Gastrointestinal Parasites in Shelter Dogs: Occurrence, Pathology, Treatment and Risk to Shelter Workers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Magnitude of the Shelter Dog Population
3. Parasites in Shelter Dogs
3.1. Nematodes
3.1.1. Hookworms
3.1.2. Toxocara canis
3.1.3. Trichuris vulpis
3.1.4. Strongyloides stercoralis
3.2. Protozoa
3.2.1. Giardia spp.
3.2.2. Cryptosporidium spp.
3.2.3. Isospora spp.
3.2.4. Sarcocystis spp.
3.3. Cestodes
4. Treatment Programs for Gastrointestinal Parasites in Shelter Dogs
4.1. Recommended Standards of Treatment
- “Animal should receive treatment for internal and external parasites prevalent in the region and for apparent parasitic infection harbored by the animal at the time of entry”.
- “Ideally, every animal should be dewormed on entry and regularly throughout their stay in a shelter, but at a minimum, animals must receive anthelmintic drugs against roundworms and hookworms before leaving the shelter.”
4.2. Non-Drug Control of Parasites
4.3. Drug Therapy and Drug Resistance
- ➢
- On intake to the facility, administer an anthelmintic containing either pyrantel pamoate (ideally repeated every 2–3 weeks for 3 doses to kill maturing immature stages), or fenbendazole (50 mg/Kg body weight, every 24 h for three days). Fenbendazole clears Toxocara (80%–100%) and hookworm (99%–100%) infections within 9 to 16 days after treatment [105].
- ➢
- ➢
- If pyrantel pamoate is used, select a product containing oxantel to control whipworms, except for pregnant or nursing dogs. A single dose of praziquantel (5–10 mg/Kg) can be administered to treat tapeworms.
- ➢
- Where coccidia are of concern in incoming puppies or dogs, add ponazuril or sulphadimethoxine. If there are concerns about the efficacy of treatment (anthelmintic resistance), examine three fecal samples over 1 to 2 weeks after treatment.
- ➢
- If funds are available, add selamectin to target fleas, lice, ticks and heartworm prevention, as well as providing some control of hookworms (adults) and ascarids. Puppies and kittens should be administered pyrantel pamoate every 2 weeks, which is usually administered at the time of each vaccination.
- ➢
- Proper sanitation is essential to reduce the risk of infection to animals and shelter workers.
- ➢
- Extra care should be taken to remove feces as quickly as possible, especially in the first week following treatment, because of continued shedding of eggs in feces. Feces should be promptly removed, particularly in common areas where dogs are walked or play together, and the area regularly cleaned.
- ➢
- Hookworm larvae are effectively killed by strong sunlight, 50 ppm aqueous iodine, water above 80 °C, 70% ethanol and Dettol®, while ascarid eggs are resistant to most disinfectants. It is extremely important to first remove all feces from pens, runs, and kennels, followed by thorough mechanical cleaning. This will reduce the risk of re-infection and spread to shelter staff [116]. Note standard shelter sanitation with accelerated hydrogen peroxide (spray on surfaces, leave to dry and do not rinse), will eliminate parvovirus, major bacterial and fungal pathogens, but is likely, not effective against hookworm larvae or ascarid eggs. However, general mechanical cleaning is beneficial for clearing all major parasite life stages from the environment (as well as for dermatophyte spores).
- ➢
- If there are concerns about the spread of Giardia spp. or Cryptosporidium, dogs should be bathed on the first and last day of treatment because re-infection may occur with cysts and oocysts from the fur [117].
- ➢
- If anthelmintic resistance is suspected, perform fortnightly fecal egg counts to monitor parasite burdens across the facility. New and recent arrivals should be prioritized. Ultimately the objective should be to screen all animals fortnightly. This could be managed by testing 10% of the population five days a week.
- ➢
- Treat on exit from the facility either with pyrantel pamoate or ideally, using a 3-day course of fenbendazole (50 mg/Kg of body weight every 24 h). This is essential from a public health perspective. If funds are available, praziquantel (5–10 mg/Kg single dose) should also be administered for tapeworm. Because treatment on exit is aimed at public safety and public relations, treatment should be guided by fecal screening, and where funds are limited, focus these where this is a public health risk with zoonosis.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barrera, G.; Jakovcevic, A.; Elgier, A.M.; Mustaca, A.; Bentosela, M. Responses of shelter and pet dogs to an unknown human. J. Vet. Behav. Clin. Appl. Res. 2010, 5, 339–344. [Google Scholar] [CrossRef]
