Effects of Tea Saponin Supplementation on Nutrient Digestibility, Methanogenesis, and Ruminal Microbial Flora in Dorper Crossbred Ewe
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.1.1. Experiment 1
2.1.2. Experiment 2
2.2. Analytical Procedures
2.3. Statistical Analyses
3. Results
3.1. Nutrient Digestibility
3.2. Ruminal Fermentation and Methanogenesis
3.3. Ruminal Microbial Flora
4. Discussion
4.1. Effect of Tea Saponin on Apparent Digestibility and Nitrogen Balance
4.2. Effect of Tea Saponin on Methane Production
4.3. Effect of Tea Saponin on Ruminal Fermentation
4.4. Effect of Tea Saponin on Microbial Flora
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC (Intergovernmental Panel on Climate Change). Climate change: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- UNFCC (United Nations Framework Convention on Climate Change). Greenhouse Gas Inventory Data; UNFCC: Bonn, Germany, 2006. [Google Scholar]
- Olivier, J.G.J.; Aardenne, J.A.; Dentener, F.; Ganzeveld, L.; Peters, J.A.H.W. Recent trends in global greenhouse gas emissions: Regional trends and spatial distribution of key sources. In Proceedings of the Non-CO2 Greenhouse Gases (NCGG-4), Utrecht, The Netherlands, 4–6 July 2005; pp. 325–330. [Google Scholar]
- AGO (Australian Greenhouse Office). National Greenhouse Gas Inventory 2001 with Methodology Supplements; AGO: Canberra, Australia, 2003.
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Alford, A.R.; Hegarty, R.S.; Parnell, P.F.; Cacho, O.J.; Herd, R.M.; Griffith, G.R. The impact of breeding to reduce residual feed intake on enteric methane emissions from the Australian beef industry. Aust. J. Exp. Agric. 2006, 46, 813–820. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.P.; Newbold, C.J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–235. [Google Scholar] [CrossRef]
- Wei, M.L.; Ren, L.P.; Zhou, Z.M.; Meng, Q.X. Effect of addition of three plant extracts on gas production, ruminal fermentation, methane production and ruminal digestibility based on an in vitro technique. J. Anim. Vet. Adv. 2012, 11, 4304–4309. [Google Scholar]
- Hu, W.L.; Wu, Y.M.; Liu, J.X.; Guo, Y.Q.; Ye, J.A. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid. J. ZheJiang Univ. Sci. B 2005, 6, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Lila, Z.A.; Mohammed, N.; Kanda, S.; Kamada, T.; Itabashi, H. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. J. Dairy Sci. 2003, 86, 3330–3336. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, S.P.; Zhou, H. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Anim. Feed Sci. Technol. 2009, 148, 157–166. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Liu, J.X.; Lu, Y.; Zhu, W.Y.; Denman, S.E.; McSweeney, C.S. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen microorganisms. Lett. Appl. Microbiol. 2008, 47, 421–426. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Mao, H.L.; Jiang, F.; Wang, J.K.; Liu, J.X.; McSweeney, C.S. Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep. Anim. Feed Sci. Technol. 2011, 166–167. [Google Scholar] [CrossRef]
- Guyader, J.; Eugène, M.; Doreau, M.; Morgavi, D.P.; Gérard, C.; Loncke, C.; Martin, C. Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows. J. Anim. Sci. 2015, 93, 5367–5377. [Google Scholar] [CrossRef]
