rapeseed and n-3 enriched broiler meat. Anim. Feed Sci. Technol. 2017, 223, 42–52. [Google Scholar] [CrossRef]
- Faitarone, B.G.; Garcia, E.A.; Roça, R.O.; Andrade, E.N.; Vercese, F.V.; Pelícia, K. Yolk color and lipid oxidation of the eggs of commercial white layers fed diets supplemented with vegetable oils. Rev. Bras. Cienc. Avic. 2016, 18, 9–15. [Google Scholar] [CrossRef]
- Javed, A.; Imran, M.; Ahmad, N.; Hussain, A.I. Fatty acids characterization and oxidative stability of spray dried designer egg powder. Lipids Health Dis. 2018, 17, 282. [Google Scholar] [CrossRef]
- Gul, M.; Yoruk, M.A.; Aksu, T.; Kaya, A.; Kaynar, O. The effect of different levels of canola oil on performance, egg shell quality and fatty acid composition of laying hens. Int. J. Poult. Sci. 2012, 11, 769–776. [Google Scholar] [CrossRef]
- Gao, Z.; Duan, Z.; Zhang, J.; Zheng, J.; Li, F.; Xu, G. Effects of Oil Types and Fat Concentrations on Production Performance, Egg Quality, and Antioxidant Capacity of Laying Hens. Animals 2022, 12, 315. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Folch, J.M.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Raes, K.; De Smet, S.; Balcaen, A.; Claeys, E.; Demeyer, D. Effects of diets rich in N-3 polyunsatured fatty acids on muscle lipids and fatty acids in Belgian Blue double-muscled young bulls. Reprod. Nutr. Dev. 2003, 43, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Froescheis, O.; Moalli, S.; Liechti, H.; Bausch, J. Determination of lycopene in tissues and plasma of rats by normal-phase high-performance liquid chromatography with photometric detection. J. Chromatogr. B 2000, 739, 291–299. [Google Scholar] [CrossRef]
- EN 12822; Foodstuffs—Determination of Vitamin E by High Performance Liquid Chromatography—Measurement of α-, β-, γ- and δ-Tocopherols. European Committee for Standardization: Brussels, Belgium, 2000.
- EN 12823-1; Foodstuffs—Determination of Vitamin A by High Performance Liquid Chromatography—Part 1: Measurement of All-Trans-Retinol and 13-Cis-Retinol. European Committee for Standardization: Brussels, Belgium, 2000.
- Czauderna, M.; Kowalczyk, J.; Marounek, M. The simple and sensitive measurement of malondialdehyde in selected specimens of biological origin and some feed by reversed phase high performance liquid chromatography. J. Chromatogr. B 2011, 879, 2251–2258. [Google Scholar] [CrossRef]
- SAS. SAS/STAT User’s Guide (Release 9.3); SAS Institute: Cary, NC, USA, 2003. [Google Scholar]
- Ficco, D.B.M.; Mastrangelo, A.M.; Trono, D.; Borrelli, G.M.; De Vita, P.; Fares, C.; Beleggia, R.; Platani, C.; Papa, R. The colours of durum wheat: A review. Crop Pasture Sci. 2014, 65, 1–15. [Google Scholar] [CrossRef]
- Kusumiyati, K.; Putri, I.E.; Hadiwijaya, Y.; Kartika, A.; Maulana, Y.E.; Wawan, S. Quality Assurance of Total Carotenoids and Quercetin in Marigold Flowers (Tagetes erecta L.) as Edible Flowers. Int. J. Food Sci. 2025, 2025, 277288. [Google Scholar] [CrossRef]