- Tuber, D.S.; Miller, D.D.; Caris, K.A.; Halter, R.; Linden, F.; Hennessy, M.B. Dogs in animal shelters: Problems, suggestions, and needed expertise. Psychol. Sci. 1999, 10, 379–386. [Google Scholar] [CrossRef]
- Oliveira-Sequeira, T.C.G.; Amarante, A.F.T.; Ferrari, T.B.; Nunes, L.C. Prevalence of intestinal parasites in dogs from São Paulo state, Brazil. Vet. Parasitol. 2002, 103, 19–27. [Google Scholar] [CrossRef]
- Patronek, G.J.; Crowe, A. Factors associated with high live release for dogs at a large, open-admission, municipal shelter. Animals 2018, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Hemy, M.; Rand, J.; Morton, J.; Paterson, M. Characteristics and outcomes of dogs admitted into Queensland RSPCA shelters. Animals 2017, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.D. Internal parasites. In Infectious Disease Management in Animal Shelters, 1st ed.; Millar, L., Hurley, K., Eds.; Wiley-Blackwell: Ames, IA, USA, 2009; Volume 1, pp. 209–221. [Google Scholar]
- Bugg, R.J.; Robertson, I.D.; Elliot, A.D.; Thompson, R.C. Gastrointestinal parasites of urban dogs in Perth, Western Australia. Vet. J. 1999, 157, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.S.; Pereira-Baltasar, P.; Parreira, R.; Padre, L.; Vilhena, M.; Tavora Tavira, L.; Atouguia, J.; Centeno-Lima, S. Intestinal parasites in dogs and cats from the district of Evora, Portugal. Vet. Parasitol. 2011, 179, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Savilla, T.M.; Joy, J.E.; May, J.D.; Somerville, C.C. Prevalence of dog intestinal nematode parasites in south central West Virginia, USA. Vet. Parasitol. 2011, 178, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, A.; Polley, L.; Jenkins, E.; Schurer, J.; Gilleard, J.; Kutz, S.; Conboy, G.; Benoit, D.; Seewald, W.; Gagné, F. Parasite prevalence in fecal samples from shelter dogs and cats across the Canadian provinces. Parasites Vectors 2015, 8, 281. [Google Scholar] [CrossRef] [PubMed]
- Qadir, S.; Dixit, A.K.; Dixit, P.; Sharma, R.L. Intestinal helminths induce haematological changes in dogs from Jabalpur, India. J. Helminthol. 2011, 85, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Gilman, R.H. Hookworm disease: Host-pathogen biology. Rev. Infect. Dis. 1982, 4, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Traversa, D. Pet roundworms and hookworms: A continuing need for global worming. Parasites Vectors 2012, 5, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Animal Medicines Australia (AMA). Pet Ownership in Australia; Animal Medicines Australia: Barton, Australia, 2016. [Google Scholar]
- Pet Food Manufacturing Association (PFMA). A Brave New World 2017: PFMA Annual Report & Brexit Manifesto; Pet Food Manufacturing Association: London, UK, 2016. [Google Scholar]
- American Pet Products Association (APPA). The 2017–2018 APPA National Pet Owners Survey Debut; American Pet Products Association: Stamford, CT, USA, 2016. [Google Scholar]
- Chua, D.; Rand, J.; Morton, J. Surrendered and stray dogs in Australia-estimation of numbers entering municipal pounds, shelters and rescue groups and their outcomes. Animals 2017, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Rowan, A.N.; Kartal, T. Dog population & dog sheltering trends in the United States of America. Animals 2018, 8, 68. [Google Scholar] [CrossRef]
- Litster, A.; Allen, J.; Mohamed, A.; He, S. Risk factors for delays between intake and veterinary approval for adoption on medical grounds in shelter puppies and kittens. Prev. Vet. Med. 2011, 101, 107–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brickell, E. Stray Dogs Survey 2011; Dog Trust: London, UK, 2011. [Google Scholar]
- Ortuno, A.; Castella, J. Intestinal parasites in shelter dogs and risk factors associated with the facility and its management. Isr. J. Vet. Med. 2011, 66, 103–107. [Google Scholar]
- Palmer, C.S.; Robertson, I.D.; Traub, R.J.; Rees, R.; Thompson, R.C. Intestinal parasites of dogs and cats in Australia: The veterinarian’s perspective and pet owner awareness. Vet. J. 2010, 183, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Joffe, D.; Van Niekerk, D.; Gagne, F.; Gilleard, J.; Kutz, S.; Lobingier, R. The prevalence of intestinal parasites in dogs and cats in Calgary, Alberta. Can. Vet. J. 2011, 52, 1323–1328. [Google Scholar] [PubMed]
- Beiromvand, M.; Akhlaghi, L.; Fattahi Massom, S.H.; Meamar, A.R.; Motevalian, A.; Oormazdi, H.; Razmjou, E. Prevalence of zoonotic intestinal parasites in domestic and stray dogs in a rural area of Iran. Prev. Vet. Med. 2013, 109, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Esquivel, C.; Romero-Salas, D.; Aguilar-Domínguez, M.; Cruz-Romero, A.; Ibarra-Priego, N.; Pérez-de-León, A.Á. Epidemiological assessment of intestinal parasitic infections in dogs at animal shelter in Veracruz, Mexico. Asian Pac. J. Trop. Biomed. 2015, 5, 34–39. [Google Scholar] [CrossRef]
