Analysis of Calving Cow Posture Recognition, Behavioral Changes, and Influencing Factors Based on Machine Vision
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Video Capture
2.3. Image Data Collection, Annotation and Augmentation
2.4. Application of YOLOv8 for Object Detection and Posture Recognition
2.5. Behavioral and Postural Analysis of Dairy Cows During the Calving Process
2.6. Statistical Analysis
3. Results
3.1. Dataset Construction and Analysis of Postural Behavior in Dairy Cows During Calving Process
3.2. Development and Evaluation of a YOLOv8-Based Model for Automatic Detection of Standing and Lying Postures in Dairy Cows During Calving
3.3. Analysis of Postural Behavior Patterns in Primiparous and Multiparous Dairy Cows During Calving
3.4. Analysis of Behavioral Changes in Primiparous and Multiparous Dairy Cows During Calving
3.5. Correlation Between Calf Birth Weight and Maternal Behavioral Patterns During Parturition in Primiparous and Multiparous Dairy Cows
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mee, J.F. Prevalence and risk factors for dystocia in dairy cattle: A review. Vet. J. 2008, 176, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.L.; Smith, R.F.; Routly, J.E.; Jones, D.N.; Morris, M.J.; Dobson, H. Lameness, activity time-budgets, and estrus expression in dairy cattle. J. Dairy Sci. 2008, 91, 4552–4559. [Google Scholar] [CrossRef] [PubMed]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef] [PubMed]
- Piccione, G.; Caola, G.; Refinetti, R. Daily and estrous rhythmicity of body temperature in domestic cattle. BMC Physiol. 2003, 3, 7. [Google Scholar] [CrossRef]
- Maselyne, J.; Pastell, M.; Thomsen, P.T.; Thorup, V.M.; Hänninen, L.; Vangeyte, J.; Van Nuffel, A.; Munksgaard, L. Daily lying time, motion index and step frequency in dairy cows change throughout lactation. Res. Vet. Sci. 2017, 110, 1–3. [Google Scholar] [CrossRef]
- Westin, R.; Vaughan, A.; de Passillé, A.M.; DeVries, T.J.; Pajor, E.A.; Pellerin, D.; Siegford, J.M.; Vasseur, E.; Rushen, J. Lying times of lactating cows on dairy farms with automatic milking systems and the relation to lameness, leg lesions, and body condition score. J. Dairy Sci. 2016, 99, 551–561. [Google Scholar] [CrossRef]
- Dodzi, M.S.; Muchenje, V. Seasonal variation in time budgets and milk yield for Jersey, Friesland and crossbred cows raised in a pasture-based system. Trop. Anim. Health Prod. 2012, 44, 1395–1401. [Google Scholar] [CrossRef]
- Stone, A.E.; Jones, B.W.; Becker, C.A.; Bewley, J.M. Influence of breed, milk yield, and temperature-humidity index on dairy cow lying time, neck activity, reticulorumen temperature, and rumination behavior. J. Dairy Sci. 2017, 100, 2395–2403. [Google Scholar] [CrossRef]
- Andreasen, S.N.; Forkman, B. The welfare of dairy cows is improved in relation to cleanliness and integument alterations on the hocks and lameness when sand is used as stall surface. J. Dairy Sci. 2012, 95, 4961–4967. [Google Scholar] [CrossRef]
- Ito, K.; Chapinal, N.; Weary, D.M.; von Keyserlingk, M.A. Associations between herd-level factors and lying behavior of freestall-housed dairy cows. J. Dairy Sci. 2014, 97, 2081–2089. [Google Scholar] [CrossRef]
- Patrizia, T.; Marco, B.; Stefano, B.; Simone, F.; Matteo, P.; Eugenia, M.L.M.; Stefano, M.; Luigi, D.S.; Filippo, B.; Alberto, B.; et al. A computer vision approach based on deep learning for the detection of dairy cows in free stall barn. Comput. Electron. Agric. 2021, 182, 106030. [Google Scholar]
- Ouellet, V.; Vasseur, E.; Heuwieser, W.; Burfeind, O.; Maldague, X.; Charbonneau, É. Evaluation of calving indicators measured by automated monitoring devices to predict the onset of calving in Holstein dairy cows. J. Dairy Sci. 2016, 99, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Kovács, L.; Kézér, F.L.; Ruff, F.; Szenci, O. Timing of obstetrical assistance affects peripartal cardiac autonomic function and early maternal behavior of dairy cows. Physiol. Behav. 2016, 165, 202–210. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Szenci, O. Effect of calving process on the outcomes of delivery and postpartum health of dairy cows with unassisted and assisted calvings. J. Dairy Sci. 2016, 99, 7568–7573. [Google Scholar] [CrossRef]
