Humanely Ending the Life of Animals: Research Priorities to Identify Alternatives to Carbon Dioxide
Abstract
:Simple Summary
Abstract
1. Definitions
2. Introduction
3. General Aspects (All Species)
3.1. Standardised Terminology, Investigation of the Animal’s Experience, and Structured Welfare Assessment
3.1.1. Statement of the Problem
3.1.2. Research Priorities
3.2. Define Markers of (Un)Consciousness
3.2.1. Statement of the Problem
3.2.2. Research Priorities
3.3. Validate Markers of Dyspnoea, Particularly Air Hunger, during Hypercapnic and Hypoxic Stunning
3.3.1. Statement of the Problem
3.3.2. Research Priorities
3.4. Refinement of Handling and Environment
3.4.1. Statement of the Problem
3.4.2. Research Priorities
4. Rodents
4.1. Rodents-Introduction
4.2. Rodents-Strategy
4.2.1. Identifying Less Aversive Controlled Atmosphere Stunning Methods
4.2.2. Identify Suitable Stunning Methods for Neonatal Rodents
4.2.3. Develop Reliable, Restraint-Free Physical Methods
5. Poultry
5.1. Poultry-Introduction
5.2. Poultry-Strategy
5.2.1. Identify Less Aversive Controlled Atmosphere Stunning Methods
5.2.2. Improve Electrical Stunning Techniques and Investigate Alternatives Directly Targeting the Brain
6. Pigs
6.1. Pigs-Introduction
6.2. Pigs-Strategy
6.2.1. Determine Aversiveness of Inert Gas Hypoxia
6.2.2. Comparison of Physical Stunning Methods
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abeyesinghe, S.M.; McKeegan, D.E.; McLeman, M.A.; Lowe, J.C.; Demmers, T.G.; White, R.P.; Kranen, R.W.; van Bemmel, H.; Lankhaar, J.A.; Wathes, C.M. Controlled atmosphere stunning of broiler chickens. I. Effects on behaviour, physiology and meat quality in a pilot scale system at a processing plant. Br. Poult. Sci. 2007, 48, 406–423. [Google Scholar] [CrossRef] [PubMed]
- Beausoleil, N.J.; Mellor, D.J. Introducing breathlessness as a significant animal welfare issue. N. Z. Vet. J. 2015, 63, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Parshall, M.B.; Schwartzstein, R.M.; Adams, L.; Banzett, R.B.; Manning, H.L.; Bourbeau, J.; Calverley, P.M.; Gift, A.G.; Harver, A.; Lareau, S.C. An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea. Am. J. Respir. Crit. Care Med. 2012, 185, 435–452. [Google Scholar] [CrossRef] [PubMed]
- Banzett, R.B.; Pedersen, S.H.; Schwartzstein, R.M.; Lansing, R.W. The Affective Dimension of Laboratory Dyspnea. Am. J. Respir. Crit. Care Med. 2008, 177, 1384. [Google Scholar] [CrossRef]
- Rhudy, J.L.; Meagher, M.W. Fear and anxiety: divergent effects on human pain thresholds. Pain 2000, 84, 65–75. [Google Scholar] [CrossRef]
- Veterinary Anesthesia and Analgesia, 5th ed.; Grimm, K.A.L.; Leigh, A.; Tranquilli, W.J.; Greene, S.A.; Robertson, S.A. (Eds.) Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Hawkins, P.; Prescott, M.J.; Carbone, L.; Dennison, N.; Johnson, C.; Makowska, I.J.; Marquardt, N.; Readman, G.; Weary, D.M.; Golledge, H.D. A Good Death? Report of the Second Newcastle Meeting on Laboratory Animal Euthanasia. Animals 2016, 6, 50. [Google Scholar] [CrossRef]
- Weary, D.M.; Droege, P.; Braithwaite, V.A. Behavioural evidence of felt emotions: Approaches, inferences and refinements. In Advances in the Study of Behavior; Naguib, M., Podos, J., Simmons, L.W., Barrett, L., Healy, S., Zuk, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 49, pp. 27–48. [Google Scholar]
- EFSA Panel on Animal Health and Welfare. Low atmospheric pressure system for stunning broiler chickens. EFSA J. 2017, 15. [Google Scholar] [CrossRef] [Green Version]
- Health Panel; Welfare, A.; More, S.; Bicout, D.; Bøtner, A.; Butterworth, A.; Calistri, P.; Depner, K.; Edwards, S.; Garin-Bastuji, B.; et al. Guidance on the assessment criteria for applications for new or modified stunning methods regarding Animal protection at the time of killing. EFSA J. 2018, 16, e05343. [Google Scholar] [CrossRef]
- Carstens, E.; Moberg, G.P. Recognizing Pain and Distress in Laboratory Animals. ILAR J. 2000, 41, 62–71. [Google Scholar] [CrossRef]
- Leary, S.; Underwood, W.; Anthony, R.; Cartner, S.; Corey, D.; Grandin, T.; Greenacre, C.B.; Gwaltney-Brant, S.; McCrackin, M.A.; Meyer, R.; et al. AVMA Guidelines for the Euthanasia of Animals: 2013 Edition. Available online: Works.bepress.com/cheryl_greenacre/14/ (accessed on 29 July 2013).