- Sommer, M.F.; Zdravković, N.; Vasić, A.; Grimm, F.; Silaghi, C. Gastrointestinal parasites in shelter dogs from Belgrade, Serbia. Vet. Parasitol. Reg. Stud. Rep. 2017, 7, 54–57. [Google Scholar] [CrossRef]
- Yacob, H.T.; Ayele, T.; Fikru, R.; Basu, A.K. Gastrointestinal nematodes in dogs from Debre Zeit, Ethiopia. Vet. Parasitol. 2007, 148, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Mahdy, M.A.; Lim, Y.A.; Ngui, R.; Siti Fatimah, M.R.; Choy, S.H.; Yap, N.J.; Al-Mekhlafi, H.M.; Ibrahim, J.; Surin, J. Prevalence and zoonotic potential of canine hookworms in Malaysia. Parasites Vectors 2012, 5, 88. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Barrios, R.A.; Barboza-Mena, G.; Munoz, J.; Angulo-Cubillan, F.; Hernandez, E.; Gonzalez, F.; Escalona, F. Prevalence of intestinal parasites in dogs under veterinary care in Maracaibo, Venezuela. Vet. Parasitol. 2004, 121, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Baharmi, A.; Doosti, A.; Nahravanian, H.; mahdi Noroian, A.; Asbchin, A.S. Epidemiological survey of gastro-intestinal parasites in stray dogs and cats. Aust. J. Basic App. Sci. 2011, 5, 1944–1948. [Google Scholar]
- Papini, R.; Gorini, G.; Spaziani, A.; Cardini, G. Survey on giardiosis in shelter dog populations. Vet. Parasitol. 2005, 128, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.S.; Thompson, R.C.; Traub, R.J.; Rees, R.; Robertson, I.D. National study of the gastrointestinal parasites of dogs and cats in Australia. Vet. Parasitol. 2008, 151, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Mukaratirwa, S.; Singh, V.P. Prevalence of gastrointestinal parasites of stray dogs impounded by the society for the prevention of cruelty to animals (SPCA), Durban and Coast, South Africa. J. S. Afr. Vet. Assoc. 2010, 81, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Titilincu, A.; Mircean, V.; Achelaritei, D.; Cozma, V. Prevalence of Cryptosporidium spp. in asymptomatic dogs by ELISA and risk factors associated with infection. Lucrări Ştiinţifice Medicină Veterinară 2010, XLIII, 7–12. [Google Scholar]
- Becker, A.C.; Rohen, M.; Epe, C.; Schnieder, T. Prevalence of endoparasites in stray and fostered dogs and cats in northern Germany. Parasitol. Res. 2012, 111, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Ortuño, A.; Scorza, V.; Castellà, J.; Lappin, M. Prevalence of intestinal parasites in shelter and hunting dogs in Catalonia, northeastern Spain. Vet. J. 2014, 199, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Landmann, J.K.; Prociv, P. Experimental human infection with the dog hookworm, Ancylostoma caninum. Med. J. Aust. 2003, 178, 69–71. [Google Scholar] [PubMed]
- Levine, N.D. Hookworms. In Nematode Parasites of Domestic Animals and of Man, 2nd ed.; Levine, N.D., Ed.; Burgess Publication: Minneapolis, MN, USA, 1980. [Google Scholar]
- Epe, C. Intestinal nematodes: Biology and control. Vet. Clin. N. Am. Small Anim. Pract. 2009, 39, 1091–1107. [Google Scholar] [CrossRef] [PubMed]
- Robertson, I.D.; Thompson, R.C. Enteric parasitic zoonoses of domesticated dogs and cats. Microbes Infect. 2002, 4, 867–873. [Google Scholar] [CrossRef]
- Traub, R.J.; Monis, P.T.; Robertson, I.; Irwin, P.; Mencke, N.; Thompson, R.C. Epidemiological and molecular evidence supports the zoonotic transmission of Giardia among humans and dogs living in the same community. Parasitology 2004, 128, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Kalkofen, U.P. Hookworms of dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 1987, 17, 1341–1354. [Google Scholar] [CrossRef]
- Bowman, D.D.; Montgomery, S.P.; Zajac, A.M.; Eberhard, M.L.; Kazacos, K.R. Hookworms of dogs and cats as agents of cutaneous larva migrans. Trends Parasitol. 2010, 26, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Hochedez, P.; Caumes, E. Hookworm-related cutaneous larva migrans. J. Travel Med. 2007, 14, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Heukelbach, J.; Feldmeier, H. Epidemiological and clinical characteristics of hookworm-related cutaneous larva migrans. Lancet Infect. Dis. 2008, 8, 302–309. [Google Scholar] [CrossRef]
- Tu, C.H.; Liao, W.C.; Chiang, T.H.; Wang, H.P. Pet parasites infesting the human colon. Gastrointest. Endosc. 2008, 67, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Deplazes, P.; van Knapen, F.; Schweiger, A.; Overgaauw, P.A. Role of pet dogs and cats in the transmission of helminthic zoonoses in Europe, with a focus on echinococcosis and toxocarosis. Vet. Parasitol. 2011, 182, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Overgaauw, P.A. Aspects of Toxocara epidemiology: Toxocarosis in dogs and cats. Crit. Rev. Microbiol. 1997, 23, 233–251. [Google Scholar] [CrossRef] [PubMed]
