Meat Production from Dairy Breed Lambs Due to Slaughter Age and Feeding Plan Based on Wheat Bran
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lambs, Diets and Experimental Design
2.2. Measurements, Sampling and Analysis
2.2.1. Feeds
2.2.2. Lambs, Slaughter and Carcasses Assessment
2.2.3. Physical, Chemical and Sensorial Analysis of Meat
2.3. Statistical Analysis
3. Results and Discussion
3.1. Diets Composition
3.2. Lamb in Vivo Performance
3.2.1. Growth and Feed Intake from 45 to 90 Days of Age
3.2.2. Growth and Feed Intake from 90 to 120 Days of Age
3.3. Lambs’ Slaughter Performance and Carcass Traits
3.4. Meat Evaluation
3.5. Meat Fatty Acid Profile
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Juárez, M.; Horcada, A.; Alcalde, M.J.; Valera, M.; Polvillo, O.; Molina, A. Meat and fatty quality of unweaned lambs as affected by slaughter weight and breed. Meat Sci. 2009, 83, 308–313. [Google Scholar] [CrossRef]
- D’Alessandro, A.G.; Palazzo, M.; Petrotos, K.; Goulas, P.; Martemucci, G. Fatty acid composition of light lamb meat from Leccese and Comisana dairy breeds as affected by slaughter age. Small Rumin. Res. 2015, 127, 36–43. [Google Scholar] [CrossRef]
- Polidori, P.; Pucciarelli, S.; Cammertoni, N.; Polzonetti, V.; Vincenzetti, S. The effects of slaughter age on carcass and meat quality of Fabrianese lambs. Small Rumin. Res. 2017, 155, 12–15. [Google Scholar] [CrossRef]
- D’Alessandro, A.G.; Maiorano, G.; Casamassima, D.; Martemucci, G. Fatty acid composition and vitamin E of meat as influenced by age and season of slaughter in Mediterranean light lamb. Small Rumin. Res. 2019, 170, 97–101. [Google Scholar] [CrossRef]
- D’Alessandro, A.G.; Maiorano, G.; Ragni, M.; Casamassima, D.; Marsico, G.; Martemucci, G. Effects of age and season of slaughter on meat production of light lambs: Carcass characteristics and meat quality of Leccese breed. Small Rumin. Res. 2013, 114, 97–104. [Google Scholar] [CrossRef]
- Rajkumar, V.; Dass, G.; Verma, A.K.; Das, A.K. Slaughter weight effect on carcass and meat quality of Muzaffarnagari lambs in intensive production system. Indian J. Anim. Sci. 2014, 84, 569–574. [Google Scholar]
- De Lima Júnior, D.M.; De Carvalho, F.F.; Da Silva, F.J.; Rangel, A.H.D.N.; Novaes, L.P.; Difante, G.D.S. Intrinsic factors affecting sheep meat quality: A review. Rev. Colomb. Cienc. Pecu. 2016, 29, 3–15. [Google Scholar] [CrossRef]
- Della Malva, A.; Albenzio, M.; Annicchiarico, G.; Caroprese, M.; Muscio, A.; Santillo, A.; Marino, R. Relationship between slaughtering age, nutritional and organoleptic properties of Altamurana lamb meat. Small Rumin. Res. 2016, 135, 39–45. [Google Scholar] [CrossRef]
- Budimir, K.; Trombetta, M.F.; Francioni, M.; Toderi, M.; D’Ottavio, P. Slaughter performance and carcass and meat quality of Bergamasca light lambs according to slaughter age. Small Rumin. Res. 2018, 164, 1–7. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Portugal, A.V. The effect of weight on carcass and meat quality of Serra da Estrela and Merino Branco lambs fattened with dehydrated lucerne. Anim. Res. 2001, 50, 289–298. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Mendes, I.A.; Bessa, R.J.B. The effect of genotype, feeding system and slaughter weight on the quality of light lambs: 1. Growth, carcass composition and meat quality. Livest. Prod. Sci. 2002, 76, 17–25. [Google Scholar] [CrossRef]