- Naqvi, S.; Zhu, C.; Farre, G.; Ramessar, K.; Bassie, L.; Breitenbach, J.; Conesa, D.P.; Ros, G.; Sandmann, G.; Capell, T.; et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. USA 2009, 106, 7762–7767. [Google Scholar] [CrossRef]
- Nabi, F.; Arain, M.A.; Rajput, N.; Alagawany, M.; Soomro, J.; Umer, M.; Soomro, F.; Wang, Z.; Ye, R.; Liu, J. Health benefits of carotenoids and potential application in poultry industry: A review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Dansou, D.M.; Chen, H.; Yu, Y.; Yang, Y.; Tchan, I.N.; Zhao, L.; Tang, C.; Zhao, Q.; Qin, Y.; Zhang, J. Enrichment efficiency of lutein in eggs and its function in improving fatty liver hemorrhagic syndrome in aged laying hens. Poult. Sci. 2024, 103, 103286. [Google Scholar] [CrossRef]
- Shi, H.Y.; Deng, X.J.; Ji, X.Y.; Liu, N.; Cai, H.Y. Sources, dynamics in vivo, and application of astaxanthin and lutein in laying hens: A review. Anim. Nutr. 2023, 13, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Gawish, E.; Mahmoud, S.F.; Amber, K.; Awad, W.; Alzawqari, M.H.; Shukry, M.; Abdel-Moneim, A.M.E. Effect of natural and chemical colorant supplementation on performance, egg-quality characteristics, yolk fatty-acid profile, and blood constituents in laying hens. Sustainability 2021, 13, 4503. [Google Scholar] [CrossRef]
- Cui, Y.; Diao, Z.; Fan, W.; Wei, J.; Zhou, J.; Zhu, H.; Li, D.; Guo, L.; Tian, Y.; Song, H.; et al. Effects of dietary inclusion of alfalfa meal on laying performance, egg quality, intestinal morphology, caecal microbiota and metabolites in Zhuanghe Dagu chickens. Ital. J. Anim. Sci. 2022, 21, 831–846. [Google Scholar] [CrossRef]
- Yunitasari, F.; Jayanegara, A.; Ulupi, N. Performance, egg quality, and immunity of laying hens due to natural carotenoid supplementation: A meta-analysis. Food Sci. Anim. Resour. 2023, 43, 282–304. [Google Scholar] [CrossRef]
- Kim, C.H.; Paik, I.K.; Kil, D.Y. Effects of increasing supplementation of magnesium in diets on productive performance and eggshell quality of aged laying hens. Biol. Trace Elem. Res. 2013, 151, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Belkameh, M.M.; Sedghi, M.; Azarfar, A. The effect of different levels of dietary magnesium on eggshell quality and laying hen’s performance. Biol. Trace Elem. Res. 2021, 199, 1566–1573. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, W.J.; Kwon, C.H.; Kil, D.Y. Improvement of eggshell strength and intensity of brown eggshell color by dietary magnesium and δ-aminolevulinic acid supplementation in laying hens. Poult. Sci. 2022, 101, 101676. [Google Scholar] [CrossRef]
- Gleize, B.; Tourniaire, F.; Depezay, L.; Bott, R.; Nowicki, M.; Albino, L.; Lairon, D.; Kesse-Guyot, E.; Galan, P.; Hercberg, S.; et al. Effect of type of TAG fatty acids on lutein and zeaxanthin bioavailability. Br. J. Nutr. 2013, 110, 1–10. [Google Scholar] [CrossRef]