- Schantz, P.M. Of worms, dogs, and human hosts: Continuing challenges for veterinarians in prevention of human disease. J. Am. Vet. Med. Assoc. 1994, 204, 1023–1028. [Google Scholar] [PubMed]
- Magnaval, J.F.; Glickman, L.T.; Dorchies, P.; Morassin, B. Highlights of human toxocariasis. Korean J. Parasitol. 2001, 39, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Roddie, G.; Stafford, P.; Holland, C.; Wolfe, A. Contamination of dog hair with eggs of Toxocara canis. Vet. Parasitol. 2008, 152, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Schantz, P.M. Toxocara larva migrans now. Am. J. Trop. Med. Hyg. 1989, 41, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Despommier, D. Toxocariasis: Clinical aspects, epidemiology, medical ecology, and molecular aspects. Clin. Microbiol. Rev. 2003, 16, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Traversa, D. Are we paying too much attention to cardio-pulmonary nematodes and neglecting old-fashioned worms like Trichuris vulpis? Parasites Vectors 2011, 4, 32. [Google Scholar] [CrossRef] [PubMed]
- Kirkova, Z.; Dinev, I. Morphological changes in the intestine of dogs, experimentally infected with Trichuris vulpis. Bulg. J. Vet. Med. 2005, 8, 239–243. [Google Scholar]
- Schantz, P.M. Intestinal parasites of dogs in western Australia: Progress in control and new concerns. Vet. J. 1999, 157, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.J.; Columbus, S.T.; Aldeen, W.E.; Davis, M.; Carroll, K.C. Trichuris vulpis recovered from a patient with chronic diarrhea and five dogs. J. Clin. Microbiol. 2002, 40, 2703–2704. [Google Scholar] [CrossRef] [PubMed]
- Koutz, F.R.; Groves, H.F. Strongyloides stercoralis from a dog in Ohio. J. Am. Vet. Med. Assoc. 1953, 122, 211–213. [Google Scholar] [PubMed]
- Georgi, J.R.; Sprinkle, C.L. A case of human strongyloidosis apparently contracted from asymptomatic colony dogs. Am. J. Trop. Med. Hyg. 1974, 23, 899–901. [Google Scholar] [CrossRef] [PubMed]
- Schad, G.A.; Aikens, L.M.; Smith, G. Strongyloides stercoralis: Is there a canonical migratory route through the host? J. Parasitol. 1989, 75, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Shiwaku, K.; Chigusa, Y.; Kadosaka, T.; Kaneko, K. Factors influencing development of free-living generations of Strongyloides stercoralis. Parasitology 1988, 97, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Schad, G.A.; Hellman, M.E.; Muncey, D.W. Strongyloides stercoralis: Hyperinfection in immunosuppressed dogs. Exp. Parasitol. 1984, 57, 287–296. [Google Scholar] [CrossRef]
- Dillard, K.J.; Saari, S.A.; Anttila, M. Strongyloides stercoralis infection in a finnish kennel. Acta Vet. Scand. 2007, 49, 37. [Google Scholar] [CrossRef] [PubMed]
- Paradies, P.; Iarussi, F.; Sasanelli, M.; Capogna, A.; Lia, R.P.; Zucca, D.; Greco, B.; Cantacessi, C.; Otranto, D. Occurrence of strongyloidiasis in privately owned and sheltered dogs: Clinical presentation and treatment outcome. Parasit Vectors 2017, 10, 345. [Google Scholar] [CrossRef] [PubMed]
- Savioli, L.; Smith, H.; Thompson, A. Giardia and Cryptosporidium join the ‘neglected diseases initiative’. Trends Parasitol. 2006, 22, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Nash, T.E.; Mowatt, M.R. Identification and characterization of a Giardia lamblia group-specific gene. Exp. Parasitol. 1992, 75, 369–378. [Google Scholar] [CrossRef]
- Carlin, E.P.; Bowman, D.D.; Scarlett, J.M.; Garrett, J.; Lorentzen, L. Prevalence of Giardia in symptomatic dogs and cats throughout the United States as determined by the IDEXX SNAP Giardia test. Vet. Therapeut. 2006, 7, 199–206. [Google Scholar]
- Szénási, Z.; Marton, S.; Kucsera, I.; Tánczos, B.; Horváth, K.; Orosz, E.; Lukács, Z.; Szeidemann, Z. Preliminary investigation of the prevalence and genotype distribution of Giardia intestinalis in dogs in Hungary. Parasitol. Res. 2007, 101, 145–152. [Google Scholar] [CrossRef]
- McDowall, R.M.; Peregrine, A.S.; Leonard, E.K.; Lacombe, C.; Lake, M.; Rebelo, A.R.; Cai, H.Y. Evaluation of the zoonotic potential of Giardia duodenalis in fecal samples from dogs and cats in Ontario. Can. Vet. J. 2011, 52, 1329–1333. [Google Scholar] [PubMed]
- Olson, M.E.; Leonard, N.J.; Strout, J. Prevalence and diagnosis of Giardia infection in dogs and cats using a fecal antigen test and fecal smear. Can. Vet. J. 2010, 51, 640–642. [Google Scholar] [PubMed]
