Antimicrobial Resistance, Virulence, and Genetic Lineages of Staphylococci from Horses Destined for Human Consumption: High Detection of S. aureus Isolates of Lineage ST1640 and Those Carrying the lukPQ Gene
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Sample Recovery
2.2. Staphylococcus spp. Isolation, Identification, and DNA Extraction
2.3. Antimicrobial Susceptibility and Resistance Genes
2.4. Molecular Typing
2.5. Virulence Genes
3. Results
3.1. S. aureus Isolates: Molecular Characteristics, Antimicrobial Resistance, and Virulence Determinants
3.2. Non-aureus Staphylococcus Species: Molecular Characteristics, and Antimicrobial Resistance
3.3. Comparison of Nasal and Faecal Samples of Seven Healthy Horses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- von Eiff, C.; Peters, G.; Heilmann, C. Review Pathogenesis of infections due to coagulase- negative staphylococci. Lancet Infect. Dis. 2002, 2, 677–685. [Google Scholar] [CrossRef]
- Walther, B.; Tedin, K.; Lübke-Becker, A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Vet. Microbiol. 2017, 200, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kluytmans, J.A.J.W. Methicillin-resistant Staphylococcus aureus in food products: Cause for concern or case for complacency? Clin. Microbiol. Infect. 2010, 16, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Mama, O.M.; Gómez-Sanz, E.; Ruiz-Ripa, L.; Gómez, P.; Torres, C. Diversity of staphylococcal species in food producing animals in Spain, with detection of PVL-positive MRSA ST8 (USA300). Vet. Microbiol. 2019, 233, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Mama, O.M.; Ruiz-Ripa, L.; Fernández-Fernández, R.; González-Barrio, D.; Ruiz-Fons, J.F.; Torres, C. High frequency of coagulase-positive staphylococci carriage in healthy wild boar with detection of MRSA of lineage ST398-t011. FEMS Microbiol. Lett. 2019, 366, fny292. [Google Scholar] [CrossRef] [PubMed]
- Mama, O.M.; Ruiz-Ripa, L.; Lozano, C.; González-Barrio, D.; Ruiz-Fons, J.F.; Torres, C. High diversity of coagulase negative staphylococci species in wild boars, with low antimicrobial resistance rates but detection of relevant resistance genes. Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 125–129. [Google Scholar] [CrossRef]
- Aslantas, Ö.; Türkyilmaz, S.; Yilmaz, M.A.; Erdem, Z.; Demir, C. Isolation and molecular characterization of Methicillin-Resistant Staphylococci from horses, personnel and environmental sites at an equine hospital in Turkey. J. Vet. Med. Sci. 2012, 74, 1583–1588. [Google Scholar] [CrossRef]
- Burton, S.; Reid-Smith, R.; McClure, J.T.; Weese, J.S. Staphylococcus aureus colonization in healthy horses in Atlantic Canada. Can. Vet. J. 2008, 49, 797–799. [Google Scholar]
- Stull, J.W.; Slavić, D.; Rousseau, J.; Scott Weese, J. Staphylococcus delphini and Methicillin-Resistant S. pseudintermedius in horses, Canada. Emerg. Infect. Dis. 2014, 20, 485–487. [Google Scholar] [CrossRef]
- Tirosh-Levy, S.; Steinman, A.; Carmeli, Y.; Klement, E.; Navon-Venezia, S. Prevalence and risk factors for colonization with methicillin resistant Staphylococcus aureus and other Staphylococci species in hospitalized and farm horses in Israel. Prev. Vet. Med. 2015, 122, 135–144. [Google Scholar] [CrossRef]