- Arsenos, G.; Banos, G.; Fortomaris, P.; Katsaounis, N.; Stamataris, C.; Tsaras, L.; Zygoyiannis, D. Eating quality of lamb meat: Effects of breed, sex, degree of maturity and nutritional management. Meat Sci. 2002, 60, 379–387. [Google Scholar] [CrossRef]
- Arsenos, G.; Kufidis, D.; Zygoyiannis, D.; Katsaounis, N.; Stamataris, C. Fatty acid composition of lambs of indigenous dairy Greek breeds of sheep as affected by post-weaning nutritional management and weight at slaughter. Meat Sci. 2006, 73, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Rossini, F.; Provenzano, M.E.; Sestili, F.; Ruggeri, R. Synergistic Effect of Sulfur and Nitrogen in the Organic and Mineral Fertilization of Durum Wheat: Grain Yield and Quality Traits in the Mediterranean Environment. Agronomy 2018, 8, 189. [Google Scholar] [CrossRef]
- Itagaki, S.; Kurokawa, T.; Nakata, C.; Saito, Y.; Oikawa, S.; Kobayashi, M.; Hirano, T.; Iseki, K. In vitro and in vivo antioxidant properties of ferulic acid: A comparative study with other natural oxidation inhibitors. Food Chem. 2009, 114, 466–471. [Google Scholar] [CrossRef]
- Laddomada, B.; Durante, M.; Minervini, F.; Garbetta, A.; Cardinali, A.; D’Antuono, I.; Caretto, S.; Blanco, A.; Mita, G. Phytochemical composition and anti-inflammatory activity of extracts from the whole-meal flour of Italian durum wheat cultivars. Int. J. Mol. Sci. 2015, 16, 3512–3527. [Google Scholar] [CrossRef]
- Kim, K.H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Pasqualone, A.; Delvecchio, L.; Gambacorta, G.; Laddomada, B.; Urso, V.; Mazzaglia, A.; Ruisi, P.; Di Miceli, G. Effect of supplementation with wheat bran aqueous extracts obtained by ultrasound-assisted technologies on the sensory properties and the antioxidant activity of dry pasta. Nat. Prod. Commun. 2015, 10, 1739–1742. [Google Scholar] [CrossRef]
- Zhao, Z.; Moghadasian, M.H. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem. 2008, 109, 691–702. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Grigoli, A.; Todaro, M.; Alabiso, M.; Vitale, F.; Di Trana, A.; Giorgio, D.; Settanni, L.; Gaglio, R.; Laddomada, B.; et al. Improvement of oxidative status, milk and cheese production, and food sustainability indexes by addition of durum wheat bran to dairy cows’ diet. Animals 2019, 9, 698. [Google Scholar] [CrossRef]
- Luciano, G.; Vasta, V.; Monahan, F.J.; Lopez-Andrez, P.; Biondi, L.; Lanza, M.; Priolo, A. Antioxidant status, colour stability and myoglobin resistance to oxidation of Longissimus dorsi muscle from lambs fed a tanni-containing diet. Food Chem. 2011, 124, 1036–1042. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Wang, R.; Meng, Z.; Duan, Y.; An, X.; Qi, J. Dietary supplementation of ferulic acid improves performance and alleviates oxidative stress of lambs in a cold environment. Can. J. Anim. Sci. 2019. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists International: Rockville, MD, USA, 2005. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Sheep, 6th ed.; National Academy Press: Washington, DC, USA, 1985. [Google Scholar]
- Laddomada, B.; Durante, M.; Mangini, G.; D’Amico, L.; Lenucci, M.S.; Simeone, R.; Piarulli, L.; Mita, G.; Blanco, A. Genetic variation for phenolic acids concentration and composition in a tetraploid wheat (Triticum turgidum L.) collection. Genet. Resour. Crop Evol. 2017, 64, 587–597. [Google Scholar] [CrossRef]
