1H NMR Metabolic Profile to Discriminate Pasture Based Alpine Asiago PDO Cheeses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Cheese-sampling Procedure
2.2. Chemical and 1H NMR Analysis
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Corazzin, M.; Romanzin, A.; Sepulcri, A.; Pinosa, M.; Piasentier, E.; Bovolenta, S. Fatty acid profiles of cow’s milk and cheese as affected by mountain pasture type and concentrate supplementation. Animals 2019, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Segato, S.; Balzan, S.; Elia, C.A.; Lignitto, L.; Granata, A.; Magro, L.; Contiero, B.; Andrighetto, I.; Novelli, E. Effect of period of milk production and ripening on quality traits of Asiago cheese. Ital. J. Anim. Sci. 2007, 6, 469–471. [Google Scholar] [CrossRef]
- Bovolenta, S.; Romanzin, A.; Corazzin, M.; Spanghero, M.; Aprea, E.; Gasperi, F.; Piasentier, E. Volatile compounds and sensory properties of Montasio cheese made from the milk of Simmental cows grazing on alpine pastures. J. Dairy Sci. 2014, 97, 7373–7385. [Google Scholar] [CrossRef] [PubMed]
- Council of the European Union. Amendment application pursuant to Article 6(2) of Council Regulation (EC) No 510/2006 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs (29.12.2006/C 321/08). Off. J. Eur. Union 2006, C 321, 23–27. [Google Scholar]
- Segato, S.; Galaverna, G.; Contiero, B.; Berzaghi, P.; Caligiani, A.; Marseglia, A.; Cozzi, G. Identification of Lipid Biomarkers to Discriminate between the Different Production Systems for Asiago PDO Cheese. J. Agric. Food Chem. 2017, 65, 9887–9892. [Google Scholar] [CrossRef] [PubMed]
- Repar, N.; Jan, P.; Nemecek, T.; Dux, D.; Doluschitz, R. Factors Affecting Global versus Local Environmental and Economic Performance of Dairying: A Case Study of Swiss Mountain Farms. Sustainability 2018, 10, 2940. [Google Scholar] [CrossRef]
- Gianelle, D.; Romanzin, A.; Clementel, F.; Vescovo, L.; Bovolenta, S. Feeding management of dairy cattle affect grassland dynamics in an alpine pasture. Int. J. Agric. Sustain. 2018, 16, 64–73. [Google Scholar] [CrossRef]
- Scano, P.; Cusano, E.; Caboni, P.; Consonni, R. NMR metabolite profiles of dairy: A review. Int. Dairy J. 2019, 90, 56–67. [Google Scholar] [CrossRef]
- Foroutan, A.; Guo, A.C.; Vazquez-Fresno, R.; Lipfert, M.; Zhang, L.; Zheng, J.; Badran, H.; Budinski, Z.; Mandal, R.; Ametaj, B.N.; et al. Chemical Composition of Commercial Cow’s Milk. J. Agric. Food Chem. 2019, 67, 4897–4914. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, T.F.; Vázquez-Fresno, R.; Serra-Cayuela, A.; Dong, E.; Mandal, R.; Hennessy, D.; McAuliffe, S.; Dillon, P.; Wishart, D.S.; Stanton, C.; et al. Pasture Feeding Changes the Bovine Rumen and Milk Metabolome. Metabolites 2018, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Tsiafoulis, C.G.; Papaemmanouil, C.; Alivertis, D.; Tzamaloukas, O.; Miltiadou, D.; Balayssac, S.; Malet-Martino, M.; Gerothanassis, I.P. NMR-based metabolomics of the lipid fraction of organic and conventional bovine milk. Molecules 2019, 24, 1067. [Google Scholar] [CrossRef]
- Mazzei, P.; Piccolo, A. 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chem. 2012, 132, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Consonni, R.; Cagliani, L. Ripening and geographical characterization of Parmigiano Reggiano cheese by 1H NMR spectroscopy. Talanta 2008, 76, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Lolli, V.; Dall’Asta, M.; Del Rio, D.; Caligiani, A. In vitro digestibility of cyclopropane fatty acids in Grana Padano cheese: A study combining 1H NMR and GC-MS techniques. J. Food Eng. 2018, 237, 226–230. [Google Scholar] [CrossRef]
