Nutritional Supplements Fortified with Oils from Canola, Flaxseed, Safflower and Rice Bran Improve Feedlot Performance and Carcass Characteristics of Australian Prime Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Animals, Diets and Experimental Design
2.3. Feed Intake, Body Conformation and Liveweight Measurements
2.4. Feed Analysis
2.5. Slaughter Protocol and Carcass Characteristic Measurements
2.6. Statistical Analysis
- Y = dependent variable,
- μ = overall mean,
- Oi = oil supplementation treatment,
- Gk = gender, brackets and superscripts represent linear and cubic second-order interactions and eijk = residual error.
3. Results
3.1. Chemical Composition of Experimental and Basal Feed
3.2. Liveweight, Average Daily Gain, Feed Intake and Feed Cost
3.3. Body Conformation Traits
3.4. Carcass Characteristics
4. Discussion
4.1. Chemical Composition of Experimental and Basal Feed
4.2. Liveweight, Average Daily Gain, Feed Intake and Feed Cost
4.3. Body Conformation Traits
4.4. Carcass Characteristics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rowe, J.B. The Australian sheep industry—Undergoing transformation. Anim. Prod. Sci. 2010, 50, 991–997. [Google Scholar] [CrossRef]
- ABARES Agricultural Commodities and Trade Data. Annual Commodity Statistics. Available online: http://www.agriculture.gov.au/abares/research-topics/agricultural-commodities/agricultural-commodities-trade-data#2017 (accessed on 11 September 2018).
- Pethick, D.W.; Ball, A.J.; Banks, R.G.; Hocquette, J.F. Current and future issues facing red meat quality in a competitive market and how to manage continuous improvement. Anim. Prod. Sci. 2010, 51, 13–18. [Google Scholar] [CrossRef]
- Sañudo, C.; Muela, E.; del Mar Campo, M. Key factors involved in lamb quality from farm to fork in europe. J. Integr. Agric. 2013, 12, 1919–1930. [Google Scholar] [CrossRef]
- Montossi, F.; Font-i-Furnols, M.; del Campo, M.; San Julián, R.; Brito, G.; Sañudo, C. Sustainable sheep production and consumer preference trends: Compatibilities, contradictions, and unresolved dilemmas. Meat Sci. 2013, 95, 772–789. [Google Scholar] [CrossRef] [PubMed]
- Howe, P.; Buckley, J.; Meyer, B. Long-chain omega-3 fatty acids in red meat. Nutr. Diet. 2007, 64, S135–S139. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, L.; Liang, J.; Liu, M.; Li, X.C.; Sun, R.R.; Zheng, Y.; Zhang, P.Y. Omega-3 fatty acids and primary and secondary prevention of cardiovascular disease. Cell Biochem. Biophys. 2015, 72, 77–81. [Google Scholar] [CrossRef]
- Leslie, M.A.; Cohen, D.J.A.; Liddle, D.M.; Robinson, L.E.; Ma, D.W.L. A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Health Dis. 2015, 14, 1–18. [Google Scholar] [CrossRef]
- Calder, P.C. Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie 2009, 91, 791–795. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Bilotto, S.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Omega-3 polyunsaturated fatty acids and cancer: Lessons learned from clinical trials. Cancer Metast. Rev. 2015, 34, 359–380. [Google Scholar] [CrossRef]
- Bessa, R.J.B.; Alves, S.P.; Santos-Silva, J. Constraints and potentials for the nutritional modulation of the fatty acid composition of ruminant meat. Eur. J. Lipid Sci. Technol. 2015, 117, 1325–1344. [Google Scholar] [CrossRef]
- Chikunya, S.; Demirel, G.; Enser, M.; Wood, J.D.; Wilkinson, R.G.; Sinclair, L.A. Biohydrogenation of dietary n-3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep. Br. J. Nutr. 2004, 91, 539–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, A.; Dentinho, M.T.; Alves, S.P.; Portugal, P.V.; Fernandes, F.; Sengo, S.; Jeronimo, E.; Oliveira, M.A.; Costa, P.; Sequeira, A.; et al. Growth performance, carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush (Cistus ladanifer L.) and vege oils. Meat Sci. 2015, 100, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Mapato, C.; Pilajun, R.; Toburan, W. Effects of vegetable oil supplementation on feed intake, rumen fermentation, growth performance, and carcass characteristic of growing swamp buffaloes. Livest. Sci. 2011, 135, 32–37. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef] [PubMed]
- Lima, N.L.L.; Ribeiro, C.R.D.; de Sa, H.C.M.; Leopoldino, I.; Cavalcanti, L.F.L.; Santana, R.A.V.; Furusho-Garcia, I.F.; Pereira, I.G. Economic analysis, performance, and feed efficiency in feedlot lambs. Rev. Bras. Zootecn. 2017, 46, 821–829. [Google Scholar] [CrossRef]
- Bottje, W.G.; Lassiter, K.; Piekarski-Welsher, A.; Dridi, S.; Reverter, A.; Hudson, N.J.; Kong, B.-W. Proteogenomics reveals enriched ribosome assembly and protein translation in pectoralis major of high feed efficiency pedigree broiler males. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef]