- López-Andrés, P.; Luciano, G.; Vasta, V.; Gibson, T.M.; Biondi, L.; Priolo, A.; Mueller-Harvey, I. Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep. Br. J. Nutr. 2013, 110, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO (International Organization for Standardization). Determination of Substances Characteristic of Green and Black Tea. Part 1: Content of Total Polyphenols in Tea. Colorimetric Method Using Folin-Ciocalteu Reagent; International Organization for Standardization (ISO): Geneva, Switzerland, 2005; Volume ISO 14502–1. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- CIE (Commission International de l’Eclairage). Colorimetry–Official Recommendations of the International Commission on Illumination; CIE Publication No. 15.2; CIE Central Bureau: Vienna, Austria, 1986. [Google Scholar]
- Liu, Q.; Scheller, K.; Karp, S.C.; Schaefer, D.M.; Frigg, M. Colour coordinates for assessment of dietary vitamin E effects on beef colour stability. J. Anim. Sci. 1996, 74, 106–116. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Tornambè, G.; Bellina, V.; De Pasquale, C.; Mazza, F.; Maniaci, G.; Di Grigoli, A. Effect of farming system and cheesemaking technology on the physicochemical characteristics, fatty acid profile, and sensory properties of Caciocavallo Palermitano cheese. J. Dairy Sci. 2013, 96, 710–724. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Napolitano, F.; Cifuni, G.F.; Pacelli, C.; Riviezzi, A.M.; Girolami, A. Effect of artificial rearing on lamb welfare and meat quality. Meat Sci. 2002, 60, 307–315. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis System). SAS/STAT Qualification Tools User’s Guide; Version 9.2; Statistical Analysis System Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Amerine, M.A.; Pangborn, R.M.; Roessler, E.B. Principles of Sensory Evaluation of Food; Academic Press: New York, NY, USA, 1965. [Google Scholar]
- Bonanno, A.; Tornambè, G.; Di Grigoli, A.; Genna, V.; Bellina, V.; Di Miceli, G.; Giambalvo, D. Effect of legume grains as a source of dietary protein on the quality of organic lamb meat. J. Sci. Food Agric. 2012, 92, 2870–2875. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.; Bella, M.; Priolo, A.; Fasone, V. Peas (Pisum sativum L.) as an alternative protein source in lamb diet: Growth performances, and carcass and meat quality. Small Rumin. Res. 2003, 47, 63–68. [Google Scholar] [CrossRef]
- Lanza, M.; Bella, M.; Barbagallo, D.; Fasone, V.; Finocchiaro, L.; Priolo, A. Effect of partially or totally replacing soybean meal and maize by chickpeas (Cicer arietinum L.) in lamb diets: Growth performances, carcass and meat quality. Anim. Res. 2003, 52, 263–270. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Miceli, G.; Di Grigoli, A.; Frenda, A.S.; Tornambè, G.; Giambalvo, D.; Amato, G. Effects of feeding green forage of sulla (Hedysarum coronarium L.) on lamb growth, gastrointestinal nematode infection, and carcass and meat quality. Animal 2011, 5, 148–154. [Google Scholar] [CrossRef]
- Russo, C.; Preziuso, G.; Verità, P. EU carcass classification system: Carcass and meat quality in light lambs. Meat Sci. 2003, 64, 411–416. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, J.; Sanz, A.; Joy, M.; Carrasco, S.; Ripoll, G.; Teixeira, A. Development of organs and tissues in lambs raised on Spanish mountain grassland. Can. J. Anim. Sci. 2009, 89, 37–45. [Google Scholar] [CrossRef]