- Oguttu, J.W.; Qekwana, D.N.; Odoi, A. An Exploratory Descriptive study of antimicrobial resistance patterns of Staphylococcus Spp. Isolated from horses presented at a veterinary teaching hospital. BMC Vet. Res. 2017, 13, 269. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sanz, E.; Simón, C.; Ortega, C.; Gómez, P.; Lozano, C.; Zarazaga, M.; Torres, C. First detection of methicillin-resistant Staphylococcus aureus ST398 and Staphylococcus pseudintermedius ST68 from hospitalized equines in Spain. Zoonoses Public Health 2014, 61, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Moodley, A.; Guardabassi, L. Clonal spread of methicillin-resistant coagulase-negative staphylococci among horses, personnel and environmental sites at equine facilities. Vet. Microbiol. 2009, 137, 397–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jans, C.; Merz, A.; Johler, S.; Younan, M.; Tanner, S.A.; Kaindi, D.W.M.; Wangoh, J.; Bonfoh, B.; Meile, L.; Tasara, T. East and West African milk products are reservoirs for human and livestock-associated Staphylococcus aureus. Food Microbiol. 2017, 65, 64–73. [Google Scholar] [CrossRef]
- Koop, G.; Vrieling, M.; Storisteanu, D.M.L.; Lok, L.S.C.; Monie, T.; Van Wigcheren, G.; Raisen, C.; Ba, X.; Gleadall, N.; Hadjirin, N.; et al. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci. Rep. 2017, 7, e40660. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, A.J.; Lindsay, J.A. Staphylococcus aureus innate immune evasion is lineage-specific: A bioinfomatics study. Infect. Genet. Evol. 2013, 19, 7–14. [Google Scholar] [CrossRef]
- De Jong, N.W.M.; Vrieling, M.; Garcia, B.L.; Koop, G.; Brettmann, M.; Aerts, P.C.; Ruyken, M.; Van Strijp, J.A.G.; Holmes, M.; Harrison, E.M.; et al. Identification of a staphylococcal complement inhibitor with broad host specificity in equid Staphylococcus aureus strains. J. Biol. Chem. 2018, 293, 4468–4477. [Google Scholar] [CrossRef]
- Gómez-Sanz, E.; Torres, C.; Lozano, C.; Zarazaga, M. High diversity of Staphylococcus aureus and Staphylococcus pseudintermedius lineages and toxigenic traits in healthy pet-owning household members. Underestimating normal household contact? Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 83–94. [Google Scholar]
- Benito, D.; Gómez, P.; Aspiroz, C.; Zarazaga, M.; Lozano, C.; Torres, C. Molecular characterization of Staphylococcus aureus isolated from humans related to a livestock farm in Spain, with detection of MRSA-CC130 carrying mecC gene: A zoonotic case? Enferm. Infecc. Microbiol. Clin. 2015, 34, 280–285. [Google Scholar] [CrossRef]
- Velasco, V.; Buyukcangaz, E.; Sherwood, J.S.; Stepan, R.M.; Koslofsky, R.J.; Logue, C.M. Characterization of Staphylococcus aureus from humans and a comparison with isolates of animal origin, in North Dakota, United States. PLoS ONE 2015, 10, e0140497. [Google Scholar] [CrossRef]
- Sasaki, T.; Tsubakishita, S.; Tanaka, Y.; Sakusabe, A.; Ohtsuka, M.; Hirotaki, S.; Kawakami, T.; Fukata, T.; Hiramatsu, K. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J. Clin. Microbiol. 2010, 48, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Wayne, P.A. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Clinical and Laboratory Standard Institutes: Wayne, PA, USA, 2018. [Google Scholar]
- Kehrenberg, C.; Schwarz, S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 2006, 50, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Y.; Wu, C.; Schwarz, S.; Shen, Z.; Jeon, B.; Ding, S.; Zhang, Q.; Shen, J. A novel phenicol exporter gene, fexB, found in enterococci of animal origin. J. Antimicrob. Chemother. 2012, 67, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Schnellmann, C.; Gerber, V.; Rossano, A.; Jaquier, V.; Panchaud, Y.; Doherr, M.G.; Thomann, A.; Straub, R.; Perreten, V. Presence of new mecA and mph(C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J. Clin. Microbiol. 2006, 44, 4444–4454. [Google Scholar] [CrossRef] [PubMed]
