Rumen In Vitro Fermentation and In Situ Degradation Kinetics of Winter Forage Brassicas Crops
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Site and Experimental Design
2.2. In Situ Incubations
2.3. In Vitro Incubations
2.4. Analyses
2.5. Calculations
- fermentation rate at half-life (C) = n/(2 × K)
- maximal fermentation rate (MDR) = (n − 1)((n−1)/n)/k
- time to ferment x% of the substrate (tx) = K × ((X/(1 − X))(1/n))
2.6. Statistical Analyses
3. Results
3.1. Nutrient Concentration and Sugar Profile
3.2. In Situ Degradation Parameters
3.3. In Vitro Fermentation Products
4. Discussion
4.1. Nutrient Concentration
4.2. In Situ Degradation Parameters
4.3. In Vitro Fermentation
4.4. Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Keogh, B.; French, P.; Murphy, J.J.; Mee, J.F.; McGrath, T.; Storey, T.; Grant, J.; Mulligan, F.J. A note on the effect of dietary proportions of kale (Brassica oleracea) and grass silage on rumen pH and volatile fatty acid concentrations in dry dairy cows. Livest. Sci. 2009, 126, 302–305. [Google Scholar] [CrossRef]
- Keim, J.P.; López, I.F.; Balocchi, O.A. Sward herbage accumulation and nutritive value as affected by pasture renovation strategy. Grass Forage Sci. 2015, 70, 283–295. [Google Scholar] [CrossRef]
- Westwood, C.T.; Mulcock, H. Nutritional evaluation of five species of forage brassica. Proc. N. Z. Grassl. Assoc. 2012, 74, 31–38. [Google Scholar]
- Sun, X.Z.; Waghorn, G.C.; Hoskin, S.O.; Harrison, S.J.; Muetzel, S.; Pacheco, D. Methane emissions from sheep fed fresh brassicas (Brassica spp.) compared to perennial ryegrass (Lolium perenne). Anim. Feed Sci. Technol. 2012, 176, 107–116. [Google Scholar] [CrossRef]
- Rugoho, I.; Edwards, G.R. Dry matter intake, body condition score, and grazing behavior of nonlactating, pregnant dairy cows fed kale or grass once versus twice daily during winter. J. Dairy Sci. 2018, 101, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Keogh, B.; French, P.; McGrath, T.; Storey, T.; Mulligan, F.J. Comparison of the performance of dairy cows offered kale, swedes and perennial ryegrass herbage in situ and perennial ryegrass silage fed indoors in late pregnancy during winter in Ireland. Grass Forage Sci. 2009, 64, 49–56. [Google Scholar] [CrossRef]
- Sun, X.Z.; Pacheco, D.; Luo, D.W. Forage brassica: A feed to mitigate enteric methane emissions? Anim. Prod. Sci. 2016, 56, 451–456. [Google Scholar] [CrossRef]
- Hackmann, T.J.; Sampson, J.D.; Spain, J.N. Variability in in situ ruminal degradation parameters causes imprecision in estimated ruminal digestibility. J. Dairy Sci. 2010, 93, 1074–1085. [Google Scholar] [CrossRef]
- Barry, T.N. The feeding value of forage brassica plants for grazing ruminant livestock. Anim. Feed Sci. Technol. 2013, 181, 15–25. [Google Scholar] [CrossRef]
- Dijkstra, J.; Kebreab, E.; Bannink, A.; France, J.; López, S. Application of the gas production technique to feed evaluation systems for ruminants. Anim. Feed Sci. Technol. 2005, 123–124, 561–578. [Google Scholar] [CrossRef]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Niderkorn, V.; Baumont, R.; Le Morvan, A.; Macheboeuf, D. Occurrence of associative effects between grasses and legumes in binary mixtures on in vitro rumen fermentation characteristics. J. Anim. Sci. 2011, 89, 1138–1145. [Google Scholar] [CrossRef]