- Conlon, L.E.; King, R.D.; Moran, N.E.; Erdman, J.W. Coconut oil enhances tomato carotenoid tissue accumulation compared to safflower oil in the Mongolian gerbil (Meriones unguiculatus). J. Agric. Food Chem. 2012, 60, 8386–8394. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jandacek, R.J.; White, W.S. Intestinal absorption of beta-carotene ingested with a meal rich in sunflower oil or beef tallow: Postprandial appearance in triacylglycerol-rich lipoproteins in women. Am. J. Clin. Nutr. 2000, 71, 1170–1180. [Google Scholar] [CrossRef]
- Marounek, M.; Skřivan, M.; Englmaierová, M. Effect of dietary fat on the content of vitamins and carotenoids in egg yolks. Europ. Poult. Sci. 2019, 83, 1–7. [Google Scholar] [CrossRef]
- Prévéraud, D.P.; Devillard, E.; Borel, P. Dietary fat modulates dl-α-tocopheryl acetate (vitamin E) bioavailability in adult cockerels. Br. Poult. Sci. 2015, 56, 94–102. [Google Scholar] [CrossRef]
- Mortensen, A.; Skibsted, L.H.; Truscott, T.G. The interaction of dietary carotenoids with radical species. Arch. Biochem. Biophys. 2001, 385, 13–19. [Google Scholar] [CrossRef]
- Reboul, E.; Thap, S.; Perrot, E.; Amiot, M.-J.; Lairon, D.; Borel, P. Effect of the main dietary antioxidants (carotenoids, gamma-tocopherol, polyphenols, and vitamin C) on alpha-tocopherol absorption. Eur. J. Clin. Nutr. 2007, 61, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Woodall, A.A.; Britton, G.; Jackson, M.J. Dietary supplementation with carotenoids: Effects on alpha-tocopherol levels and susceptibility of tissues to oxidative stress. Br. J. Nutr. 1996, 76, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Untea, A.E.; Varzaru, I.; Panaite, T.D.; Gavris, T.; Lupu, A.; Ropota, M. The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals 2020, 10, 191. [Google Scholar] [CrossRef]
- Liu, N.; Ji, X.; Song, Z.; Deng, Y.; Wang, J. Effect of dietary lutein on the egg production, fertility, and oxidative injury indexes of aged hens. Anim. Biosci. 2023, 36, 1221–1227. [Google Scholar] [CrossRef]
Wheat Variety | Tercie | Pexeso | ||
---|---|---|---|---|
Fat Source | Rapeseed Oil | Lard | Rapeseed Oil | Lard |
Tercie wheat, g/kg | 652.2 | 652.2 | - | - |
Pexeso wheat, g/kg | - | - | 631.5 | 631.5 |
Soybean meal, g/kg | 176.0 | 176.0 | 189.0 | 189.0 |
Limestone, 1–2 mm, g/kg | 96.0 | 96.0 | 96.0 | 96.0 |
Rapeseed oil, g/kg | 54.0 | - | 62.0 | - |
Lard, g/kg | - | 54.0 | - | 62.0 |
Monocalcium phosphate, g/kg | 10.5 | 10.5 | 10.5 | 10.5 |
Vitamin–mineral premix 1, g/kg | 5.0 | 5.0 | 5.0 | 5.0 |
Sodium bicarbonate, g/kg | 2.6 | 2.6 | 2.6 | 2.6 |
Sodium chloride, g/kg | 1.9 | 1.9 | 1.9 | 1.9 |
DL-Methionine, g/kg | 1.1 | 1.1 | 1.1 | 1.1 |
L-Lysine, g/kg | 0.5 | 0.5 | 0.3 | 0.3 |
L-Threonine, g/kg | 0.2 | 0.2 | 0.1 | 0.1 |
Analyzed nutrient content (g/kg) | ||||
Crude protein, g/kg | 162.2 | 162.4 | 161.9 | 162.0 |