- Commission of the European Communities. Commission Regulation (EC) No 1107/96 of 12 June 1996 on the registration of geographical indication and designation of origin under the procedure laid down in Article 17 of Council Regulation (EEC) No 2081/92. Off. J. Eur. Union 1996, 148, 0001–0010. [Google Scholar]
- Bisutti, V.; Merlanti, R.; Serva, L.; Lucatello, L.; Mirisola, M.; Balzan, S.; Tenti, S.; Fontana, F.; Trevisan, G.; Montanucci, L.; et al. Multivariate and machine learning approaches for honey botanical origin authentication using near infrared spectroscopy. J. Near Infrared Spectrosc. 2019, 27, 65–74. [Google Scholar] [CrossRef]
- Lignitto, L.; Cavatorta, V.; Balzan, S.; Gabai, G.; Galaverna, G.; Novelli, E.; Sforza, S.; Segato, S. Angiotensin-converting enzyme inhibitory activity of water-soluble extracts of Asiago d’allevo cheese. Int. Dairy J. 2010, 20, 11–17. [Google Scholar] [CrossRef]
- Romanzin, A.; Corazzin, M.; Piasentier, E.; Bovolenta, S. Effect of rearing system (mountain pasture vs. indoor) of Simmental cows on milk composition and Montasio cheese characteristics. J. Dairy Res. 2013, 80, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Lignitto, L.; Segato, S.; Balzan, S.; Cavatorta, V.; Oulahal, N.; Sforza, S.; Degraeve, P.; Galaverna, G.; Novelli, E. Preliminary investigation on the presence of peptides inhibiting the growth of Listeria innocua and Listeria monocytogenes in Asiago d’Allevo cheese. Dairy Sci. Technol. 2012, 92, 297–308. [Google Scholar] [CrossRef]
- Panthi, R.R.; Kelly, A.L.; Hennessy, D.; O’Sullivan, M.G.; Kilcawley, K.N.; Mannion, D.T.; A Fenelon, M.; Sheehan, J.J. Effect of pasture versus indoor feeding regimes on the yield, composition, ripening and sensory characteristics of Maasdam cheese. Int. J. Dairy Technol. 2019, 72, 435–446. [Google Scholar] [CrossRef]
- Buccioni, A.; DeCandia, M.; Minieri, S.; Molle, G.; Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed. Sci. Technol. 2012, 174, 1–25. [Google Scholar] [CrossRef]
- Ruggirello, M.; Giordano, M.; Bertolino, M.; Ferrocino, I.; Cocolin, L.; Dolci, P. Study of Lactococcus lactis during advanced ripening stages of model cheeses characterized by GC-MS. Food Microbiol. 2018, 74, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Mordenti, A.L.; Brogna, N.; Formigoni, A. REVIEW: The link between feeding dairy cows and Parmigiano-Reggiano cheese production area. Prof. Anim. Sci. 2017, 33, 520–529. [Google Scholar] [CrossRef]
- Frétin, M.; Martin, B.; Rifa, E.; Isabelle, V.-M.; Pomiès, D.; Ferlay, A.; Montel, M.-C.; Delbès, C. Bacterial community assembly from cow teat skin to ripened cheeses is influenced by grazing systems. Sci. Rep. 2018, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Boiani, M.; Sundekilde, U.; Bateman, L.M.; McCarthy, D.G.; Maguire, A.R.; Gulati, A.; Guinee, T.P.; Fenelon, M.; Hennessy, D.; Fitzgerald, R.J.; et al. Integration of high and low field 1H NMR to analyse the effects of bovine dietary regime on milk metabolomics and protein-bound moisture characterisation of the resulting mozzarella cheeses during ripening. Int. Dairy J. 2019, 91, 155–164. [Google Scholar] [CrossRef]
- Tenori, L.; Santucci, C.; Meoni, G.; Morrocchi, V.; Matteucci, G.; Luchinat, C. NMR metabolomic fingerprinting distinguishes milk from different farms. Food Res. Int. 2018, 113, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Ochi, H.; Sakai, Y.; Koishihara, H.; Abe, F.; Bamba, T.; Fukusaki, E. Monitoring the ripening process of Cheddar cheese based on hydrophilic component profiling using gas chromatography-mass spectrometry. J. Dairy Sci. 2013, 96, 7427–7441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocchetti, G.; Lucini, L.; Gallo, A.; Masoero, F.; Trevisan, M.; Giuberti, G. Untargeted metabolomics reveals differences in chemical fingerprints between PDO and non-PDO Grana Padano cheeses. Food Res. Int. 2018, 113, 407–413. [Google Scholar] [CrossRef]