- Barr, S.C.; Bowman, D.D. Giardiasis in dogs and cats. Compend. Contin. Educ. Vet. 1994, 16, 603–609. [Google Scholar]
- Kirkpatrick, C.E. Giardiasis. Vet. Clin. N. Am. Small Anim. Pract. 1987, 17, 1377–1387. [Google Scholar] [CrossRef]
- Jacobs, S.R.; Forrester, C.P.; Yang, J. A survey of the prevalence of Giardia in dogs presented to Canadian veterinary practices. Can. Vet. J. 2001, 42, 45–46. [Google Scholar] [PubMed]
- Monis, P.T.; Andrews, R.H.; Mayrhofer, G.; Ey, P.L. Molecular systematics of the parasitic protozoan Giardia intestinalis. Mol. Biol. Evol. 1999, 16, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Ryan, U.; Fayer, R.; Xiao, L. Cryptosporidium species in humans and animals: Current understanding and research needs. Parasitology 2014, 141, 1667–1685. [Google Scholar] [PubMed]
- Bowman, D.D.; Lucio-Forster, A. Cryptosporidiosis and giardiasis in dogs and cats: Veterinary and public health importance. Exp. Parasitol. 2010, 124, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Morgan, U.M.; Xiao, L.; Monis, P.; Fall, A.; Irwin, P.J.; Fayer, R.; Denholm, K.M.; Limor, J.; Lal, A.; Thompson, R.C. Cryptosporidium spp. in domestic dogs: The “dog” genotype. Appl. Environ. Microbiol. 2000, 66, 2220–2223. [Google Scholar] [CrossRef] [PubMed]
- Lappin, M.R. General concepts in zoonotic disease control. In Veterinary Clinics of North America, Small Animal Practice, Advances in Feline Medicine; Vassalo, J., Richards, J.R., Eds.; W.B. Saunders: Philadalphia, PA, USA, 2005; pp. 1–20. [Google Scholar]
- Cama, V.A.; Ross, J.M.; Crawford, S.; Kawai, V.; Chavez-Valdez, R.; Vargas, D.; Vivar, A.; Ticona, E.; Navincopa, M.; Williamson, J.; et al. Differences in clinical manifestations among Cryptosporidium species and subtypes in HIV-infected persons. J. Infect. Dis. 2007, 196, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, D.S.; Dubey, J.P.; Blagburn, B.L. Biology of Isospora spp. From humans, nonhuman primates, and domestic animals. Clin. Microbiol. Rev. 1997, 10, 19–34. [Google Scholar] [PubMed]
- Lappin, M.R. Update on the diagnosis and management of Isospora spp infections in dogs and cats. Topics Compan. Anim. Med. 2010, 25, 133–135. [Google Scholar]
- Blagburn, B. Giordiasis and coccidiosis updates. In Proceedings of the Western Veterinary Conference, Las Vegas, NY, USA, 17–21 February 2003. [Google Scholar]
- Daugschies, A.; Mundt, H.C.; Letkova, V. Toltrazuril treatment of cystoisosporosis in dogs under experimental and field conditions. Parasitol. Res. 2000, 86, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. The evolution of the knowledge of cat and dog coccidia. Parasitolopgy 2009, 136, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Speer, C.A. Sarcocystis canis n. sp. (apicomplexa: Sarcocystidae), the etiologic agent of generalized coccidiosis in dogs. J. Parasitol. 1991, 77, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Speer, C.A.; Fayer, R. Sarcocystosis of Animals and Man; CRC Press Inc.: Boca Raton, FL, USA, 1989. [Google Scholar]
- Sykes, J.E.; Dubey, J.P.; Lindsay, L.L.; Prato, P.; Lappin, M.R.; Guo, L.T.; Mizisin, A.P.; Shelton, G.D. Severe myositis associated with Sarcocystis spp. infection in 2 dogs. J. Vet. Intern. Med. 2011, 25, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Wani, Z.A.; Allaie, I.M.; Shah, B.M.; Raies, A.; Athar, H.; Junaid, S. Dipylidium caninum infection in dogs infested with fleas. J. Parasit. Dis. 2015, 39, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Fourie, J.J.; Crafford, D.; Horak, I.G.; Stanneck, D. Prophylactic treatment of flea-infested dogs with an imidacloprid/flumethrin collar (Seresto®, Bayer) to preempt infection with Dipylidium caninum. Parasitol. Res. 2013, 112 (Suppl. 1), 33–46. [Google Scholar] [CrossRef] [PubMed]
- Abere, T.; Bogale, B.; Melaku, A. Gastrointestinal helminth parasites of pet and stray dogs as a potential risk for human health in Bahir Dar town, north-western Ethiopia. Vet. World 2013, 6, 388. [Google Scholar] [CrossRef]
- Tsumura, N.; Koga, H.; Hidaka, H.; Mukai, F.; Ikenaga, M.; Otsu, Y.; Masunaga, K.; Nagai, K.; Yoneda, Y.; Fukuma, T.; et al. Dipylidium caninum infection in an infant. J. Jpn. Assoc. Infect. Dis. 2007, 81, 456–458. [Google Scholar] [CrossRef]
- Molina, C.P.; Ogburn, J.; Adegboyega, P. Infection by Dipylidium caninum in an infant. Arch. Pathol. Lab. Med. 2003, 127, e157–e159. [Google Scholar] [PubMed]
- Mudenda, N.B. Epidemiology and molecular characterization of human and canine hookworm. Louisiana State University, LSU Digital Commons. Available online: http://digitalcommons.lsu.edu/gradschool_dissertations (accessed on 26 November 2017).