Ether extract, g/kg | 34.3 | 34.5 | 38.4 | 38.5 |
MEN, MJ/kg | 11.48 | 11.52 | 11.47 | 11.51 |
α-Tocopherol, mg/kg | 34.34 | 26.41 | 36.33 | 25.10 |
γ-Tocopherol, mg/kg | 13.16 | 3.91 | 14.19 | 3.73 |
Lutein, mg/kg | 0.439 | 0.379 | 0.745 | 0.806 |
Zeaxanthin, mg/kg | 0.240 | 0.229 | 0.468 | 0.452 |
SFA, mg/100 g | 649 | 1826 | 639 | 1725 |
MUFA, mg/100 g | 2153 | 1726 | 2176 | 1584 |
PUFA, mg/100 g | 2125 | 1411 | 2113 | 1340 |
PUFA n-6/n-3 ratio | 3.9 | 7.1 | 4.4 | 7.5 |
Calcium, g/kg | 39.0 | 38.9 | 39.2 | 39.1 |
Available phosphorus, g/kg | 3.91 | 3.88 | 4.03 | 4.01 |
Magnesium, g/kg | 2.26 | 2.28 | 3.12 | 3.15 |
Wheat Variety | Tercie | Pexeso |
---|---|---|
Crude protein, g/kg | 129.0 | 123.9 |
Ether extract, g/kg | 14.3 | 15.7 |
MEN, MJ/kg | 12.07 | 11.82 |
α-Tocopherol, mg/kg | 5.03 | 5.44 |
γ-Tocopherol, mg/kg | 2.38 | 2.65 |
Lutein, mg/kg | 0.439 | 1.115 |
Zeaxanthin, mg/kg | 0.214 | 0.755 |
SFA, mg/100 g | 289 | 360 |
MUFA, mg/100 g | 235 | 344 |
PUFA, mg/100 g | 826 | 866 |
PUFA n-6/n-3 ratio | 7.3 | 11.1 |
Calcium, g/kg | 0.66 | 0.84 |
Available phosphorus, g/kg | 2.18 | 2.41 |
Magnesium, g/kg | 2.4 | 3.8 |
Hen-Day Egg Production, % | Egg Mass, g/hen/day | Egg Weight, g | Feed Intake, g/hen/day | Feed Conversion Ratio, kg/kg | ||
---|---|---|---|---|---|---|
Wheat variety | Tercie | 93.9 | 59.5 | 63.3 a | 129.0 a | 2.17 a |
Pexeso | 94.5 | 59.0 | 62.5 b | 123.5 b | 2.09 b | |
Fat source | Rapeseed oil | 94.0 | 60.0 a | 63.9 a | 126.4 | 2.11 b |
Lard | 94.5 | 58.5 b | 61.9 b | 126.0 | 2.16 a | |
Wheat variety | Fat source | |||||
Tercie | Rapeseed oil | 94.2 ab | 60.9 a | 64.7 a | 128.8 | 2.12 b |
Lard | 93.7 b | 58.1 c | 62.0 c | 129.1 | 2.23 a | |
Pexeso | Rapeseed oil | 93.7 b | 59.1 b | 63.0 b | 124.1 | 2.10 b |
Lard | 95.2 a | 58.9 bc | 61.9 c | 122.8 | 2.09 b | |
SEM | 0.25 | 0.20 | 0.17 | 0.50 | 0.011 | |
p-Value | Wheat | NS | NS | 0.008 | <0.001 | <0.001 |
Fat | NS | <0.001 | <0.001 | NS | 0.010 | |
Wheat × fat | 0.039 | <0.001 | 0.006 | NS | 0.002 |
Haugh Units | Albumen Percentage, % | Yolk Percentage, % | DSM Yolk Color Fan | Shell Percentage, % | Shell Thickness, µm | Shell Breaking Strength, N | ||
---|---|---|---|---|---|---|---|---|
Wheat variety | Tercie | 86.7 | 64.1 | 25.8 | 1.55 b | 10.1 b | 353 b | 46.5 b |
Pexeso | 85.5 | 63.7 | 25.9 | 3.40 a | 10.5 a | 365 a | 49.8 a | |
Fat source | Rapeseed oil | 85.9 | 64.0 | 25.7 | 2.41 | 10.3 | 361 | 48.5 |
Lard | 86.3 | 63.7 | 26.0 | 2.53 | 10.3 | 356 | 47.8 | |
Wheat variety | Fat source | |||||||
Tercie | Rapeseed oil | 86.3 | 64.5 | 25.5 | 1.48 | 10.0 | 356 | 47.1 |
Lard | 87.1 | 63.7 | 26.2 | 1.62 | 10.1 | 349 | 45.9 | |
Pexeso | Rapeseed oil | 85.6 | 63.6 | 25.9 | 3.35 | 10.5 | 367 | 49.9 |
Lard | 85.5 | 63.7 | 25.9 | 3.45 | 10.4 | 364 | 49.7 | |
SEM | 0.39 | 0.13 | 0.11 | 0.072 | 0.05 | 1.97 | 0.45 | |
p-Value | Wheat | NS | NS | NS | <0.001 | <0.001 | <0.001 | <0.001 |