- Dıaz, M.T.; Velasco, S.; Pérez, C.; Lauzurica, S.; Huidobro, F.; Cañeque, V. Physico-chemical characteristics of carcass and meat Manchego-breed suckling lambs slaughtered at different weights. Meat Sci. 2003, 65, 1247–1255. [Google Scholar] [CrossRef]
- Beriain, M.J.; Horcada, A.; Purroy, A.; Lizaso, G.; Chasco, J.; Mendizabal, J.A. Characteristics of Lacha and Rasa Aragonesa lambs slaughtered at three live weights. J. Anim. Sci. 2000, 78, 3070–3077. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Su, L.; Yu, L. Phytochemicals and antioxidant properties in wheat bran. J. Agric. Food Chem. 2004, 52, 6108–6114. [Google Scholar] [CrossRef] [PubMed]
- Food Advisory Committee, Report on Review of Food Labelling and Advertising; Her Majesty’s Stationery Office: London, UK, 1990.
- Moñino, I.; Martínez, C.; Sotomayor, J.A.; Lafuente, A.; Jordán, M.J. Polyphenolic transmission to Segureño lamb meat from ewes’ diet supplemented with the distillate from rosemary (Rosmarinus officinalis) leaves. J. Agric. Food Chem. 2008, 56, 3363–3367. [Google Scholar] [CrossRef] [PubMed]
- Soberon, M.A.; Cherney, D.J.R.; Cherney, J.H. Free ferulic acid uptake in ram lambs. J. Anim. Sci. 2012, 90, 1885–1891. [Google Scholar] [CrossRef]
- Martemucci, G.; D’Alessandro, A.G. Progress in nutritional and health profile of milk and dairy products: A novel drug target. Endocr. Metab. Immune 2013, 13, 209–233. [Google Scholar] [CrossRef]
- Priolo, A.; Lanza, M.; Galofaro, V.; Fasone, V.; Bella, M. Partially or totally replacing soybean meal and maize by chickpeas in lamb diets: Intramuscular fatty acid composition. Anim. Feed Sci. Technol. 2003, 108, 215–221. [Google Scholar] [CrossRef]
- FAO/WHO (Food and Agriculture Organization/World Health Organization). Codex Alimentarius: Foods for Special Dietary Uses (Including Foods for Infants and Children), 2nd ed.; FAO: Rome, Italy, 1994. [Google Scholar]
- Nudda, A.; McGuire, M.K.; Battacone, G.; Manca, M.G.; Boe, R.; Pulina, G. Documentation of fatty acid Profiles in lamb meat and lamb-based infant foods. J. Food Sci. 2011, 76, H43–H47. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health Benefits of n-3 Polyunsaturated Fatty Acids: Eicosapentaenoic Acid and Docosahexaenoic Acid. Adv. Food Res. 2012, 65, 211–222. [Google Scholar]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Nestel, P.; Shige, H.; Pomeroy, S.; Cehun, M.; Abbey, M.; Raederstorff, D. The n-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid increase systemic arterial compliance in humans. Am. J. Clin. Nutr. 2002, 76, 326–330. [Google Scholar] [CrossRef]
- Dilzer, A.; Park, Y. Implication of conjugated linoleic acid (CLA) in human health. Crit. Rev. Food Sci. Nutr. 2012, 52, 488–513. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, Y.; Kim, Y.J.; Park, Y. Conjugated linoleic acid: Potential health benefits as a functional food ingredient. Ann. Rev. Food Sci. Technol. 2016, 7, 221–244. [Google Scholar] [CrossRef] [PubMed]
- Antongiovanni, M.; Buccioni, A.; Petacchi, F.; Secchiari, P.; Mele, M.; Serra, A. Upgrading the lipid fraction of foods of animal origin by dietary means: Rumen activity and presence of trans fatty acids and CLA in milk and meat. Ital. J. Anim. Sci. 2003, 2, 3–28. [Google Scholar] [CrossRef]
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; WHO Technical Report Series No. 916; WHO: Geneva, Switzerland, 2003. [Google Scholar]