- LeJeune, J.T.; Davis, M.A. Outbreaks of zoonotic enteric disease associated with animal exhibits. J. Am. Vet. Med. Assoc. 2004, 224, 1440–1445. [Google Scholar] [CrossRef] [PubMed]
- Newbury, S.; Blinn, M.K.; Bushby, P.A.; Cox, C.B.; Dinnage, J.D.; Griffin, B.; Hurley, K.F.; Isaza, N.; Jones, W.; Miller, L.; et al. Guidelines for Standards of Care in Animal Shelters; Association of Shelter Veterinarians: Apex, NC, USA, 2010. [Google Scholar]
- Shalaby, H.A. Anthelmintics resistance; how to overcome it? Iran. J. Parasitol. 2013, 8, 18–32. [Google Scholar] [PubMed]
- Kopp, S.R.; Kotze, A.C.; McCarthy, J.S.; Coleman, G.T. High-level pyrantel resistance in the hookworm Ancylostoma caninum. Vet. Parasitol. 2007, 143, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.; Lance, D.; Townsend, K.; Stewart, K. Isolation of anthelmintic resistant Ancylostoma caninum. New Zealand Vet. J. 1987, 35, 215–216. [Google Scholar] [CrossRef] [PubMed]
- Balassiano, B.C.; Campos, M.R.; Menezes Rde, C.; Pereira, M.J. Factors associated with gastrointestinal parasite infection in dogs in Rio de Janeiro, Brazil. Prev. Vet. Med. 2009, 91, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Morrondo, P.; Diez-Morrondo, C.; Pedreira, J.; Diez-Banos, N.; Sanchez-Andrade, R.; Paz-Silva, A.; Diez-Banos, P. Toxocara canis larvae viability after disinfectant-exposition. Parasitol. Res. 2006, 99, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kopp, S.R.; Coleman, G.T.; McCarthy, J.S.; Kotze, A.C. Application of in vitro anthelmintic sensitivity assays to canine parasitology: Detecting resistance to pyrantel in Ancylostoma caninum. Vet. Parasitol. 2008, 152, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, S.; Feldman, E.; Côté, E. Textbook of Veterinary Internal Medicine: Diseases of the Dog and the Cat, 8th ed.; Elsevier: St. Louis, MI, USA, 2017; ISBN 9780323312110. [Google Scholar]
- Nolan, T.J.; Hawdon, J.M.; Longhofer, S.L.; Daurio, C.P.; Schad, G.A. Efficacy of an ivermectin/pyrantel pamoate chewable formulation against the canine hookworms, Uncinaria stenocephala and Ancylostoma caninum. Vet. Parasitol. 1992, 41, 121–125. [Google Scholar] [CrossRef]
- Besier, R.B.; Love, S.C.J. Anthelmintic resistance in sheep nematodes in Australia: The need for new approaches. Aust. J. Exp. Agric. 2003, 43, 1383–1391. [Google Scholar] [CrossRef]
- Kaplan, R.M. Drug resistance in nematodes of veterinary importance: A status report. Trends Parasitol. 2004, 20, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Miro, G.; Mateo, M.; Montoya, A.; Vela, E.; Calonge, R. Survey of intestinal parasites in stray dogs in the Madrid area and comparison of the efficacy of three anthelmintics in naturally infected dogs. Parasitol. Res. 2007, 100, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Taweethavonsawat, P.; Chungpivat, S.; Satranarakun, P.; Traub, R.J.; Schaper, R. Efficacy of a combination product containing pyrantel, febantel and praziquantel (drontal plus flavour, bayer animal health) against experimental infection with the hookworm Ancylostoma ceylanicum in dogs. Parasitol. Res. 2010, 106, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Altreuther, G.; Radeloff, I.; LeSueur, C.; Schimmel, A.; Krieger, K.J. Field evaluation of the efficacy and safety of emodepside plus praziquantel tablets (profender tablets for dogs) against naturally acquired nematode and cestode infections in dogs. Parasitol. Res. 2009, 105 (Suppl. 1), S23–S29. [Google Scholar] [CrossRef] [PubMed]
- Schimmel, A.; Schroeder, I.; Altreuther, G.; Settje, T.; Charles, S.; Wolken, S.; Kok, D.J.; Ketzis, J.; Young, D.; Hutchens, D.; et al. Efficacy of emodepside plus toltrazuril (Procox® oral suspension for dogs) against Toxocara canis, Uncinaria stenocephala and Ancylostoma caninum in dogs. Parasitol. Res. 2011, 109 (Suppl. 1), S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Altreuther, G.; Gasda, N.; Schroeder, I.; Joachim, A.; Settje, T.; Schimmel, A.; Hutchens, D.; Krieger, K.J. Efficacy of emodepside plus toltrazuril suspension (Procox®) oral suspension for dogs) against prepatent and patent infection with Isospora canis and Isospora ohioensis-complex in dogs. Parasitol. Res. 2011, 109 (Suppl. 1), S9–S20. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.A.; Roberts, M.G. Does pet helminth prophylaxis increase the rate of selection for drug resistance? Trends Parasitol. 2001, 17, 576–578. [Google Scholar] [CrossRef]
- Coles, G.C. Anthelmintic resistance--looking to the future: A UK perspective. Res. Vet. Sci. 2005, 78, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Irwin, P.J. Companion animal parasitology: A clinical perspective. Int. J. Parasitol. 2002, 32, 581–593. [Google Scholar] [CrossRef]