- Getachew, G.; DePeters, E.J.; Robinson, P.H.; Fadel, J.G. Use of an in vitro rumen gas production technique to evaluate microbial fermentation of ruminant feeds and its impact on fermentation products. Anim. Feed Sci. Technol. 2005, 123–124, 547–559. [Google Scholar] [CrossRef]
- Keim, J.P.; Cabanilla, J.; Balocchi, O.A.; Pulido, R.N.G.; Bertrand, A. In vitro fermentation and in situ rumen degradation kinetics of summer forage brassica plants. Anim. Prod. Sci. 2019, 59, 1271–1280. [Google Scholar] [CrossRef]
- Valderrama, X.; Anrique, R. In situ rumen degradation kinetics of high-protein forage crops in temperate climates. Chil. J. Agric. Res. 2011, 71, 572–577. [Google Scholar] [CrossRef]
- Hvelplund, T.; Wesiberg, M. In situ techniques for the estimation of protein degradability and postrumen availability. In Forage Evaluation in Ruminant Nutrition; Givens, D.I., Ed.; CABI Publishing: Wallingford, UK, 2000; pp. 233–258. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1996. [Google Scholar]
- Pelletier, S.; Tremblay, G.F.; Belanger, G.; Bertrand, A.; Castonguay, Y.; Pageau, D.; Drapeau, R. Forage Nonstructural Carbohydrates and Nutritive Value as Affected by Time of Cutting and Species. Agron. J. 2010, 102, 1388–1398. [Google Scholar] [CrossRef]
- Hall, M.B.; Hoover, W.H.; Jennings, J.P.; Webster, T.K.M. A method for partitioning neutral detergent-soluble carbohydrates. J. Sci. Food Agric. 1999, 79, 2079–2086. [Google Scholar] [CrossRef]
- Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Rowe, B.A.; Neilsen, J.E. Effects of irrigating forage turnips, Brassica rapa var. rapa cv. Barkant, during different periods of vegetative growth. 2. Nutritive characteristics of leaves and roots. Crop Pasture Sci. 2011, 62, 571–580. [Google Scholar] [CrossRef]
- Loaiza, P.A.; Balocchi, O.; Bertrand, A. Carbohydrate and crude protein fractions in perennial ryegrass as affected by defoliation frequency and nitrogen application rate. Grass Forage Sci. 2017, 72, 556–567. [Google Scholar] [CrossRef]
- Keim, J.P.; López, I.F.; Berthiaume, R. Nutritive value, in vitro fermentation and methane production of perennial pastures as affected by botanical composition over a growing season in the south of Chile. Anim. Prod. Sci. 2014, 54, 598–607. [Google Scholar] [CrossRef]
- Oba, M. Review: Effects of feeding sugars on productivity of lactating dairy cows. Can. J. Anim. Sci. 2011, 91, 37–46. [Google Scholar] [CrossRef]
- Cassida, K.A.; Turner, K.E.; Foster, J.G.; Hesterman, O.B. Comparison of detergent fiber analysis methods for forages high in pectin. Anim. Feed Sci. Technol. 2007, 135, 283–295. [Google Scholar] [CrossRef]
- Zhao, X.H.; Liu, C.J.; Liu, Y.; Li, C.Y.; Yao, J.H. Effects of replacing dietary starch with neutral detergent–soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC). J. Anim. Physiol. Anim. Nutr. 2013, 97, 1161–1169. [Google Scholar] [CrossRef]
- Fulkerson, W.J.; Horadagoda, A.; Neal, J.S.; Barchia, I.; Nandra, K.S. Nutritive value of forage species grown in the warm temperate climate of Australia for dairy cows: Herbs and grain crops. Livest. Sci. 2008, 114, 75–83. [Google Scholar] [CrossRef]