- Benito, D.; Lozano, C.; Rezusta, A.; Ferrer, I.; Vasquez, M.A.; Ceballos, S.; Zarazaga, M.; Revillo, M.J.; Torres, C. Characterization of tetracycline and methicillin resistant Staphylococcus aureus strains in a Spanish hospital: Is livestock-contact a risk factor in infections caused by MRSA CC398? Int. J. Med. Microbiol. 2014, 304, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, T.; Vuković, D.; Dakić, I.; Ježek, P.; Djukić, S.; Dimitrijević, V.; Stepanović, S.; Schwarz, S. Aminoglycoside resistance in members of the Staphylococcus sciuri Group. Microb. Drug Resist. 2007, 13, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Shopsin, B.; Gomez, M.; Montgomery, S.O.; Smith, D.H.; Waddington, M.; Dodge, D.E.; Bost, D.A.; Riehman, M.; Naidich, S.; Kreiswirth, B.N. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J. Clin. Microbiol. 1999, 37, 3556–3563. [Google Scholar]
- Shopsin, B.; Mathema, B.; Alcabes, P.; Said-Salim, B.; Lina, G.; Matsuka, A.; Martinez, J.; Kreiswirth, B.N. Prevalence of agr specificity groups among Staphylococcus aureus strains colonizing children and their guardians. J. Clin. Microbiol. 2003, 41, 456–459. [Google Scholar] [CrossRef]
- Duran, N.; Ozer, B.; Duran, G.G.; Onlen, Y.; Demir, C. Antibiotic resistance genes & susceptibility patterns in staphylococci. Indian J. Med. Res. 2012, 135, 389–396. [Google Scholar]
- Van Wamel, W.J.B.; Rooijakkers, S.H.M.; Van Kessel, K.P.M.; Van Strijp, J.A.G.; Ruyken, M. The innate immune modulators Staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-Hemolysin-converting bacteriophages. J. Bacteriol. 2006, 188, 1310–1315. [Google Scholar] [CrossRef]
- Kaspar, U.; von Lützau, K.; Schlattmann, A.; Rösler, U.; Köck, R.; Becker, K. Zoonotic multidrug-resistant microorganisms among non-hospitalized horses from Germany. One Health 2019, 7, e100091. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; Espinosa-Gongora, C.; Damborg, P.; Sieber, R.N.; Munk, R.; Husted, L.; Moodley, A.; Skov, R.; Larsen, J.; Guardabassi, L. Horses in Denmark are a reservoir of diverse clones of methicillin-resistant and -susceptible Staphylococcus aureus. Front. Microbiol. 2017, 8, e543. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.; Caruso, M.; Normanno, G.; Latorre, L.; Miccolupo, A.; Fraccalvieri, R.; Intini, F.; Manginelli, T.; Santagada, G. High Occurrence of Methicillin-Resistant Staphylococcus aureus in horses at slaughterhouses compared with those for recreational activities: A professional and food safety concern? Foodborne Pathog. Dis. 2017, 14, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Agabou, A.; Ouchenane, Z.; Essebe, C.N.; Khemissi, S.; Tedj, M.; Chehboub, E.; Chehboub, I.B.; Sotto, A.; Dunyach-remy, C.; Lavigne, J. Emergence of nasal carriage of ST80 and ST152 PVL+ Staphylococcus aureus isolates from livestock in Algeria. Toxins (Basel) 2017, 9, 303. [Google Scholar] [CrossRef]