- Barr, S.C.; Bowman, D.D.; Heller, R.L. Efficacy of fenbendazole against giardiasis in dogs. Am. J. Vet. Res. 1994, 55, 988–990. [Google Scholar] [PubMed]
- Zajac, A.M.; LaBranche, T.P.; Donoghue, A.R.; Chu, T.C. Efficacy of fenbendazole in the treatment of experimental giardia infection in dogs. Am. J. Vet. Res. 1998, 59, 61–63. [Google Scholar] [PubMed]
- Overgaauw, P.A.; van Zutphen, L.; Hoek, D.; Yaya, F.O.; Roelfsema, J.; Pinelli, E.; van Knapen, F.; Kortbeek, L.M. Zoonotic parasites in fecal samples and fur from dogs and cats in The Netherlands. Vet. Parasitol. 2009, 163, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Payne, P.A.; Ridley, R.K.; Dryden, M.W.; Bathgate, C.; Milliken, G.A.; Stewart, P.W. Efficacy of a combination febantel-praziquantel-pyrantel product, with or without vaccination with a commercial Giardia vaccine, for treatment of dogs with naturally occurring giardiasis. J. Am. Vet. Med. Assoc. 2002, 220, 330–333. [Google Scholar] [CrossRef] [PubMed]
Author(s) | Parasite | Prevalence (%) | Methods Used in the Study | Country | Additional Comments |
---|---|---|---|---|---|
Papini, et al. [31] | Giardia spp. | 55.3 | enzyme-linked immunosorbent assay (ELISA) | Rome, Italy | The relatively high prevalence reported is likely to reflect the sensitivity of the ELISA technique. |
Palmer, et al. [32] | Hookworm spp. | 10.7 | Fecal examination Malachite green staining | Australia | Study included considerable sample size, but use of microscopy for detection of parasites might have led to underestimation of true prevalence. |
T. vulpis | 3.1 | ||||
T. canis | 2.4 | ||||
D. caninum | 0.3 | ||||
Giardia spp. | 14.4 | ||||
I. ohioensis | 5.6 | ||||
I. canis | 1.4 | ||||
Sarcocystis spp. | 3.2 | ||||
Cryptosporidium spp. | 0.7 | ||||
Mukaratirwa and Singh [33] | Hookworm spp. | 53.8 | Fecal examination | Durban and Coast, South Africa | Use of microscopy for detection of parasites might have led to underestimation of true prevalence. |
T. vulpis | 7.9 | ||||
T. canis | 7.9 | ||||
G. intestinalis | 5.6 | ||||
Isospora spp. | 1.3 | ||||
Titilincu, et al. [34] | Cryptosporidium spp. | 37.9 | ELISA | Romania | A higher level of Cryptosporidium prevalence might be related to use of a sensitive technique (ELISA) |
Baharmi, et al. [30] | Hookworm spp. | 33.03 | Fecal examination, Ziehl-Neelsen trichrome and Iodine staining | Iran | |
T. vulpis | 8.03 | ||||
T. canis | 36.6 | ||||
D. caninum | 10.71 | ||||
Giardia spp. | 18.75 | ||||
I. ohioensis | 15.17 | ||||
Cryptosporidium | 7.14 | ||||
Taenia spp. | 19.64 | ||||
Joffe, et al. [23] | Hookworm spp. | 0.81 | Fecal examination | Calgary, Canada | |
T. canis | 12.0 | ||||
Giardia spp. | 4.2 | ||||
Ortuno and Castella [21] | Hookworm spp. | 5.3 | Fecal examination | Barcelona, Spain | |
T. vulpis | 11.0 | ||||
T. canis | 7.5 | ||||
D. caninum | 0.4 | ||||
Giardia spp. | 40.6 | ||||
Isospora spp. | 16.4 | ||||
Becker, et al. [35] | Hookworm spp. | 4.1 | FEC, SNAP® Giardia Test (IDEXX, Westbrook, ME, USA) | Evora, Portugal | Higher prevalence of Giardia reflects the higher sensitivity of the SNAP Giardia test. |
T. vulpis | 2.0 | ||||
T. canis | 0.9 | ||||
Giardia spp. | 47.0 | ||||
Isospora spp. | 6.1 | ||||
Mahdy, et al. [28] | Hookworm spp. | 28.7 | Fecal examination | Malaysia | |
Ortuño, et al. [36] | Hookworm spp. | 3.7 | Fecal examination polymerase chain reaction (PCR) for Giardia positive samples only | Spain | Shelter protocol was that all dogs received anthelmintics at the time of entry and then every three months thereafter. Use of PCR was likely a contributor to the high prevalence of Giardia. |
T. vulpis | 3.7 | ||||
T. canis | 7.4 | ||||
T. leonina | 2.4 | ||||
Giardia spp. | 63.0 | ||||
Isospora ohioensis complex | 24.6 | ||||
I. canis | 6.2 | ||||
Alvarado-Esquivel, et al. [25] | A. caninum | 88.1 | Fecal examination and Hematocrit | Veracruz (Mexico) | Dogs with other systemic infections were more likely to have parasitic infestation. |
T. canis | 45.5 | ||||
U. stenocephala | 42.6 | ||||
T. vulpis | 18.8 | ||||
S. canis | 15.8 | ||||
Villeneuve, et al. [10] | T. canis | 12.7 | Fecal Examination and Multiplex PCR | Canada | |
Isospora spp. | 10.4 | ||||
Sarcocystis | 4.5 | ||||
Trichuris vulpis | 4.4 | ||||
Giardia | 3.5 | ||||
T. leonina | 3.0 | ||||
Cryptosporidium | 3.0 | ||||
U. stenocephala | 2.9 | ||||
Taenia spp. | 1.6 | ||||
Sommer, et al. [26] | A. canimum | 41.0 | Merthiolate-iodine-formalin concentration method, Giardia- Coproantigen | Belgrade, Serbia | 134 fecal samples were examined for gastrointestinal parasites and the majority of the dogs were infected with at least one of nine different parasites. |
G. intestinalis | 45.5 | ||||
Neospora spp. | 11.2 | ||||
T. leonina | 9.7 | ||||
Isospora canis | 8.2 | ||||
T. vulpis | 6.7 | ||||
Sarcocystis spp. | 4.5 | ||||
T. canis | 3.0 |