- Boles, J.A.; Kott, R.W.; Hatfield, P.G.; Bergman, J.W.; Flynnt, C.R. Supplemental safflower oil affects the fatty acid profile, including conjugated linoleic acid, of lamb. J. Anim. Sci. 2005, 83, 2175–2181. [Google Scholar] [CrossRef]
- Flakemore, A.R.; Otto, J.R.; Suybeng, B.; Balogun, R.O.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E.O. Performance and carcass characteristics of Australian purebred and crossbred lambs supplemented with Rice Bran. J. Anim. Sci. Technol. 2015, 57, 1–9. [Google Scholar] [CrossRef]
- Flakemore, A.R.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E.O. Omega-3 fatty acids, nutrient retention values, and sensory meat eating quality in cooked and raw Australian lamb. Meat Sci. 2017, 123, 79–87. [Google Scholar] [CrossRef]
- Flakemore, A.R.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E.O. Degummed crude canola oil, sire breed and gender effects on intramuscular long-chain omega-3 fatty acid properties of raw and cooked lamb meat. J. Anim. Sci. Technol. 2017, 59, 17. [Google Scholar] [CrossRef]
- Gallardo, B.; Gomez-Cortes, P.; Mantecon, A.R.; Juarez, M.; Manso, T.; de la Fuente, M.A. Effects of olive and fish oil Ca soaps in ewe diets on milk fat and muscle and subcutaneous tissue fatty-acid profiles of suckling lambs. Animal 2014, 8, 1178–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashani, A.; Holman, B.W.B.; Nichols, P.D.; Malau-Aduli, A.E.O. Effect of level of spirulina supplementation on the fatty acid compositions of adipose, muscle, heart, kidney and liver tissues in australian dual-purpose lambs. Ann. Anim. Sci. 2015, 15, 945–960. [Google Scholar] [CrossRef]
- Malau-Aduli, A.E.O.; Holman, B.W.B.; Kashani, A.; Nichols, P.D. Sire breed and sex effects on the fatty acid composition and content of heart, kidney, liver, adipose and muscle tissues of purebred and first-cross prime lambs. Anim. Prod. Sci. 2016, 56, 2122–2132. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Le, V.H.; Nguyen, Q.V.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E.O. Omega–3 long-chain fatty acids in the heart, kidney, liver and plasma metabolite profiles of australian prime lambs supplemented with pelleted canola and flaxseed oils. Nutrients 2017, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.V.; Flakemore, A.R.; Otto, J.R.; Ives, S.W.; Smith, R.W.; Nichols, P.D.; Malau-Aduli, A.E.O. Nutritional value and sensory characteristics of meat eating quality of Australian prime lambs supplemented with pelleted canola and flaxseed oils: Fatty acid profiles of muscle and adipose tissues. Intern. Med. Rev. 2017, 3, 1–21. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E.O. Growth performance and carcass characteristics of Australian prime lambs supplemented with pellets containing canola oil or flaxseed oil. Anim. Prod. Sci. 2018, 58, 2100–2108. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Kashani, A.; Malau-Aduli, A.E.O. Effects of Spirulina (Arthrospira platensis) supplementation level and basal diet on liveweight, body conformation and growth traits in genetically divergent Australian dual-purpose lambs during simulated drought and typical pasture grazing. Small Rumin. Res. 2014, 120, 6–14. [Google Scholar] [CrossRef]
- Kenyon, P.R.; Maloney, S.K.; Blache, D. Review of sheep body condition score in relation to production characteristics. N. Z. J. Agric. Res. 2014, 57, 38–64. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Bath, D.L.; Marble, V.L. Testing alfalfa hay for its feeding value. In Leaflet 21437. WREP 109. Division of Agriculture & Natural Resources; University of California: Oakland, CA, USA, 1989. [Google Scholar]
- Robinson, P.H.; Givens, D.I.; Getachew, G. Evaluation of NRC, UC Davis and ADAS approaches to estimate the metabolizable energy values of feeds at maintenance energy intake from equations utilizing chemical assays and in vitro determinations. Anim. Feed Sci. Technol. 2004, 114, 75–90. [Google Scholar] [CrossRef]
- Neville, B.W.; Schauer, C.S.; Karges, K.; Gibson, M.L.; Thompson, M.M.; Kirschten, L.A.; Dyer, N.W.; Berg, P.T.; Lardy, G.P. Effect of thiamine concentration on animal health, feedlot performance, carcass characteristics, and ruminal hydrogen sulfide concentrations in lambs fed diets based on 60% distillers dried grains plus solubles. J. Anim. Sci. 2010, 88, 2444–2455. [Google Scholar] [CrossRef]
- MLA. Market Reports and Prices. Available online: http://www.mla.com.au/prices-markets/Market-reports-prices/ (accessed on 15 July 2018).