- Donker, G.A.; Deurenberg, R.H.; Driessen, C.; Sebastian, S.; Nys, S.; Stobberingh, E.E. The population structure of Staphylococcus aureus among general practice patients from The Netherlands. Clin. Microbiol. Infect. 2009, 15, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Ben Said, M.; Abbassi, M.S.; Gómez, P.; Ruiz-Ripa, L.; Sghaier, S.; El Fekih, O.; Hassen, A.; Torres, C. Genetic characterization of Staphylococcus aureus isolated from nasal samples of healthy ewes in Tunisia. High prevalence of CC130 and CC522 lineages. Comp. Immunol. Microbiol. Infect. Dis. 2017, 51, 37–40. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Guardabassi, L.; Schmidt, K.R.; Petersen, T.S.; Espinosa-Gongora, C.; Moodley, A.; Agersø, Y.; Olsen, J.E. Mustelidae are natural hosts of Staphylococcus delphini group A. Vet. Microbiol. 2012, 159, 351–353. [Google Scholar] [CrossRef]
- Ruiz-Ripa, L.; Gómez, P.; Alonso, C.A.; Camacho, M.C.; de la Puente, J.; Fernández-Fernández, R.; Ramiro, Y.; Quevedo, M.A.; Blanco, J.M.; Zarazaga, M.; et al. Detection of MRSA of lineages CC130-mecC and CC398-mecA and Staphylococcus delphini-lnu(A) in magpies and cinereous Vultures in Spain. Microb. Ecol. 2019, 78, 409–415. [Google Scholar] [CrossRef]
- Gharsa, H.; Slama, K.B.; Gómez-Sanz, E.; Gómez, P.; Klibi, N.; Zarazaga, M.; Boudabous, A.; Torres, C. Characterisation of nasal Staphylococcus delphini and Staphylococcus pseudintermedius isolates from healthy donkeys in Tunisia. Equine Vet. J. 2015, 47, 463–466. [Google Scholar] [CrossRef]
- Busscher, J.F.; Van Duijkeren, E.; Sloet Van Oldruitenborgh-Oosterbaan, M.M. The prevalence of methicillin-resistant staphylococci in healthy horses in the Netherlands. Vet. Microbiol. 2006, 113, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Kern, A.; Perreten, V. Clinical and molecular features of methicillin-resistant, coagulase-negative staphylococci of pets and horses. J. Antimicrob. Chemother. 2013, 68, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Sakr, A.; Brégeon, F.; Mège, J.L.; Rolain, J.M.; Blin, O. Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Front. Microbiol. 2018, 9, 2419. [Google Scholar] [CrossRef] [PubMed]
Sample Source | Number of Strains | ST/CC a (Number of Strains) | Spa-type (Number of Strains) | Agr-Type | Antimicrobial Resistance | Virulence Genes (Number of Strains) | |
---|---|---|---|---|---|---|---|
Phenotype b (Number of Strains) | Genotype (Number of Strains) | ||||||
Nasal | 18 | ST1640 (9) | t2559 (9) | IV | STR (1) | ant(6)-Ia | - |
SUSCEPTIBLE (8) | - | - | |||||
ST1/CC1 (5) | t3269 (3) | III | SUSCEPTIBLE (3) | - | lukPQ (3), scn-eq (3) | ||
t127 (2) | III | PEN, SXT (1) | blaZ, dfrG | lukPQ, scn-eq | |||
SUSCEPTIBLE (1) | - | lukPQ, scn-eq | |||||
ST816/CC479 (3) | t1294 (3) | II | SUSCEPTIBLE (3) | - | tst (3), lukPQ (3), scn-eq (3) | ||
ST1660/CC9 (1) | t549 (1) | II | PEN, STR | blaZ, ant(6)-Ia, str | lukPQ, scn-eq | ||
Faecal | 16 | ST1640 (12) | t2559 (12) | IV | STR (1) | - | - |
SUSCEPTIBLE (11) | - | - | |||||
ST1/CC1 (3) | t127 (2) | III | PEN, SXT (1) | blaZ, dfrA, dfrG | lukPQ, scn-eq | ||
t386 (1) | III | SUSCEPTIBLE (1) | - | lukPQ, scn-eq | |||
STR | - | lukPQ, scn-eq | |||||
ST133/CC133 (1) | t2420 (1) | I | SUSCEPTIBLE | - | lukPQ, scn-eq |
Sample Source | (Number of Strains) | Species (Number of Strains) | Antimicrobial Resistance | |
---|---|---|---|---|
Phenotype c (Number of Strains) | Genotype (Number of Strains) | |||
Nasal | 30 | S. delphinia (11) | SUSCEPTIBLE (11) | - |
S. sciuri (10) | STR (1) | str (1) | ||
PEN, FOX (2) | mecA (2) | |||
PEN, FOX, TET (2) | mecA (2), tet(K) (2), tet(L) (2) | |||
PEN, FOX, CLI (1) | mecA, lnu(A) (1) | |||
PEN, FOX, STR, TETe (1) | mecA, str, tet(K), tet(L) (1) | |||