Fat | NS | NS | NS | NS | NS | NS | NS | |
Wheat×fat | NS | NS | NS | NS | NS | NS | NS |
Lutein Intake, mg/hen/day | Lutein Content in Yolk, mg/kg DM | Lutein Retention in Yolk, % | Zeaxanthin Intake, mg/hen/day | Zeaxanthin Content in Yolk, mg/kg DM | Zeaxanthin Retention in Yolk, % | ||
---|---|---|---|---|---|---|---|
Wheat variety | Tercie | 0.053 | 1.80 b | 27.0 b | 0.030 | 1.24 b | 32.1 b |
Pexeso | 0.096 | 5.77 a | 46.9 a | 0.057 | 4.11 a | 56.5 a | |
Fat source | Rapeseed oil | 0.074 | 3.59 b | 35.0 b | 0.044 | 2.46 b | 38.8 b |
Lard | 0.074 | 3.98 a | 38.9 a | 0.043 | 2.89 a | 49.9 a | |
Wheat variety | Fat source | ||||||
Tercie | Rapeseed oil | 0.057 | 1.69 | 23.6 c | 0.031 | 0.94 | 24.1 d |
Lard | 0.049 | 1.91 | 30.4 b | 0.030 | 1.53 | 40.2 c | |
Pexeso | Rapeseed oil | 0.092 | 5.49 | 46.4 a | 0.058 | 3.98 | 53.5 b |
Lard | 0.099 | 6.04 | 47.4 a | 0.056 | 4.25 | 59.5 a | |
SEM | - | 0.418 | 2.19 | - | 0.309 | 2.96 | |
p-Value | Wheat | - | <0.001 | <0.001 | - | <0.001 | <0.001 |
Fat | - | 0.001 | 0.001 | - | 0.001 | <0.001 | |
Wheat×fat | - | NS | 0.010 | - | NS | 0.011 |
α-Tocopherol, mg/kg DM | γ-Tocopherol, mg/kg DM | MDA Day 0, mg/kg | MDA Day 28, mg/kg | ||
---|---|---|---|---|---|
Wheat variety | Tercie | 146.2 | 13.84 b | 0.412 a | 0.434 a |
Pexeso | 157.7 | 15.54 a | 0.342 b | 0.390 b | |
Fat source | Rapeseed oil | 165.2 a | 20.30 a | 0.398 a | 0.436 a |
Lard | 138.6 b | 9.09 b | 0.356 b | 0.389 b | |
Wheat variety | Fat source | ||||
Tercie | Rapeseed oil | 156.3 b | 17.87 b | 0.448 a | 0.458 |
Lard | 136.0 d | 9.81 c | 0.375 b | 0.410 | |
Pexeso | Rapeseed oil | 174.1 a | 22.72 a | 0.347 b | 0.413 |
Lard | 141.2 c | 8.36 d | 0.337 b | 0.368 | |
SEM | 3.35 | 1.247 | 0.0112 | 0.0095 | |
p-Value | Wheat | NS | <0.001 | <0.001 | 0.006 |
Fat | <0.001 | <0.001 | 0.008 | 0.004 | |
Wheat×fat | <0.001 | 0.002 | 0.041 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Englmaierová, M.; Szmek, J.; Skřivan, M.; Horčička, P.; Taubner, T.; Skřivanová, V. Utilization of Wheat with Enhanced Carotenoid Levels and Various Fat Sources in Hen Diets. Animals 2025, 15, 1195. https://doi.org/10.3390/ani15091195
Englmaierová M, Szmek J, Skřivan M, Horčička P, Taubner T, Skřivanová V. Utilization of Wheat with Enhanced Carotenoid Levels and Various Fat Sources in Hen Diets. Animals. 2025; 15(9):1195. https://doi.org/10.3390/ani15091195
Chicago/Turabian StyleEnglmaierová, Michaela, Jan Szmek, Miloš Skřivan, Pavel Horčička, Tomáš Taubner, and Věra Skřivanová. 2025. "Utilization of Wheat with Enhanced Carotenoid Levels and Various Fat Sources in Hen Diets" Animals 15, no. 9: 1195. https://doi.org/10.3390/ani15091195
APA StyleEnglmaierová, M., Szmek, J., Skřivan, M., Horčička, P., Taubner, T., & Skřivanová, V. (2025). Utilization of Wheat with Enhanced Carotenoid Levels and Various Fat Sources in Hen Diets. Animals, 15(9), 1195. https://doi.org/10.3390/ani15091195