Items | Ingredients | Concentrates | ||||
---|---|---|---|---|---|---|
Alfalfa Hay | Faba Bean Grains | Barley Grains | Durum Wheat Bran | DWB0 | DWB20 | |
Faba bean grains, % | 66 | 58 | ||||
Barley grains, % | 34 | 22 | ||||
Durum wheat bran, % | 20 | |||||
Dry matter (DM), % | 90.4 | 87.8 | 90.6 | 87.9 | 88.7 | 88.4 |
Ether extract, % DM | 1.67 | 1.55 | 2.11 | 5.64 | 1.77 | 2.38 |
Crude protein, % DM | 9.16 | 29.2 | 10.0 | 16.9 | 23.2 | 22.1 |
Ash, % DM | 11.5 | 3.80 | 2.98 | 5.06 | 3.96 | 3.85 |
Non-structural carbohydrates, % DM | 13.1 | 46.6 | 64.0 | 35.5 | 52.4 | 48.0 |
aNDFom, % DM | 64.6 | 18.4 | 20.4 | 36.9 | 18.7 | 23.6 |
ADFom, % DM | 52.7 | 13.1 | 10.6 | 13.1 | 12.3 | 12.2 |
ADL, % DM | 9.49 | 0.91 | 1.49 | 3.63 | 1.18 | 1.69 |
Net energy for gain, Mcal/kg DM | 0.79 | 1.99 | 1.98 | 1.80 | 1.97 | 1.94 |
Ferulic acid, μg/g DM | - | 16.78 | 799 | 1954 | 340 | 782 |
Total phenolic acids, μg/g DM | - | 36.0 | 1273 | 2345 | 503 | 1028 |
Total polyphenols, g GAE/kg DM | 3.12 | 2.51 | 8.27 | 12.60 | 4.40 | 5.91 |
TEAC, mmol trolox eq/kg DM | 17.0 | 17.5 | 70.6 | 87.5 | 71.1 | 96.6 |
Fatty acids, g/kg DM | ||||||
C12:0 | 0.53 | - | 0.074 | - | 0.037 | 0.022 |
C14:0 | 2.80 | 0.013 | 0.31 | 5.51 | 2.32 | 2.10 |
C16:0 | 2.94 | 1.85 | 3.14 | 7.68 | 2.46 | 3.16 |
C16:1 c9 | 0.23 | 0.018 | 0.051 | 0.11 | 0.029 | 0.039 |
C18:0 | 0.54 | 0.58 | 0.50 | 0.42 | 0.33 | 0.33 |
C18:1 c9, OA | 2.83 | 2.02 | 3.23 | 8.85 | 3.13 | 4.96 |
C18:2 n-6, LA | 3.69 | 7.20 | 8.38 | 27.48 | 7.48 | 11.5 |
C18:3 n-3, ALA | 0.76 | 1.32 | 0.99 | 3.09 | 0.97 | 1.23 |
Items | Diet | Sex | p-Value | |||||
---|---|---|---|---|---|---|---|---|
DWB0 | DWB20 | SEp | Females | Males | SEp | Diet | Sex | |
Lambs, n. | 34 | 34 | 30 | 38 | ||||
Initial body weight at 45 days, kg | 16.3 | 16.2 | 0.47 | 16.6 | 15.9 | 0.67 | 0.91 | 0.25 |
Final weight at 90 days of age, kg | 23.8 | 23.7 | 0.64 | 24.1 | 23.4 | 0.91 | 0.88 | 0.47 |
Weight gain at 45–90 days, g/day | 168 | 166 | 6.53 | 166 | 168 | 9.27 | 0.89 | 0.89 |
Feed intake (g/day per lamb) | ||||||||
Alfalfa hay DM | 206 | 244 | 19.5 | 0.18 | ||||
Concentrate DM | 627 | 710 | 63.7 | 0.37 | ||||
Diet DM | 833 | 954 | 78.6 | 0.29 | ||||
Concentrate, % diet | 73.7 | 74.6 | 1.53 | 0.68 | ||||
Ferulic acid, mg/day | 213 | 555 | 38.8 | <0.0001 | ||||
Total phenolic acids, mg/day | 316 | 730 | 52.0 | <0.0001 | ||||
Concentrate conversion ratio | 4.13 | 4.44 | 0.26 | 4.15 | 4.41 | 0.38 | 0.40 | 0.48 |
Diet conversion ratio | 5.48 | 5.96 | 0.35 | 5.54 | 5.90 | 0.50 | 0.33 | 0.48 |
Feeding Level (FL) | 120R | 120L | Sex | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | DWB0 | DWB20 | DWB0 | DWB20 | SEp | Females | Males | SEp | FL | Diet | FL × Diet | Sex |
Lambs, n. | 10 | 9 | 9 | 9 | 19 | 18 | ||||||
Initial body weight at 90 days, kg | 23.9 | 23.4 | 23.6 | 24.2 | 2.35 | 23.6 | 24.0 | 1.17 | 0.85 | 0.93 | 0.65 | 0.76 |
Final weight at 120 days of age, kg | 29.0 | 26.6 | 29.1 | 29.9 | 2.52 | 28.0 | 29.3 | 1.26 | 0.18 | 0.53 | 0.22 | 0.30 |
Weight gain at 90–120 days, g/day | 170 a | 105 b | 185 a | 190 a | 32.0 | 146 | 179 | 16.0 | 0.004 | 0.07 | 0.04 | 0.052 |
Feed intake, g/day per lamb | ||||||||||||
Alfalfa hay DM | 235 | 259 | 409 | 371 | 32.2 | <0.0001 | 0.83 | 0.34 | ||||
Concentrate DM | 754 | 765 | 1032 | 1055 | 48.7 | <0.0001 | 0.73 | 0.90 | ||||