- Hu, W.L.; Wu, Y.M.; Liu, J.X.; Guo, Y.Q.; Ye, J.A. Effect of tea saponins on in vitro ruminal fermentation and growth performance in growing Boer goat. Arch. Anim. Nutr. 2006, 60, 89–97. [Google Scholar] [CrossRef]
- Macome, F.M.; Pellikaan, W.F.; Hendriks, W.H.; Warner, D.; Schonewille, J.T.; Cone, J.W. In vitro gas and methane production in rumen fluid from dairy cows fed grass silages differing in plant maturity, compared to in vivo data. J. Anim. Physiol. Anim. Nutr. 2018, 102, 843–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NRC (Nutrient Requirements of Small Ruminants). Sheep, Goats, Cervids and New World Camelids; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Ma, T.; Chen, D.D.; Tu, Y.; Zhang, N.F.; Si, B.W.; Deng, K.D.; Diao, Q.Y. Effect of dietary supplementation with resveratrol on nutrient digestibility, methanogenesis and ruminal microbial flora in sheep. J. Anim. Physiol. Anim. Nutr. 2015, 99, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.D.; Jiang, C.G.; Tu, Y.; Zhang, N.F.; Liu, J.; Ma, T.; Zhao, Y.G.; Xu, G.S.; Diao, Q.Y. Energy requirements of Dorper crossbred ewe lambs. J. Anim. Sci. 2014, 92, 2161–2169. [Google Scholar] [CrossRef] [PubMed]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Goering, H.G.; Van Soest, J.P. Forage fiber analysis. In Agricultural Handbook; UPSDA: Washington, DC, USA, 1970; Volume 379. [Google Scholar]
- Ma, T.; Deng, K.D.; Tu, Y.; Zhang, N.F.; Jiang, C.G.; Liu, J.; Zhao, Y.G.; Diao, Q.Y. Effect of dietary forage-to-concentrate ratios on urinary excretion of purine derivatives and microbial nitrogen yields in the rumen of Dorper crossbred sheep. Livest. Sci. 2014, 160, 37–44. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Zhang, C.M.; Guo, Y.Q.; Yuan, Z.P.; Wu, Y.M.; Wang, J.K.; Liu, J.X.; Zhu, W.Y. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Technol. 2008, 146, 259–269. [Google Scholar] [CrossRef]
- Zoetendal, E.G.; Akkermans, A.D.; De Vos, W.M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microb. 1998, 64, 3854–3859. [Google Scholar]
- Denman, S.E.; McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Holtshausen, L.; Chaves, A.V.; Beauchemin, K.A.; McGinn, S.M.; McAllister, T.A.; Odongo, N.E.; Cheeke, P.R.; Benchaar, C. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 2009, 92, 2809–2821. [Google Scholar] [CrossRef] [PubMed]
- Jouany, J.P. Effect of rumen protozoa on nitrogen utilization by ruminants. J. Nutr. 1996, 126, 1335S–1346S. [Google Scholar] [CrossRef] [PubMed]
- Michalet-Doreau, B.; Fernandez, I.; Peyron, C.; Millet, L.; Fonty, G. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Reprod. Nutr. Dev. 2001, 41, 187–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, R.J.; McEwan, N.R.; McIntosh, F.M.; Teferedegne, B.; Newbold, C.J. Natural products as manipulators rumen fermentation. Asian Australas. J. Anim. 2002, 15, 1458–1468. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: New York, NY, USA, 1994; p. 470. [Google Scholar]
- Koening, K.M.; Newbold, C.J.; Mcintosh, F.M.; Rode, L.M. Effects of protozoa on bacterial nitrogen recycling in the rumen. J. Dairy Sci. 2000, 78, 2431–2445. [Google Scholar]
- Attwood, G.; McSweeney, C.S. Methanogen genomics to discover targets for methane mitigation technologies and options for alternative H2 utilisation in the rumen. Aust. J. Exp. Agric. 2008, 48, 28–37. [Google Scholar] [CrossRef]