Drug/s Protocol | Target Parasites | Additional Comments |
---|---|---|
amprolium | Coccidia | Significant side effects can occur. Use is off-label in many countries |
azithromycin | Cryptosporidium | Typically a self-limiting infection and is not treated. However, if treatment is necessary, use every 24 hours until clinical signs resolve |
epsiprantel | Tapeworms | Should be avoided in animals younger than 7 weeks and pregnant animals, single dose |
emodepside + praziquantel | Roundworms and tapeworms | Emodepside, a relatively newer anthelmintic. Available as a tablet for dogs, although not accessible in all markets |
fenbendazole | Ascarids, hookworms, Trichuris vulpis, certain tapeworms and Giardia | Should be given 3 days consecutively for whipworm and 3–5 days for Giardia (efficacy against Giardia is controversial) |
ivermectin | Ascarids, hookworms and external parasites | Injectable, inexpensive and single dose is sufficient for most of the parasites; should not be used in collie breed and puppies less than 6 weeks old |
milbemycin | All helminths | Available in combination with many anti-flea and anticestodal products |
moxidectin | Hookworm, heartworm, fleas, mites, and roundworms | Available as spot-on, oral, drench and injectable forms |
metronidazole | Giardia | Metronidazole eliminates Giardia in 2/3rds of dogs and can be combined with fenbendazole for improved efficacy |
piperazine | Roundworms | An older heterocyclic compound. Not recommended in combination with pyrantel |
ponazuril | Coccidia | Registered for use in horses—Use in dogs constitutes off-label use in most jurisdictions |
praziquantel | Nearly all tapeworms | Should not be used in younger animals (<4 weeks); a single dose is sufficient |
pyrantel | Ascarids and hookworms | Should not be used in combination with piperazine |
pyrantel + praziquantel | Ascarids, hookworms, and tapeworms | Addition of praziquantel extends spectrum to tapeworms; should not be used in younger animals (<4 weeks) |
pyrantel + praziquantel + febantel | Ascarids, whipworms, hookworms, and tapeworms | More expensive than pyrantel alone; should be avoided in animals younger than 7 weeks and pregnant animals, a single dose for all worms except whipworms |
sulphadimethoxine | Coccidia | Only approved drug to treat coccidiosis in the USA |
selamectin | Hookworms, heartworm, ascarids, fleas, lice, and ticks | Spot-on application. Tolerance and safety margin in dogs with the MDR-1 mutation (e.g., collies) that are sensitive to ivermectin is higher for selamectin than for ivermectin |
emodepside + toltrazuril | Coccidia | Efficient coccidiocidal in dogs |
Drugs | Brand Name | Parasite(s) | Efficacy | References |
---|---|---|---|---|
febantel, pyrantel, praziquantel | (Drontal Plus®; Bayer, Ontario, Canada) | Ascarids (T. cani; T. leonina) | 92–100% | [106] |
Ancylostomids | 90–100% | |||
Taeniidae | 73–91% | |||
fenbendazole | (Panacur®; Intervet, Vienna, Austria) | Ascarids | 80–100% | |
Ancylostomids | 99–100% | |||
Taeniidae | 90–100% | |||
mebendazole | (Telmin®; Esteve, Cologno Monzese, Italy) | Ascarids | 98–100% | |
Ancylostomids | 100% | |||
Taeniidae | 70–90% | |||
pyrantel, febantel, praziquantel | (Drontal® Plus, Bayer, Ontario, Canada) | A. ceylanicum | 100% | [107] |
Emodepside, praziquantel | Profender® (Kansas, KS, USA) | Ascarids (T. canis; T. leonina); Whipworms (T. vulpis), Ancylostomids (U. stenocephala; A. caninum), | 99.9% | [108] |
Cestodes (D. caninum; Taeniidae; Mesocestoides) | 100% | |||
emodepside plus toltazuril | (Procox® Tablets for Dogs, Bayer, Leverkusen, Germany) | Ascarids (T. canis); | 100% | [109] |
Ancylostomids (A. caninum; U. stenocephala) | 99.5–100% | |||
emodepside plus toltazuril | (Procox® Tablets for Dogs, Bayer, Leverkusen, Germany) | Isospora spp. | 90.2–100% | [110] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, A.; Rand, J.; Qamar, A.G.; Jabbar, A.; Kopp, S. Gastrointestinal Parasites in Shelter Dogs: Occurrence, Pathology, Treatment and Risk to Shelter Workers. Animals 2018, 8, 108. https://doi.org/10.3390/ani8070108
Raza A, Rand J, Qamar AG, Jabbar A, Kopp S. Gastrointestinal Parasites in Shelter Dogs: Occurrence, Pathology, Treatment and Risk to Shelter Workers. Animals. 2018; 8(7):108. https://doi.org/10.3390/ani8070108
Chicago/Turabian StyleRaza, Ali, Jacquie Rand, Abdul Ghaffar Qamar, Abdul Jabbar, and Steven Kopp. 2018. "Gastrointestinal Parasites in Shelter Dogs: Occurrence, Pathology, Treatment and Risk to Shelter Workers" Animals 8, no. 7: 108. https://doi.org/10.3390/ani8070108
APA StyleRaza, A., Rand, J., Qamar, A. G., Jabbar, A., & Kopp, S. (2018). Gastrointestinal Parasites in Shelter Dogs: Occurrence, Pathology, Treatment and Risk to Shelter Workers. Animals, 8(7), 108. https://doi.org/10.3390/ani8070108