Diet DM | 989 | 1024 | 1441 | 1426 | 75.2 | <0.0001 | 0.89 | 0.74 | ||||
Concentrate, % diet | 76.8 | 75.4 | 72.0 | 74.3 | 1.50 | 0.06 | 0.81 | 0.22 | ||||
Ferulic acid, mg/day | 256 c | 598 b | 350 c | 825 a | 31.0 | <0.0001 | <0.0001 | 0.04 | ||||
Total phenolic acids, mg/day | 379 c | 786 b | 520 c | 1084 a | 41.4 | <0.0001 | <0.0001 | 0.06 | ||||
Concentrate conversion ratio | 5.69 | 7.94 | 5.86 | 5.78 | 1.44 | 7.06 | 5.57 | 0.72 | 0.17 | 0.14 | 0.11 | 0.047 |
Diet conversion ratio | 7.46 | 10.6 | 8.18 | 7.80 | 1.91 | 9.51 | 7.53 | 0.98 | 0.28 | 0.15 | 0.07 | 0.047 |
Feeding Plan (FP) | 90L | 120R | 120L | Sex | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | DWB0 | DWB20 | DWB0 | DWB20 | DWB0 | DWB20 | SEp | Females | Males | SEp | FP | Diet | FP × Diet | Sex |
Lambs, n. | 14 | 14 | 10 | 9 | 9 | 9 | 29 | 36 | ||||||
Slaughter body weight (SBW), kg | 23.0 | 22.7 | 26.4 | 26.2 | 28.3 | 27.6 | 2.77 | 25.5 | 25.9 | 0.92 | <0.0001 | 0.63 | 0.97 | 0.62 |
Empty body weight (EBW), kg | 20.3 | 19.9 | 23.4 | 22.9 | 25.2 | 24.5 | 2.42 | 22.6 | 22.8 | 0.81 | <0.0001 | 0.53 | 0.99 | 0.86 |
Carcass at 24 h (CRC), kg | 12.6 | 12.4 | 14.7 | 13.7 | 15.6 | 14.9 | 1.59 | 14.0 | 14.0 | 0.53 | 0.0002 | 0.23 | 0.83 | 0.98 |
Carcass yield at 24 h, % SBW | 54.6 a | 54.4 ab | 55.7 a | 52.3 b | 55.0 a | 54.0 ab | 1.35 | 54.9 | 53.8 | 0.48 | 0.54 | 0.001 | 0.02 | 0.02 |
Carcass yield at 24 h, % EBW | 62.0 ab | 61.9 ab | 63.0 a | 60.0 b | 61.9 ab | 60.7 ab | 1.33 | 61.8 | 61.3 | 0.45 | 0.45 | 0.002 | 0.02 | 0.24 |
Empty gastrointestinal tract, % SBW | 22.4 | 23.1 | 23.1 | 24.3 | 22.7 | 22.4 | 1.39 | 22.6 | 23.4 | 0.46 | 0.09 | 0.27 | 0.45 | 0.12 |
Gastrointestinal content, % SBW | 11.8 | 12.2 | 11.6 | 12.8 | 11.1 | 11.0 | 1.35 | 11.3 | 12.2 | 0.40 | 0.06 | 0.23 | 0.38 | 0.01 |
Head, % CRC | 8.08 | 8.15 | 7.67 | 8.29 | 7.40 | 7.75 | 0.48 | 7.64 | 8.14 | 0.16 | 0.02 | 0.03 | 0.33 | 0.03 |
Internal organs, % CRC | 9.87 | 9.81 | 10.7 | 10.1 | 10.1 | 9.99 | 0.62 | 10.2 | 10.1 | 0.21 | 0.07 | 0.23 | 0.50 | 0.74 |
Half carcass (HC), kg | 5.10 | 4.99 | 5.93 | 5.54 | 6.38 | 5.95 | 0.66 | 5.68 | 5.62 | 0.23 | 0.0007 | 0.19 | 0.81 | 0.79 |
Perirenal and pelvic fat, % HC | 2.13 | 2.17 | 2.37 | 2.18 | 2.66 | 2.70 | 0.52 | 2.78 | 1.96 | 0.18 | 0.04 | 0.84 | 0.81 | <0.0001 |
Hind leg (HL), kg | 1.44 | 1.42 | 2.00 | 1.85 | 2.06 | 1.98 | 0.22 | 1.81 | 1.77 | 0.076 | <0.0001 | 0.25 | 0.78 | 0.59 |
Meat, % HL | 66.4 | 67.3 | 65.7 | 64.8 | 63.1 | 62.1 | 2.01 | 65.0 | 64.8 | 0.67 | <0.0001 | 0.57 | 0.35 | 0.77 |
Fat, % HL | 5.82 | 5.45 | 8.80 | 8.43 | 10.74 | 11.83 | 1.78 | 9.12 | 7.90 | 0.59 | <0.0001 | 0.84 | 0.53 | 0.04 |
Bone, % HL | 27.8 | 27.3 | 25.5 | 26.8 | 26.1 | 26.1 | 1.92 | 25.9 | 27.3 | 0.65 | 0.10 | 0.69 | 0.46 | 0.03 |
Hind leg meat/bone ratio | 2.42 | 2.48 | 2.61 | 2.46 | 2.45 | 2.39 | 0.22 | 2.53 | 2.41 | 0.060 | 0.43 | 0.52 | 0.46 | 0.10 |
Feeding Plan (FP) | 90L | 120R | 120L | Sex | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | DWB0 | DWB20 | DWB0 | DWB20 | DWB0 | DWB20 | SEp | Females | Males | SEp | FP | Diet | FP ×diet | Sex |
Ultimate pH | 6.02 | 6.01 | 5.70 | 5.72 | 5.70 | 5.66 | 0.073 | 5.83 | 5.77 | 0.075 | <0.0001 | 0.79 | 0.66 | 0.02 |
Thawing loss, % | 8.11 | 7.79 | 6.01 | 5.03 | 6.85 | 5.07 | 1.92 | 6.37 | 6.59 | 0.64 | 0.004 | 0.11 | 0.63 | 0.72 |
Cooking loss, % | 15.0 | 16.4 | 12.8 | 10.1 | 14.3 | 12.4 | 5.97 | 12.9 | 14.1 | 1.98 | 0.19 | 0.60 | 0.63 | 0.52 |