- Barraclough, R.A.C.; Shaw, D.J.; Boyce, R.; Haskell, M.J.; Macrae, A.I. The behavior of dairy cattle in late gestation: Effects of parity and dystocia. J. Dairy Sci. 2020, 103, 714–722. [Google Scholar] [CrossRef]
- Crociati, M.; Sylla, L.; De Vincenzi, A.; Stradaioli, G.; Monaci, M. How to Predict Parturition in Cattle? A Literature Review of Automatic Devices and Technologies for Remote Monitoring and Calving Prediction. Animals 2022, 12, 405. [Google Scholar] [CrossRef]
- Giaretta, E.; Marliani, G.; Postiglione, G.; Magazzù, G.; Pantò, F.; Mari, G.; Formigoni, A.; Accorsi, P.A.; Mordenti, A. Calving time identified by the automatic detection of tail movements and rumination time, and observation of cow behavioural changes. Animal 2021, 15, 100071. [Google Scholar] [CrossRef]
- Higaki, S.; Miura, R.; Suda, T.; Andersson, L.M.; Okada, H.; Zhang, Y.; Itoh, T.; Miwakeichi, F.; Yoshioka, K. Estrous detection by continuous measurements of vaginal temperature and conductivity with supervised machine learning in cattle. Theriogenology 2019, 123, 90–99. [Google Scholar] [CrossRef]
- Mottram, T. Animal board invited review: Precision livestock farming for dairy cows with a focus on oestrus detection. Animal 2016, 10, 1575–1584. [Google Scholar] [CrossRef]
- Yanchao, W.; Xi, K.; Mengyuan, C.; Gang, L. Deep learning-based automatic dairy cow ocular surface temperature detection from thermal images. Comput. Electron. Agric. 2022, 202, 107429. [Google Scholar]
- Dihua, W.; Yunfei, W.; Mengxuan, H.; Lei, S.; Yuying, S.; Xinyi, Z.; Huaibo, S. Using a CNN-LSTM for basic behaviors detection of a single dairy cow in a complex environment. Comput. Electron. Agric. 2021, 182, 106016. [Google Scholar]
- Peiyuan, J.; Daji, E.; Fangyao, L.; Ying, C.; Bo, M. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar]
- Yueming, W.; Tiantian, C.; Baoshan, L.; Qi, L. Automatic identification and analysis of multi-object cattle rumination based on computer vision. J. Anim. Sci. Technol. 2023, 65, 519–534. [Google Scholar]
- Evans, N.M.; Hacker, R.R. The chronobiological manipulation of time of calving and behavior of dairy cattle. Can. J. Anim. Sci. 1989, 69, 857–863. [Google Scholar] [CrossRef]
- Stanisiewski, E.P.; Mellenberger, R.W.; Anderson, C.R.; Tucker, H.A. Effect of Photoperiod on Milk Yield and Milk Fat in Commercial Dairy Herds1. J. Dairy Sci. 1985, 68, 1134–1140. [Google Scholar] [CrossRef]
- Dahl, G. Effect of Photoperiod on Feed Intake and Animal Performance. In Proceedings of the Tri-State Dairy Nutrition Conference, Wayne, IN, USA, 25–26 April 2006. [Google Scholar]
- Duncan, N.B.; Meyer, A.M. Locomotion behavior changes in peripartum beef cows and heifers. J. Anim. Sci. 2019, 97, 509–520. [Google Scholar] [CrossRef]
- Neave, H.W.; Lomb, J.; Keyserlingk, M.A.G.v.; Behnam-Shabahang, A.; Weary, D.M. Parity differences in the behavior of transition dairy cows. J. Dairy Sci. 2017, 100, 548–561. [Google Scholar] [CrossRef]
- Martínez-Burnes, J.; Muns, R.; Barrios-García, H.; Villanueva-García, D.; Domínguez-Oliva, A.; Mota-Rojas, D. Parturition in Mammals: Animal Models, Pain and Distress. Animals 2021, 11, 2960. [Google Scholar] [CrossRef]
- Proudfoot, K.L.; Huzzey, J.M. A first time for everything: The influence of parity on the behavior of transition dairy cows. JDS Commun. 2022, 3, 467–471. [Google Scholar] [CrossRef]
- Wathes, D.C.; Cheng, Z.; Bourne, N.; Taylor, V.J.; Coffey, M.P.; Brotherstone, S. Differences between primiparous and multiparous dairy cows in the inter-relationships between metabolic traits, milk yield and body condition score in the periparturient period. Domest. Anim. Endocrinol. 2007, 33, 203–225. [Google Scholar] [CrossRef]
- Zuko, M.; Jaja, I.F. Primiparous and multiparous Friesland, Jersey, and crossbred cows’ behavior around parturition time at the pasture-based system in South Africa. J. Adv. Vet. Anim. Res. 2020, 7, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Hare, L.V.; Lamoureux, M.C.; Huzzey, J.M. Differences in standing behavior between Jersey and Holstein dairy cows during the periparturient period. JDS Commun. 2024, 5, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L.; Wadsworth, B.A.; Stone, A.E.; Bewley, J.M. Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle. J. Dairy Sci. 2017, 100, 5664–5674. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.B. Behaviour around the time of calving in dairy cows. Appl. Anim. Behav. Sci. 2012, 139, 195–202. [Google Scholar] [CrossRef]