- SAS. Statistical Analysis System. SAS/STAT User’s Guide: Statistics. Version 9.2. Edition; SAS Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Salah, N.; Sauvant, D.; Archimede, H. Nutritional requirements of sheep, goats and cattle in warm climates: A meta-analysis. Animal 2014, 8, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Papi, N.; Mostafa-Tehrani, A.; Amanlou, H.; Memarian, M. Effects of dietary forage-to-concentrate ratios on performance and carcass characteristics of growing fat-tailed lambs. Anim. Feed Sci. Technol. 2011, 163, 93–98. [Google Scholar] [CrossRef]
- Safari, J.; Mushi, D.E.; Mtenga, L.A.; Kifaro, G.C.; Eik, L.O. Effects of concentrate supplementation on carcass and meat quality attributes of feedlot finished Small East African goats. Livest. Sci. 2009, 125, 266–274. [Google Scholar] [CrossRef]
- Peng, Y.S.; Brown, M.A.; Wu, J.P.; Liu, Z. Different oilseed supplements alter fatty acid composition of different adipose tissues of adult ewes. Meat Sci. 2010, 85, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Manso, T.; Bodas, R.; Castro, T.; Jimeno, V.; Mantecon, A.R. Animal performance and fatty acid composition of lambs fed with different vegetable oils. Meat Sci. 2009, 83, 511–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chemical Composition (% DM) | Control Lucerne Hay | RBO | CO | RPO | FO | SO |
---|---|---|---|---|---|---|
DM | 86.8 | 89.9 | 91.0 | 89.7 | 90.7 | 89.9 |
CP | 17.1 | 14.8 | 14.0 | 15.6 | 14.6 | 14.5 |
ADF | 36.9 | 7.5 | 9.4 | 8.2 | 10.4 | 10.0 |
NDF | 47.2 | 19.0 | 19.1 | 20.4 | 22.2 | 21.1 |
EE | 1.5 | 5.5 | 5.6 | 5.1 | 5.6 | 5.5 |
ASH | 8.4 | 6.7 | 6.2 | 6.5 | 8.2 | 8.2 |
%TDN | 60.2 | 83.1 | 81.6 | 82.5 | 80.8 | 81.1 |
DE (Mcal/kg) | 2.65 | 3.65 | 3.59 | 3.63 | 3.56 | 3.57 |
ME (MJ/kg) | 9.08 | 12.54 | 12.32 | 12.46 | 12.20 | 12.25 |
Parameters | Control | RBO | CO | RPO | FO | SO | SEM |
---|---|---|---|---|---|---|---|
Initial LWT (kg) | 37.6 | 38.6 | 37.6 | 38.3 | 38.3 | 38.6 | 0.59 |
Final LWT (kg) | 42.4 b | 48.9 a | 48.9 a | 50.3 a | 49.8 a | 48.2 a | 0.79 |
ADG (g) | 94.3 c | 205.7 ab | 226.3 a | 240.0 a | 230.2 a | 190.3 b | 11.22 |
Lucerne hay intake (kg DM/head/day) | 1.38 a | 0.79 b | 0.86 b | 0.88 b | 0.95 b | 0.85 b | 0.08 |
Concentrate intake (kg DM/head/day) | - | 0.86 | 0.82 | 0.83 | 0.84 | 0.86 | 0.05 |
Total intake (kg DM/head/day) | 1.38 b | 1.64 a | 1.68 a | 1.71 a | 1.79 a | 1.71 a | 0.07 |
LCE | 16.6 a | 4.0 b | 3.9 b | 3.8 b | 4.2 b | 4.6 b | 0.79 |
FCE | - | 4.3 ab | 3.7 b | 3.6 b | 3.7 b | 4.7 a | 0.24 |
FCPUG (AU$/kg) | 9.5 a | 3.0 d | 3.0 d | 4.1 c | 4.2 c | 6.3 b | 0.23 |
Body Conformation Traits | Control | RBO | CO | RPO | FO | SO | SEM |
---|---|---|---|---|---|---|---|