Total loss, % | 21.9 | 22.9 | 18.0 | 14.5 | 20.3 | 16.8 | 6.05 | 18.4 | 19.7 | 2.02 | 0.04 | 0.32 | 0.53 | 0.52 |
Shear force on cooked meat, kg/cm2 | 4.15 | 4.04 | 2.48 | 2.82 | 3.52 | 3.23 | 0.77 | 3.27 | 3.48 | 0.25 | <0.0001 | 0.96 | 0.63 | 0.43 |
Meat lightness, L* | 40.0 | 40.4 | 41.7 | 45.4 | 42.1 | 41.8 | 3.33 | 41.2 | 42.6 | 1.11 | 0.04 | 0.25 | 0.31 | 0.21 |
Meat redness, a* | 16.9 | 17.0 | 19.9 | 17.1 | 19.7 | 19.3 | 1.97 | 18.4 | 18.2 | 0.66 | 0.007 | 0.11 | 0.17 | 0.73 |
Meat yellowness, b* | 4.34 | 4.62 | 6.11 | 4.22 | 5.82 | 5.55 | 1.35 | 5.01 | 5.21 | 0.45 | 0.09 | 0.17 | 0.12 | 0.67 |
Meat chroma | 17.5 | 17.7 | 20.8 | 17.6 | 20.6 | 20.1 | 2.12 | 19.1 | 19.0 | 0.71 | 0.007 | 0.11 | 0.12 | 0.86 |
Meat hue angle | 14.3 | 14.7 | 17.1 | 13.7 | 16.5 | 15.8 | 3.58 | 15.1 | 15.6 | 1.19 | 0.50 | 0.30 | 0.39 | 0.68 |
Fat lightness, L* | 72.1 | 74.6 | 76.6 | 78.7 | 77.2 | 77.6 | 1.85 | 76.7 | 75.6 | 0.62 | <0.0001 | 0.011 | 0.34 | 0.08 |
Fat redness, a* | 10.8 | 10.3 | 8.35 | 7.70 | 6.97 | 7.02 | 1.73 | 8.14 | 8.93 | 0.57 | <0.0001 | 0.33 | 0.89 | 0.18 |
Fat yellowness, b* | 11.0 | 11.0 | 10.3 | 8.97 | 8.98 | 8.93 | 1.58 | 9.47 | 10.3 | 0.53 | 0.005 | 0.37 | 0.55 | 0.15 |
Fat chroma | 15.7 | 15.2 | 13.4 | 11.9 | 11.6 | 11.6 | 1.69 | 12.7 | 13.7 | 0.56 | <0.0001 | 0.23 | 0.57 | 0.06 |
Fat hue angle | 45.7 | 46.9 | 51.0 | 49.5 | 51.8 | 51.9 | 6.84 | 49.7 | 49.2 | 2.28 | 0.11 | 0.97 | 0.88 | 0.81 |
Dry matter (DM), % | 26.4 | 26.1 | 26.1 | 25.7 | 25.7 | 26.1 | 1.52 | 27.0 | 24.9 | 0.50 | 0.77 | 0.81 | 0.78 | 0.0001 |
Fat, % DM | 26.0 | 25.9 | 29.0 | 21.8 | 27.1 | 24.0 | 5.95 | 29.4 | 21.9 | 1.99 | 0.97 | 0.09 | 0.33 | 0.0003 |
Protein, % DM | 70.0 | 70.0 | 67.2 | 74.0 | 68.8 | 71.8 | 5.61 | 66.7 | 73.9 | 1.87 | 0.96 | 0.08 | 0.31 | 0.0003 |
Ash, % DM | 4.01 | 4.07 | 3.83 | 4.17 | 4.08 | 4.16 | 0.39 | 3.85 | 4.26 | 0.13 | 0.78 | 0.24 | 0.63 | 0.003 |
Total polyphenols 1, g GAE/kg DM | 0.72 b | 0.64 b | 1.10 b | 1.62 a | 1.02 b | 1.65 a | 0.31 | <0.0001 | 0.001 | 0.02 | ||||
TEAC 1, mmol trolox eq/kg DM | 10.9 bc | 9.69 c | 12.8 ab | 14.9 a | 12.8 ab | 15.7 a | 1.79 | <0.0001 | 0.04 | 0.02 |
Feeding Level (FL) | 120R | 120L | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Diet | DWB0 | DWB20 | DWB0 | DWB20 | SEp | FL | Diet | FL × Diet |
C10:0 | 0.14 | 0.37 | 0.38 | 0.51 | 0.10 | 0.07 | 0.08 | 0.59 |
C12:0 | 0.34 | 0.49 | 0.47 | 0.79 | 0.13 | 0.11 | 0.08 | 0.52 |
C14:0 | 2.44 | 2.91 | 3.01 | 2.70 | 0.23 | 0.45 | 0.75 | 0.11 |
C15:0 iso | 0.38 | 0.40 | 0.18 | 0.20 | 0.11 | 0.09 | 0.85 | 0.96 |
C15:0 anteiso | 0.52 | 0.50 | 0.42 | 0.54 | 0.14 | 0.81 | 0.71 | 0.59 |
C14:1 c9 | 0.29 | 0.00 | 0.35 | 0.30 | 0.087 | 0.048 | 0.06 | 0.19 |
C16:0 iso | 1.00 | 0.92 | 0.88 | 0.90 | 0.24 | 0.78 | 0.90 | 0.84 |
C15:1cis | 1.06 | 1.03 | 0.85 | 1.05 | 0.28 | 0.75 | 0.77 | 0.70 |
C16:0 | 18.7 b | 21.1 ab | 22.2 a | 19.8 ab | 0.65 | 0.12 | 0.96 | 0.001 |
C17:0 iso | 0.28 a | 0.00 b | 0.14 ab | 0.27 a | 0.077 | 0.37 | 0.35 | 0.02 |
C17:0 anteiso | 0.42 | 0.22 | 0.48 | 0.66 | 0.12 | 0.051 | 0.93 | 0.14 |
C16:1 c9 | 2.25 | 1.48 | 2.20 | 2.07 | 0.25 | 0.30 | 0.09 | 0.21 |
C17:0 | 0.69 | 0.53 | 0.31 | 0.85 | 0.18 | 0.85 | 0.29 | 0.07 |
C18:0 iso | 0.78 a | 0.00 b | 0.00 b | 0.30 ab | 0.16 | 0.14 | 0.14 | 0.002 |
C17:1 c9 | 5.84 | 5.64 | 4.89 | 4.39 | 0.44 | 0.02 | 0.44 | 0.74 |