- Hess, H.D.; Kreuzer, M.; Diaz, T.E.; Lascano, C.E.; Carulla, J.E.; Soliva, C.R.; Machmuller, A. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Anim. Feed Sci. Technol. 2003, 109, 79–94. [Google Scholar] [CrossRef]
- Whitelaw, F.G.; Eadie, J.M.; Bruce, L.A.; Shand, W.J. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. Br. J. Nutr. 1984, 52, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Dohme, F.; Machmüller, A.; Estermann, B.L.; Pfister, P.; Wasserfallen, A.; Kreuzer, M. The role of the rumen ciliateprotozoa for methane suppression caused by coconut oil. Lett. Appl. Microbiol. 1999, 29, 187–192. [Google Scholar] [CrossRef]
- Guyader, J.; Eugène, M.; Meunier, B.; Doreau, M.; Morgavi, D.P.; Silberberg, M.; Rochette, Y.; Gérard, C.; Loncke, C.; Martin, C. Additive methane-mitigating effect between linseed oil and nitrate fed to cattle. J. Anim. Sci. 2015, 93, 3564–3577. [Google Scholar] [CrossRef]
- Yoon, I.K.; Stern, M.D. Effect of Saccharomyces cerevisiae and Aspergillus oryzae cultures on ruminal fermentation in dairy cows. J. Dairy Sci. 1996, 79, 411–417. [Google Scholar] [CrossRef]
- Wina, E.; Muetzel, S.; Becker, K. The impact of saponins or saponin-containing plant materials on ruminant production-areview. J. Agric. Food Chem. 2005, 53, 8093–8105. [Google Scholar] [CrossRef]
- Santoso, B.; Kilmaskossu, A.; Sambodo, P. Effect of saponin from Biophytum petersianum Klotzsch on ruminal fermentation: Microbial protein synthesis and nitrogen utilization in goats. Anim. Feed Sci. Technol. 2007, 137, 58–68. [Google Scholar] [CrossRef]
- Poungchompu, O.; Wanapat, M.; Wachirapakorn, C.; Wanapat, S.; Cherdthong, A. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 2009, 63, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Restrepo, C.A.; Tan, C.; O’Neil, C.J.; López-Villalobos, N.; Padmanabha, J.; Wang, J.K.; McSweeney, C.S. Methane production, fermentation characteristics, and microbial profiles in the rumen of tropical cattle fed tea saponin supplementation. Anim. Feed Sci. Technol. 2016, 216, 58–67. [Google Scholar]
- Guyader, J.; Eugène, M.; Doreau, M.; Morgavi, D.P.; Gérard, C.; Loncke, C.; Martin, C. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. J. Dairy Sci. 2017, 100, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.L.; Wang, J.K.; Zhou, Y.Y.; Liu, J.X. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livest. Sci. 2010, 129, 56–62. [Google Scholar] [CrossRef]
- Vogels, G.D.; Hoppe, W.F.; Stumm, C.K. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 1980, 40, 608–612. [Google Scholar]
- Tokur, M.; Chagan, I.; Ushida, K.; Kojima, Y. Phylogenetic study of methanogens associated with rumen ciliates. Curr. Microbiol. 1999, 39, 123–128. [Google Scholar] [CrossRef]
Item a | Total Mixed Ration | Chinese Wildrye Hay |
---|---|---|
Ingredient, % of DM | ||
Corn | 17.0 | |
Soybean meal | 12.0 | |
Chinese wildrye hay | 68.7 | |
CaHPO4 | 1.35 | |
Limestone | 0.25 | |
NaCl | 0.50 | |
Premix b | 0.24 | |
Chemical composition (determined) | ||
DM, (% as fed) | 88.6 | 91.4 |
OM | 80.8 | 90.6 |
GE, MJ/kg of DM | 17.2 | 17.6 |
CP | 12.2 | 8.50 |
NDF | 41.4 | 70.7 |
ADF | 21.8 | 38.1 |
Target Species | Primer Sequence (5′→3′) a | Amplicon |
---|---|---|
Total bacteria | F: CGGTGAATACGTTCYCGG | 123 |
R: GGWTACCTTGTTACGACTT | ||