- Moreira, G.M.; Costa, R.G.; Teodoro, V.A.; Paula, J.C.; Sobral, D.; Fernandes, C.; Gloria, M.B.A. Effect of ripening time on proteolysis, free amino acids, bioactive amines and texture profile of Gorgonzola-type cheese. LWT 2018, 98, 583–590. [Google Scholar] [CrossRef]
Item | Pressato | Allevo_4 | Allevo_6 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pasture n = 6 | Hay n = 8 | Pasture n = 15 | Hay n = 11 | Pasture n = 9 | Hay n = 6 | RT | FS | RT·FS | ||
Moisture | 39.3 a | 40.9 a | 33.7 b | 33.4 b | 30.2 c | 30.8 c | 0.40 | <0.001 | 0.143 | 0.133 |
Fat | 29.1 c | 27.7 c | 32.0 b | 31.9 b | 34.7 a | 34.0 a | 0.38 | <0.001 | 0.159 | 0.328 |
Protein | 23.1 c | 22.9 c | 26.0 b | 26.4 b | 27.3 a | 27.8 a | 0.26 | <0.001 | 0.384 | 0.563 |
Ash | 3.4 c | 3.3 c | 3.9 b | 3.8 b | 4.6 a | 4.6 a | 0.08 | <0.001 | 0.599 | 0.964 |
NaCl | 0.98 c | 0.95 c | 1.12 b | 1.15 b | 1.34 a | 1.35 a | 0.044 | <0.001 | 0.612 | 0.845 |
RI | 20.4 c | 18.6 c | 23.6 b | 22.8 b | 26.9 a | 26.4 a | 0.81 | <0.001 | 0.248 | 0.569 |
pH | 5.52 b | 5.54 b | 5.54 b | 5.56 b | 5.61 a | 5.64 a | 0.019 | <0.001 | 0.241 | 0.735 |
Step | 1H NMR Variables | Statistical Parameters of STEPWISE | p-Value of ANOVA | |||||
---|---|---|---|---|---|---|---|---|
Wilks’ λ | F-Value | p-Value | R2partial | FS | RT | FS·RT | ||
1 | Sugar compound A | 0.303 | 21.7 | <0.001 | 0.87 | <0.001 | <0.001 | 0.146 |
2 | Sugar compound B | 0.282 | 24.6 | <0.001 | 0.75 | 0.565 | <0.001 | 0.107 |
3 | 2,3-butanediol | 0.208 | 12.6 | <0.001 | 0.57 | 0.031 | <0.001 | 0.110 |
4 | Sugar compound C | 0.182 | 7.9 | <0.001 | 0.48 | 0.956 | 0.001 | 0.474 |
5 | Lactic acid | 0.124 | 7.7 | <0.001 | 0.46 | 0.632 | 0.015 | 0.354 |
6 | Citric acid | 0.110 | 7.1 | <0.001 | 0.38 | 0.811 | <0.001 | 0.115 |
7 | Lysine | 0.086 | 4.8 | 0.002 | 0.32 | 0.031 | 0.001 | 0.231 |
8 | Unknown 1 | 0.075 | 5.8 | 0.001 | 0.29 | 0.021 | 0.003 | 0.956 |
9 | Aspartic acid | 0.054 | 4.7 | 0.002 | 0.24 | 0.320 | <0.001 | 0.950 |
10 | Choline | 0.033 | 4.8 | 0.002 | 0.20 | 0.027 | 0.002 | 0.747 |
11 | Unknown 2 | 0.012 | 4.2 | 0.008 | 0.11 | 0.156 | 0.008 | 0.634 |
12 | Phenylalanine | 0.008 | 3.2 | 0.021 | 0.12 | 0.608 | 0.002 | 0.974 |
13 | Tyrosine | 0.007 | 4.3 | 0.005 | 0.09 | 0.091 | <0.001 | 0.801 |
Descriptive Statistics | Pressato | Allevo_4 | Allevo_6 | |||
---|---|---|---|---|---|---|
Pasture n = 3 | Hay n = 2 | Pasture n = 5 | Hay n = 2 | Pasture n = 5 | Hay n = 3 | |
Accuracy | 1.00 | 1.00 | 0.89 | 1.00 | 0.83 | 0.94 |
Precision | 1.00 | 1.00 | 0.71 | 1.00 | 0.75 | 1.00 |
Sensitivity | 1.00 | 1.00 | 1.00 | 1.00 | 0.60 | 0.67 |
Specificity | 1.00 | 1.00 | 0.85 | 1.00 | 0.92 | 1.00 |
MCC | 1.00 | 1.00 | 0.78 | 1.00 | 0.56 | 0.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segato, S.; Caligiani, A.; Contiero, B.; Galaverna, G.; Bisutti, V.; Cozzi, G. 1H NMR Metabolic Profile to Discriminate Pasture Based Alpine Asiago PDO Cheeses. Animals 2019, 9, 722. https://doi.org/10.3390/ani9100722
Segato S, Caligiani A, Contiero B, Galaverna G, Bisutti V, Cozzi G. 1H NMR Metabolic Profile to Discriminate Pasture Based Alpine Asiago PDO Cheeses. Animals. 2019; 9(10):722. https://doi.org/10.3390/ani9100722
Chicago/Turabian StyleSegato, Severino, Augusta Caligiani, Barbara Contiero, Gianni Galaverna, Vittoria Bisutti, and Giulio Cozzi. 2019. "1H NMR Metabolic Profile to Discriminate Pasture Based Alpine Asiago PDO Cheeses" Animals 9, no. 10: 722. https://doi.org/10.3390/ani9100722
APA StyleSegato, S., Caligiani, A., Contiero, B., Galaverna, G., Bisutti, V., & Cozzi, G. (2019). 1H NMR Metabolic Profile to Discriminate Pasture Based Alpine Asiago PDO Cheeses. Animals, 9(10), 722. https://doi.org/10.3390/ani9100722