C18:0 | 12.0 b | 13.0 a | 11.7 b | 10.6 c | 0.24 | <0.0001 | 0.93 | 0.0002 |
Other C18:1 trans | 1.44 b | 1.98 b | 1.67 b | 4.15 a | 0.45 | 0.02 | 0.03 | 0.04 |
C18:1 t11, VA | 3.10 a | 1.77 b | 2.56 a | 2.54 a | 0.32 | 0.72 | 0.048 | 0.052 |
C18:1 c9, OA | 30.3 | 32.5 | 30.9 | 30.5 | 1.75 | 0.70 | 0.61 | 0.47 |
Other C18:1 cis | 2.92 | 1.15 | 2.50 | 2.29 | 0.42 | 0.40 | 0.03 | 0.08 |
Other C18:2 trans | 0.74 ab | 0.50 ab | 0.26 b | 1.20 a | 0.22 | 0.62 | 0.12 | 0.014 |
C18:2 n-6, LA | 9.34 | 8.44 | 8.99 | 7.91 | 0.38 | 0.26 | 0.02 | 0.81 |
C18:3 n-3, ALA | 0.82 b | 0.95 ab | 1.16 a | 0.90 b | 0.062 | 0.03 | 0.29 | 0.005 |
CLA C18:2 c9t11, RA | 0.75 | 0.62 | 0.71 | 0.64 | 0.049 | 0.84 | 0.06 | 0.56 |
C20:4 n-6, AA | 2.74 | 1.58 | 2.56 | 2.24 | 0.27 | 0.39 | 0.013 | 0.14 |
C20:5 n-3, EPA | 0.16 | 0.55 | 0.27 | 0.69 | 0.16 | 0.44 | 0.02 | 0.91 |
C22:5 n-3, DPA | 0.63 | 0.69 | 0.00 | 0.29 | 0.17 | 0.008 | 0.33 | 0.51 |
C22:6 n-3, DHA | 0.00 | 0.63 | 0.00 | 0.73 | 0.18 | 0.77 | 0.001 | 0.77 |
Branched chain FA | 3.38 | 2.03 | 2.11 | 2.89 | 0.67 | 0.76 | 0.68 | 0.13 |
Saturated FA, SFA | 37.2 b | 40.1 a | 40.0 a | 37.9 b | 0.34 | 0.51 | 0.28 | <0.0001 |
Monounsaturated FA, MUFA | 47.6 | 45.9 | 46.1 | 47.5 | 0.86 | 0.94 | 0.91 | 0.09 |
Polyunsaturated FA, PUFA | 15.2 | 13.9 | 13.9 | 14.6 | 0.79 | 0.71 | 0.72 | 0.25 |
Unsaturated FA, UFA | 62.8 a | 59.9 b | 60.0 b | 62.1 a | 0.34 | 0.51 | 0.27 | <0.0001 |
PUFA/SFA | 0.41 a | 0.35 b | 0.35 b | 0.39 ab | 0.020 | 0.59 | 0.60 | 0.03 |
UFA/SFA | 1.69 a | 1.49 b | 1.50 b | 1.64 a | 0.023 | 0.44 | 0.25 | <0.0001 |
n-6 PUFA | 12.1 | 10.02 | 11.6 | 10.1 | 0.47 | 0.67 | 0.001 | 0.49 |
n-3 PUFA | 1.61 | 2.81 | 1.43 | 2.61 | 0.40 | 0.63 | 0.007 | 0.98 |
n-6/n-3 | 8.92 | 5.25 | 9.04 | 4.23 | 1.32 | 0.74 | 0.004 | 0.68 |
Desaturase ratio RA/VA+RA | 0.19 | 0.29 | 0.22 | 0.22 | 0.08 | 0.57 | 0.11 | 0.11 |
Thrombogenic index | 0.95 ab | 1.03 b | 1.11 a | 0.90 b | 0.054 | 0.86 | 0.23 | 0.014 |
Health-promoting index | 2.16 a | 1.79 b | 1.71 b | 1.93 ab | 0.083 | 0.07 | 0.36 | 0.002 |
h/H | 2.09 a | 1.90 bc | 1.75 c | 1.93 ab | 0.046 | 0.003 | 0.94 | 0.0006 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Grigoli, A.; Bonanno, A.; Rabie Ashkezary, M.; Laddomada, B.; Alabiso, M.; Vitale, F.; Mazza, F.; Maniaci, G.; Ruisi, P.; Di Miceli, G. Meat Production from Dairy Breed Lambs Due to Slaughter Age and Feeding Plan Based on Wheat Bran. Animals 2019, 9, 892. https://doi.org/10.3390/ani9110892
Di Grigoli A, Bonanno A, Rabie Ashkezary M, Laddomada B, Alabiso M, Vitale F, Mazza F, Maniaci G, Ruisi P, Di Miceli G. Meat Production from Dairy Breed Lambs Due to Slaughter Age and Feeding Plan Based on Wheat Bran. Animals. 2019; 9(11):892. https://doi.org/10.3390/ani9110892
Chicago/Turabian StyleDi Grigoli, Antonino, Adriana Bonanno, Mansour Rabie Ashkezary, Barbara Laddomada, Marco Alabiso, Francesca Vitale, Francesca Mazza, Giuseppe Maniaci, Paolo Ruisi, and Giuseppe Di Miceli. 2019. "Meat Production from Dairy Breed Lambs Due to Slaughter Age and Feeding Plan Based on Wheat Bran" Animals 9, no. 11: 892. https://doi.org/10.3390/ani9110892
APA StyleDi Grigoli, A., Bonanno, A., Rabie Ashkezary, M., Laddomada, B., Alabiso, M., Vitale, F., Mazza, F., Maniaci, G., Ruisi, P., & Di Miceli, G. (2019). Meat Production from Dairy Breed Lambs Due to Slaughter Age and Feeding Plan Based on Wheat Bran. Animals, 9(11), 892. https://doi.org/10.3390/ani9110892