- Aufrere, J.; Graviou, D.; Demarquilly, C. Ruminal degradation of protein of cocksfoot and perennial ryegrass as affected by various stages of growth and conservation methods. Anim. Res. 2003, 52, 245–261. [Google Scholar] [CrossRef]
- Znidarsic, T.; Verbic, J.; Babnik, D.; Velikonja-Bolta, S. The effect of supplementing highly wilted grass silage with maize silage, fodder beet or molasses on degradation of the diets and the efficiency of microbial protein synthesis in the rumen of sheep. Ital. J. Anim. Sci. 2010, 9, 449–459. [Google Scholar] [CrossRef]
- Broderick, G.A.; Cochran, R.C. In vitro and In situ Methods for Estimating Digestibility with Reference to Protein Degradability. In Feeding Systems and Feed Evaluation Models; Theodorou, M.K., France, J., Eds.; CAB International: Wallingford, UK, 2000; pp. 53–85. [Google Scholar]
- Sun, X.Z.; Waghorn, G.C.; Hatier, J.H.B.; Easton, H.S. Genotypic variation in in sacco dry matter degradation kinetics in perennial ryegrass (Lolium perenne L.). Anim. Prod. Sci. 2012, 52, 566–571. [Google Scholar] [CrossRef]
- Xu, M.; Rinker, M.; McLeod, K.R.; Harmon, D.L. Yucca schidigera extract decreases in vitro methane production in a variety of forages and diets. Anim. Feed Sci. Technol. 2010, 159, 18–26. [Google Scholar] [CrossRef]
- Rymer, C.; Huntington, J.A.; Williams, B.A.; Givens, D.I. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed Sci. Technol. 2005, 123–124, 9–30. [Google Scholar] [CrossRef]
- Van Gelder, A.H.; Hetta, M.; Rodrigues, M.A.M.; De Boever, J.L.; Den Hartigh, H.; Rymer, C.; Van Oostrum, M.; Van Kaathoven, R.; Cone, J.W. Ranking of in vitro fermentability of 20 feedstuffs with an automated gas production technique: Results of a ring test. Anim. Feed Sci. Technol. 2005, 123–124, 243–253. [Google Scholar] [CrossRef]
- Seifried, N.; Steingass, H.; Schipprack, W.; Rodehutscord, M. Variation in ruminal in situ degradation of crude protein and starch from maize grains compared to in vitro gas production kinetics and physical and chemical characteristics. Arch. Anim. Nutr. 2016, 70, 333–349. [Google Scholar] [CrossRef]
- Keim, J.P.; Alvarado-Gilis, C.; Arias, R.A.; Gandarillas, M.; Cabanilla, J. Evaluation of sources of variation on in vitro fermentation kinetics of feedstuffs in a gas production system. Anim. Sci. J. 2017, 88, 1547–1555. [Google Scholar] [CrossRef]
- Hall, M.B.; Pell, A.N.; Chase, L.E. Characteristics of neutral detergent-soluble fiber fermentation by mixed ruminal microbes. Anim. Feed Sci. Technol. 1998, 70, 23–39. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Morvay, Y.; Bannink, A.; France, J.; Kebreab, E.; Dijkstra, J. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows. J. Dairy Sci. 2011, 94, 3063–3080. [Google Scholar] [CrossRef] [Green Version]
- Seymour, W.M.; Campbell, D.R.; Johnson, Z.B. Relationships between rumen volatile fatty acid concentrations and milk production in dairy cows: A literature study. Anim. Feed Sci. Technol. 2005, 119, 155–169. [Google Scholar] [CrossRef]