Methanogens | F: TTCGGTGGATCDCARAGRGC | 140 |
R: GBARGTCGWAWCCGTAGAATCC | ||
Protozoans | F: GCTTTCGWTGGTAGTGTATT | 223 |
R: CTTGCCCTCYAATCGTWCT | ||
Fibrobacter succinogenes | F: GTTCGGAATTACTGGGCGTAAA | 121 |
R: CGCCTGCCCCTGAACTATC | ||
Ruminococcus flavefaciens | F: GATGCCGCGTGGAGGAAGAAG | 286 |
R: CATTTCACCGCTACACCAGGAA | ||
Ruminococcus albus | F: GTTTTAGGATTGTAAACCTCTGTCTT | 270 |
R: CCTAATATCTACGCATTTCACCGC | ||
Butyrivibrio fibrisolvens | F: TAACATGAGAGTTTGATCCTGGCTC | 135 |
R: CGTTACTCACCCGTCCGC |
Item a | Treatments b | SEM | p-Value | |
---|---|---|---|---|
CON | TS | |||
Apparent digestibility, % | ||||
OM | 60.3 | 66.1 | 0.99 | 0.001 |
N | 66.6 | 69.2 | 0.63 | 0.036 |
NDF | 37.9 | 48.5 | 1.79 | 0.001 |
ADF | 35.0 | 48.3 | 2.07 | <0.001 |
Fecal N, g/d | 10.7 | 9.90 | 0.20 | 0.036 |
Urinary N, g/d | 14.9 | 12.5 | 0.42 | 0.001 |
N retention, g/d | 6.54 | 9.78 | 0.56 | 0.001 |
N retention/N intake, % | 20.3 | 30.4 | 1.74 | 0.001 |
Item a | Treatments b | SEM | p-Value | |
---|---|---|---|---|
CON | TS | |||
DM intake, g/d | 1512.5 | 1512.6 | 0.04 | 0.593 |
BW0.75, kg | 21.4 | 24.2 | 0.52 | <0.001 |
Methane production | ||||
L | 61.1 | 62.2 | 0.77 | 0.519 |
L/kg BW0.75 | 2.86 | 2.57 | 0.05 | 0.001 |
L/kg DMI | 40.4 | 41.1 | 0.51 | 0.519 |
pH | 5.98 | 5.96 | 0.05 | 0.912 |
Ammonia, mmol/L | 10.7 | 8.30 | 0.33 | <0.001 |
Total VFA, mmol/L | 101.6 | 118.1 | 3.56 | 0.018 |
Molar proportions, % | ||||
Acetate | 74.0 | 80.0 | 2.17 | 0.171 |
Propionate | 14.4 | 18.7 | 0.82 | 0.007 |
Isobutyrate | 1.34 | 2.04 | 0.12 | 0.001 |
Butyrate | 9.62 | 14.2 | 0.76 | 0.002 |
Isovalerate | 1.39 | 2.16 | 0.13 | 0.001 |
Valerate | 0.89 | 1.06 | 0.05 | 0.107 |
Acetate:propionate | 5.23 | 4.50 | 0.17 | 0.035 |
Microbial Population, per mL of Ruminal Fluid | Treatments a | SEM | p-Value | |
---|---|---|---|---|
CON | TS | |||
Total bacteria, × 109 | 7.77 | 8.23 | 0.40 | 0.569 |
Protozoans, × 107 | 5.44 | 4.59 | 0.22 | 0.054 |
Methanogens, × 107 | 7.09 | 6.18 | 0.45 | 0.318 |
F. succinogenes, × 105 | 4.36 | 5.41 | 0.23 | 0.019 |
R. flavefaciens, × 108 | 4.06 | 4.40 | 0.19 | 0.372 |
R. albus, × 107 | 5.30 | 5.02 | 0.16 | 0.385 |
B. fibrisolvens, × 108 | 6.31 | 6.49 | 0.12 | 0.476 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ma, T.; Chen, D.; Zhang, N.; Si, B.; Deng, K.; Tu, Y.; Diao, Q. Effects of Tea Saponin Supplementation on Nutrient Digestibility, Methanogenesis, and Ruminal Microbial Flora in Dorper Crossbred Ewe. Animals 2019, 9, 29. https://doi.org/10.3390/ani9010029
Liu Y, Ma T, Chen D, Zhang N, Si B, Deng K, Tu Y, Diao Q. Effects of Tea Saponin Supplementation on Nutrient Digestibility, Methanogenesis, and Ruminal Microbial Flora in Dorper Crossbred Ewe. Animals. 2019; 9(1):29. https://doi.org/10.3390/ani9010029
Chicago/Turabian StyleLiu, Yunlong, Tao Ma, Dandan Chen, Naifeng Zhang, Bingwen Si, Kaidong Deng, Yan Tu, and Qiyu Diao. 2019. "Effects of Tea Saponin Supplementation on Nutrient Digestibility, Methanogenesis, and Ruminal Microbial Flora in Dorper Crossbred Ewe" Animals 9, no. 1: 29. https://doi.org/10.3390/ani9010029
APA StyleLiu, Y., Ma, T., Chen, D., Zhang, N., Si, B., Deng, K., Tu, Y., & Diao, Q. (2019). Effects of Tea Saponin Supplementation on Nutrient Digestibility, Methanogenesis, and Ruminal Microbial Flora in Dorper Crossbred Ewe. Animals, 9(1), 29. https://doi.org/10.3390/ani9010029