Initial CG (cm) | 77.3 | 79.0 | 77.3 | 78.8 | 78.4 | 78.6 | 0.63 |
ΔCG (cm) | 4.9 b | 8.6 a | 9.3 a | 8.8 a | 9.1 a | 8.5 a | 0.63 |
Initial WH (cm) | 61.6 | 60.9 | 61.2 | 61.4 | 62.0 | 61.1 | 0.44 |
ΔWH (cm) | 3.9 b | 5.2 a | 5.6 a | 5.6 a | 5.5 a | 5.2 a | 0.35 |
Initial BL (cm) | 61.8 | 62.7 | 62.1 | 62.7 | 62.9 | 62.3 | 0.39 |
ΔBL (cm) | 4.1 b | 5.2 a | 5.1 a | 5.2 a | 5.4 a | 5.5 a | 0.33 |
Initial BCS | 2.63 | 2.67 | 2.58 | 2.63 | 2.63 | 2.67 | 0.07 |
ΔBCS | −0.21 b | 0.96 a | 1.00 a | 1.13 a | 1.21 a | 1.08 a | 0.13 |
Items | Control | RBO | CO | RPO | FO | SO | SEM |
---|---|---|---|---|---|---|---|
Pre-slaughter weight (kg) | 40.4 b | 47.0 a | 46.1 a | 47.6 a | 47.7 a | 47.3 a | 0.72 |
HCW (kg) | 19.4 b | 24.9 a | 23.7 a | 24.6 a | 24.5 a | 23.9 a | 0.47 |
Dressing percentage (%) | 45.7 c | 50.9 a | 48.4 b | 48.9 b | 49.1 b | 49.5 ab | 0.53 |
Fat thickness (mm) | 4.0 c | 5.7 ab | 5.5 ab | 6.4 a | 6.2 ab | 5.2 b | 0.38 |
Body wall thickness (mm) | 16.4 b | 21.8 a | 21.8 a | 22.8 a | 20.4 a | 21.7 a | 1.03 |
Rib eye area (cm2) | 14.8 b | 17.0 a | 15.8 ab | 16.4 a | 16.1 ab | 16.1 ab | 0.44 |
BCTRC% | 49.0 a | 47.7 b | 47.5 b | 47.3 b | 47.6 b | 47.7 b | 0.27 |
GR fat score (1–5) | 2.5 b | 3.7 a | 3.4 a | 3.7 a | 3.5 a | 3.3 a | 0.17 |
OTH trade (AU$) | 100.6 b | 129.3 a | 123.1 a | 127.8 a | 127.2 a | 124 a | 2.43 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, H.V.; Nguyen, Q.V.; Nguyen, D.V.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E.O. Nutritional Supplements Fortified with Oils from Canola, Flaxseed, Safflower and Rice Bran Improve Feedlot Performance and Carcass Characteristics of Australian Prime Lambs. Animals 2018, 8, 231. https://doi.org/10.3390/ani8120231
Le HV, Nguyen QV, Nguyen DV, Malau-Aduli BS, Nichols PD, Malau-Aduli AEO. Nutritional Supplements Fortified with Oils from Canola, Flaxseed, Safflower and Rice Bran Improve Feedlot Performance and Carcass Characteristics of Australian Prime Lambs. Animals. 2018; 8(12):231. https://doi.org/10.3390/ani8120231
Chicago/Turabian StyleLe, Hung V., Quang V. Nguyen, Don V. Nguyen, Bunmi S. Malau-Aduli, Peter D. Nichols, and Aduli E. O. Malau-Aduli. 2018. "Nutritional Supplements Fortified with Oils from Canola, Flaxseed, Safflower and Rice Bran Improve Feedlot Performance and Carcass Characteristics of Australian Prime Lambs" Animals 8, no. 12: 231. https://doi.org/10.3390/ani8120231
APA StyleLe, H. V., Nguyen, Q. V., Nguyen, D. V., Malau-Aduli, B. S., Nichols, P. D., & Malau-Aduli, A. E. O. (2018). Nutritional Supplements Fortified with Oils from Canola, Flaxseed, Safflower and Rice Bran Improve Feedlot Performance and Carcass Characteristics of Australian Prime Lambs. Animals, 8(12), 231. https://doi.org/10.3390/ani8120231