- Moss, A.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contri-bution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- Beauchemin, K.; McAllister, T.; McGinn, S.M. Dietary mitigation of enteric methane from cattle. CAB Rev. 2009, 4. [Google Scholar] [CrossRef]
- Hall, M.B.; Mertens, D.R. A 100-Year Review: Carbohydrates-Characterization, digestion, and utilization. J. Dairy Sci. 2017, 100, 10078–10093. [Google Scholar] [CrossRef] [PubMed]
Parameter | Kales | Swedes | 1 SEM | Kales | Swedes | 1 SEM | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | S1 | S2 | S3 | S4 | S5 | Species | Variety | |||||
DM (g/kg sample) | 122 | 74 | 0.3 | 108 b | 123 ab | 135 a | 107 b | 136 a | 71 | 81 | 72 | 71 | 77 | 0.6 | <0.01 | <0.01 |
Ash | 79 | 77 | 0.2 | 88 | 83 | 76 | 73 | 74 | 74 | 75 | 73 | 81 | 82 | 0.5 | NS | NS |
CP | 111 | 136 | 0.4 | 114 ab | 111 ab | 116 ab | 88 b | 128 ab | 127 ab | 123 b | 124 ab | 151 ab | 153 a | 0.9 | <0.01 | <0.01 |
EE | 13 | 9 | 0.04 | 13 ab | 14 a | 14 a | 13 ab | 10 b | 10 | 9 | 9 | 9 | 9 | 0.09 | <0.01 | <0.05 |
aNDF | 300 | 176 | 0.7 | 271 | 309 | 328 | 297 | 293 | 169 | 196 | 165 | 169 | 182 | 1.6 | <0.01 | NS |
Raffinose | 7 | 2 | 0.4 | 6 b | 7 ab | 5 b | 7 ab | 10 a | 2 | 1 | 2 | 2 | 2 | 0.9 | <0.01 | <0.01 |
Sucrose | 59 | 15 | 4.6 | 47 | 52 | 75 | 50 | 70 | 11 | 17 | 12 | 16 | 22 | 10.4 | <0.01 | NS |
Glucose | 63 | 139 | 3.1 | 74 ab | 59 bc | 44 c | 83 a | 56 bc | 157 a | 127 b | 156 a | 123 b | 127 b | 6.8 | <0.01 | <0.01 |
Fructose | 51 | 99 | 3.0 | 58 ab | 50 abc | 35 c | 69 a | 42 bc | 109 a | 88 b | 115 a | 100 ab | 82 b | 6.6 | <0.01 | <0.01 |
Sugars | 180 | 255 | 5.3 | 185 ab | 168 b | 160 b | 209 a | 179 ab | 280 a | 233 b | 288 a | 241 b | 234 b | 11.9 | <0.01 | <0.01 |
Starch | 25 | 19 | 3.7 | 14 b | 21 ab | 34 a | 22 ab | 31 a | 11 bc | 32 a | 7 c | 26 ab | 20 abc | 8.4 | NS | <0.05 |
NSC | 205 | 274 | 7.1 | 199 ab | 190 b | 194 b | 231 a | 210 ab | 291 a | 265 ab | 295 a | 267 ab | 253 b | 15.8 | <0.01 | <0.05 |
OA + NDSF | 292 | 327 | 5.4 | 315 | 293 | 272 | 298 | 284 | 328 | 331 | 332 | 322 | 321 | 12.2 | <0.01 | NS |
DOMD | 727 | 831 | 0.7 | 740 | 715 | 698 | 732 | 749 | 841 | 823 | 841 | 828 | 824 | 1.7 | <0.01 | NS |
Parameter | Kales | Swedes | 1 SEM | Kales | Swedes | 1 SEM | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | S1 | S2 | S3 | S4 | S5 | Species | Variety | |||||
Dry matter degradation parameters | ||||||||||||||||
a | 499 | 591 | 0.6 | 519 | 499 | 479 | 504 | 491 | 634 a | 545 b | 612 ab | 581 b | 586 b | 1.3 | <0.01 | <0.01 |
b | 370 | 368 | 0.6 | 363 | 374 | 374 | 376 | 363 | 349 | 387 | 352 | 367 | 384 | 1.4 | NS | NS |
c | 0.34 | 0.25 | 0.02 | 0.35 | 0.32 | 0.37 | 0.30 | 0.35 | 0.22 | 0.29 | 0.28 | 0.22 | 0.22 | 0.05 | <0.01 | NS |
PD | 869 | 959 | 0.6 | 882 | 873 | 853 | 881 | 854 | 982 | 931 | 964 | 964 | 969 | 1.9 | <0.01 | NS |
ED, 2%/h | 846 | 931 | 0.8 | 860 | 849 | 831 | 855 | 835 | 952 | 907 | 940 | 919 | 936 | 1.7 | <0.01 | NS |
ED, 5%/h | 817 | 895 | 0.7 | 831 | 819 | 802 | 823 | 809 | 915 | 875 | 910 | 881 | 896 | 1.5 | <0.01 | NS |
ED, 8%/h | 793 | 867 | 0.7 | 807 | 794 | 779 | 797 | 786 | 886 | 848 | 885 | 851 | 864 | 1.5 | <0.01 | NS |
Crude protein degradation parameters | ||||||||||||||||