SUSCEPTIBLE (3) | - | |||
S. fleurettii (2) | SUSCEPTIBLE (2) | - | ||
S. lentus (2) | ERY, CLI d (1) | erm(A), erm(B), msr(A) (1) | ||
PEN, FOX, STR (1) | mecA, str (1) | |||
S. saprophyticus (2) | SUSCEPTIBLE (2) | - | ||
S. xylosus (2) | CLI (1) | - | ||
SUSCEPTIBLE (1) | - | |||
S. haemolyticus (1) | SUSCEPTIBLE (1) | - | ||
Faecal | 26 | S. delphinib (8) S. sciuri (9) | SUSCEPTIBLE (8) PEN, FOX (6) | - mecA (6) |
PEN, FOX, STR, TET e (1) | mecA, str, tet(K), tet(L) (1) | |||
ERY, CLI d, STR, CHL e (1) | erm(C), str, fexA (1) | |||
SUSCEPTIBLE (1) | - | |||
S. simulans (4) | SUSCEPTIBLE (4) | - | ||
S. schleiferi (2) | SUSCEPTIBLE (2) | - | ||
S. haemolyticus (1) | SUSCEPTIBLE (1) | - | ||
S. vitulinus (1) | SUSCEPTIBLE (1) | - | ||
S. hyicus (1) | SUSCEPTIBLE (1) | - |
Animal | Nasal Samples | Faecal Samples | ||||
---|---|---|---|---|---|---|
Animal Code | Species Detected (Number of Strains) | Type A/B or spa-type /ST | Antimicrobial Resistance Phenotype a | Species Detected (Number of Strains) | Type A/B or spa-Type/ST | Antimicrobial Resistance Phenotype a |
1 | S. delphini (1) | Type B | SUSCEPTIBLE | S. simulans (1) | - | SUSCEPTIBLE |
S. haemolyticus (1) | - | SUSCEPTIBLE | ||||
25 | S. aureus (1) | t2559/ST1640 | SUSCEPTIBLE | S. aureus (1) | t2420/ST133 | SUSCEPTIBLE |
26 | S. aureus (1) | t2559/ST1640 | SUSCEPTIBLE | S. aureus (1) | t2559/ST1640 | SUSCEPTIBLE |
S. sciuri (1) | - | PEN, FOX, STR, TET | ||||
27 | S. aureus (1) | t549/ST1660 | PEN, STR | S. aureus (1) | t127/ST1 | PEN, SXT |
S. delphini (1) | Type A | SUSCEPTIBLE | S. delphini (1) | Type B | SUSCEPTIBLE | |
28 | S. aureus (1) | t2559/ST1640 | SUSCEPTIBLE | - | - | - |
29 | S. aureus (1) | t2559/ST1640 | SUSCEPTIBLE | S. aureus (1) | t2559/ST1640 | SUSCEPTIBLE |
lentus (1) | - | PEN, FOX, STR | ||||
30 | S. aureus (1) | t2559/ST1640 | SUSCEPTIBLE | S. aureus (1) | t2559/ST1640 | SUSCEPTIBLE |
S. sciuri (1) | - | SUSCEPTIBLE |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mama, O.M.; Gómez, P.; Ruiz-Ripa, L.; Gómez-Sanz, E.; Zarazaga, M.; Torres, C. Antimicrobial Resistance, Virulence, and Genetic Lineages of Staphylococci from Horses Destined for Human Consumption: High Detection of S. aureus Isolates of Lineage ST1640 and Those Carrying the lukPQ Gene. Animals 2019, 9, 900. https://doi.org/10.3390/ani9110900
Mama OM, Gómez P, Ruiz-Ripa L, Gómez-Sanz E, Zarazaga M, Torres C. Antimicrobial Resistance, Virulence, and Genetic Lineages of Staphylococci from Horses Destined for Human Consumption: High Detection of S. aureus Isolates of Lineage ST1640 and Those Carrying the lukPQ Gene. Animals. 2019; 9(11):900. https://doi.org/10.3390/ani9110900
Chicago/Turabian StyleMama, Olouwafemi Mistourath, Paula Gómez, Laura Ruiz-Ripa, Elena Gómez-Sanz, Myriam Zarazaga, and Carmen Torres. 2019. "Antimicrobial Resistance, Virulence, and Genetic Lineages of Staphylococci from Horses Destined for Human Consumption: High Detection of S. aureus Isolates of Lineage ST1640 and Those Carrying the lukPQ Gene" Animals 9, no. 11: 900. https://doi.org/10.3390/ani9110900
APA StyleMama, O. M., Gómez, P., Ruiz-Ripa, L., Gómez-Sanz, E., Zarazaga, M., & Torres, C. (2019). Antimicrobial Resistance, Virulence, and Genetic Lineages of Staphylococci from Horses Destined for Human Consumption: High Detection of S. aureus Isolates of Lineage ST1640 and Those Carrying the lukPQ Gene. Animals, 9(11), 900. https://doi.org/10.3390/ani9110900