- Mattachini, G.; Tamburini, A.; Zucali, M.; Bava, L.; Riva, E.; Provolo, G.; Sandrucci, A. Relationships among lying and standing behaviour, body condition score and milk production in primiparous cows. Ital. J. Anim. Sci. 2020, 19, 772–782. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Napolitano, F.; Orihuela, A.; Serrapica, F.; Olmos-Hernández, A.; Martínez-Burnes, J.; De Rosa, G. Behavior and Welfare of Dairy Buffaloes: Calving, Milking, and Weaning. In Biotechnological Applications in Buffalo Research; Chauhan, M.S., Selokar, N., Eds.; Springer: Singapore, 2022; pp. 97–119. [Google Scholar]
- Tschoner, T. Methods for Pain Assessment in Calves and Their Use for the Evaluation of Pain During Different Procedures—A Review. Animals 2021, 11, 1235. [Google Scholar] [CrossRef]
- Flores, R.; Looper, M.L.; Kreider, D.L.; Post, N.M.; Rosenkrans, C.F., Jr. Estrous behavior and initiation of estrous cycles in postpartum Brahman-influenced cows after treatment with progesterone and prostaglandin F2alpha. J. Anim. Sci. 2006, 84, 1916–1925. [Google Scholar] [CrossRef]
Cow Behavior During Calving | Description | Number of Images |
---|---|---|
Standing | The cow stands upright with all four legs on the ground | 4548 |
Lying | Part of the cow’s body is in contact with the ground | 5996 |
Category | Name | Details |
---|---|---|
Hardware Configuration | GPU model | NVIDIA GeForce RTX 4080 (NVIDIA, Santa Clara, CA, USA) |
CPU model | Intel Core i9-13900HX (Intel, Santa Clara, CA, USA) | |
Memory capacity | 64G DDR4 (Samsung, Seoul, Republic of Korea) | |
Software Configuration | Python version | 3.9.0 |
Pytorch version | 2.3.1 | |
CUDA | 11.8 |
Group | Number of Images | Calf Birth Weight (kg/head) | Total Calving Process Video Duration (min) | Total Calving Process Images (Image) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Early Stage | Mid Stage | Last Stage | Total | Early Stage | Mid Stage | Last Stage | |||
Primiparous cows | 30 | 37.32 | 1257 | 687.5 | 416.00 | 153.5 | 2514 | 1375 | 832 | 307 |
Multiparous cows | 56 | 38.96 | 1547 | 825.8 | 437.5 | 284 | 3094 | 1651 | 875 | 568 |
Label | P/% | R/% | mAP/% | F1 Score/% |
---|---|---|---|---|
Lying | 89.19 | 99 | 96.35 | 93.84 |
Standing | 82.61 | 95 | 93.82 | 88.37 |
Lable | Lighting Condition | Camera Angle | ||||
---|---|---|---|---|---|---|
Daytime | Nighttime | Rainy | Head | Tail | Abdomen | |
Lying (mAP) | 96.3% | 94.3% | 96.3% | 94.5% | 91.1% | 99.5% |
Standing (mAP) | 92.5% | 91.4% | 90.4% | 90.2% | 90.2% | 99.3% |
Group | Posture | Total | Early Stage | Mid Stage | Last Stage |
---|---|---|---|---|---|
Primiparous cows (n = 30) | NL (images per cow) | 79.71 | 42.47 | 27.46 | 9.77 |
NS (images per cow) | 7.73 | 4.47 | 1.86 | 0.49 | |
NPC (occurrences per cow) | 9.07 | 5.20 | 2.67 | 1.33 | |
Multiparous cows (n = 56) | NL (images per cow) | 46.66 | 23.13 | 14.30 | 9.23 |
NS (images per cow) | 8.59 | 6.36 | 1.32 | 0.91 | |
NPC (occurrences per cow) | 5.29 | 2.79 | 1.79 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Y.; Song, Y.; Jiang, H.; Wang, Y.; Liu, N.; Li, X.; Zhang, Z.; An, X. Analysis of Calving Cow Posture Recognition, Behavioral Changes, and Influencing Factors Based on Machine Vision. Animals 2025, 15, 1201. https://doi.org/10.3390/ani15091201
An Y, Song Y, Jiang H, Wang Y, Liu N, Li X, Zhang Z, An X. Analysis of Calving Cow Posture Recognition, Behavioral Changes, and Influencing Factors Based on Machine Vision. Animals. 2025; 15(9):1201. https://doi.org/10.3390/ani15091201
Chicago/Turabian StyleAn, Yuning, Yifeng Song, Hehao Jiang, Yuan Wang, Na Liu, Xia Li, Zhalaga Zhang, and Xiaoping An. 2025. "Analysis of Calving Cow Posture Recognition, Behavioral Changes, and Influencing Factors Based on Machine Vision" Animals 15, no. 9: 1201. https://doi.org/10.3390/ani15091201
APA StyleAn, Y., Song, Y., Jiang, H., Wang, Y., Liu, N., Li, X., Zhang, Z., & An, X. (2025). Analysis of Calving Cow Posture Recognition, Behavioral Changes, and Influencing Factors Based on Machine Vision. Animals, 15(9), 1201. https://doi.org/10.3390/ani15091201