a | 550 | 568 | 1.4 | 494 bc | 554 abc | 596 ab | 474 c | 633 ª | 580 | 532 | 520 | 594 | 615 | 3.2 | NS | <0.01 |
b | 383 | 377 | 1.4 | 429 a | 387 ab | 354 ab | 431 a | 313 b | 384 | 398 | 390 | 361 | 353 | 3.1 | NS | <0.05 |
c | 0.48 | 0.36 | 0.02 | 0.53 | 0.42 | 0.53 | 0.43 | 0.47 | 0.34 | 0.40 | 0.41 | 0.31 | 0.32 | 0.05 | <0.01 | NS |
PD | 933 | 945 | 1.1 | 923 | 941 | 950 | 906 | 946 | 964 | 930 | 911 | 955 | 968 | 2.5 | NS | NS |
ED, 2%/h | 918 | 927 | 1.0 | 909 | 924 | 937 | 888 | 933 | 943 | 912 | 898 | 935 | 947 | 2.3 | NS | NS |
ED, 5%/h | 897 | 900 | 0.9 | 887 | 900 | 920 | 862 | 916 | 915 | 886 | 873 | 906 | 921 | 2.1 | NS | NS |
ED, 8%/h | 878 | 877 | 0.9 | 867 ab | 879 ab | 904 a | 839 b | 900 a | 890 | 864 | 852 | 882 | 898 | 2.0 | NS | <0.05 |
Parameter | Kales | Swedes | 1 SEM | p Value | |
---|---|---|---|---|---|
Species | Variety | ||||
24 h GP | 232 | 256 | 3.0 | <0.01 | NS |
48 h GP | 260 | 285 | 3.1 | <0.01 | NS |
A | 261 | 285 | 3.3 | <0.01 | NS |
K | 6.1 | 6.1 | 0.08 | NS | NS |
C | 0.14 | 0.15 | 0.01 | <0.05 | NS |
MDR | 0.14 | 0.15 | 0.01 | <0.05 | NS |
t25 | 3.2 | 3.2 | 0.04 | NS | NS |
t75 | 11.8 | 11.5 | 0.2 | NS | NS |
t90 | 22.6 | 21.5 | 0.5 | <0.05 | NS |
Parameter | Kales | Swedes | 1 SEM | Kales | Swedes | 1 SEM | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | S1 | S2 | S3 | S4 | S5 | Species | Variety | |||||
VFA concentration | ||||||||||||||||
Total VFA (mM) | 52.5 | 51.2 | 1.7 | 52.6 | 49.6 | 49.1 | 56.9 | 54.5 | 61.3 a | 49.1 ab | 49.6 ab | 45.5 b | 50.4 ab | 3.8 | NS | <0.05 |
Acetate (mmol/mol) | 597 | 549 | 4.2 | 595 | 591 | 597 | 597 | 602 | 555 ab | 564 ab | 537 bc | 520 c | 572 a | 7.2 | <0.05 | <0.01 |
Propionate (mmol/mol) | 245 | 258 | 1.9 | 245 | 249 | 243 | 243 | 244 | 255 | 254 | 266 | 258 | 257 | 4.3 | NS | NS |
Butyrate (mmol/mol) | 106 | 139 | 2.3 | 107 | 104 | 106 | 111 | 103 | 141 ab | 128 b | 143 ab | 162 a | 120 b | 4.9 | <0.01 | <0.01 |
BCVFA (mmol/mol) | 52 | 54 | 1.5 | 53 | 55 | 54 | 48 | 50 | 48 | 54 | 54 | 60 | 52 | 2.7 | NS | NS |
A:P ratio | 2.4 | 2.1 | 0.04 | 2.4 | 2.4 | 2.5 | 2.5 | 2.5 | 2.2 | 2.2 | 2.0 | 2.0 | 2.2 | 0.09 | <0.01 | NS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daza, J.; Benavides, D.; Pulido, R.; Balocchi, O.; Bertrand, A.; Keim, J. Rumen In Vitro Fermentation and In Situ Degradation Kinetics of Winter Forage Brassicas Crops. Animals 2019, 9, 904. https://doi.org/10.3390/ani9110904
Daza J, Benavides D, Pulido R, Balocchi O, Bertrand A, Keim J. Rumen In Vitro Fermentation and In Situ Degradation Kinetics of Winter Forage Brassicas Crops. Animals. 2019; 9(11):904. https://doi.org/10.3390/ani9110904
Chicago/Turabian StyleDaza, José, Daniel Benavides, Rubén Pulido, Oscar Balocchi, Annick Bertrand, and Juan Keim. 2019. "Rumen In Vitro Fermentation and In Situ Degradation Kinetics of Winter Forage Brassicas Crops" Animals 9, no. 11: 904. https://doi.org/10.3390/ani9110904
APA StyleDaza, J., Benavides, D., Pulido, R., Balocchi, O., Bertrand, A., & Keim, J. (2019). Rumen In Vitro Fermentation and In Situ Degradation Kinetics of Winter Forage Brassicas Crops. Animals, 9(11), 904. https://doi.org/10.3390/ani9110904