- Barlow, D.H.; Chorpita, B.F.; Turovsky, J. Fear, panic, anxiety, and disorders of emotion. In Current Theory and Research in Motivation, Volume 43. Nebraska Symposium on Motivation, 1995: Perspectives on Anxiety, Panic, and Fear; Hope, D.A., Ed.; University of Nebraska Press: Lincoln, NE, USA, 1996; pp. 251–328. [Google Scholar]
- Guntheroth, W.G.; Kawabori, I. Hypoxic apnea and gasping. J. Clin. Investig. 1975, 56, 1371–1377. [Google Scholar] [CrossRef]
- Xie, J.; Weil, M.H.; Sun, S.; Yu, T.; Tang, W. Spontaneous gasping generates cardiac output during cardiac arrest. Crit. Care Med. 2004, 32, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Bobrow, B.J.; Zuercher, M.; Ewy, G.A.; Clark, L.; Chikani, V.; Donahue, D.; Sanders, A.B.; Hilwig, R.W.; Berg, R.A.; Kern, K.B. Gasping During Cardiac Arrest in Humans Is Frequent and Associated With Improved Survival. Circulation 2008, 118, 2550–2554. [Google Scholar] [CrossRef] [PubMed]
- Gerritzen, M.A.; Lambooij, E.; Hillebrand, S.J.; Lankhaar, J.A.; Pieterse, C. Behavioral responses of broilers to different gaseous atmospheres. Poult. Sci. 2000, 79, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Hickman, D.L.; Fitz, S.D.; Bernabe, C.S.; Caliman, I.F.; Haulcomb, M.M.; Federici, L.M.; Shekhar, A.; Johnson, P.L. Evaluation of Low versus High Volume per Minute Displacement CO(2) Methods of Euthanasia in the Induction and Duration of Panic-Associated Behavior and Physiology. Animals 2016, 6, 45. [Google Scholar] [CrossRef]
- Authority, E.F.S. Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to welfare aspects of the main systems of stunning and killing the main commercial species of Animals. EFSA J. 2004, 2, 45. [Google Scholar] [CrossRef]
- International Association for the Study of Pain. Available online: https://www.iasp-pain.org/terminology?navItemNumber=576 (accessed on 4 April 2019).
- Boivin, G.P.; Hickman, D.L.; Creamer-Hente, M.A.; Pritchett-Corning, K.R.; Bratcher, N.A. Review of CO(2) as a Euthanasia Agent for Laboratory Rats and Mice. J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 491–499. [Google Scholar] [PubMed]
- Council of the European Union. COUNCIL REGULATION (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Off. J. Eur. Union 2009, L303, 1–30. [Google Scholar]
- Forkman, B.; Boissy, A.; Meunier-Salaün, M.C.; Canali, E.; Jones, R.B. A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol. Behav. 2007, 92, 340–374. [Google Scholar] [CrossRef] [Green Version]
- Mellor, D.; Beausoleil, N. Extending the ‘Five Domains’ model for Animal welfare assessment to incorporate positive welfare states. Anim. Welfare 2015, 24, 241–253. [Google Scholar] [CrossRef]
- Pinillos, R.G.; Appleby, M.C.; Manteca, X.; Scott-Park, F.; Smith, C.; Velarde, A. One Welfare—A platform for improving human and Animal welfare. Vet. Rec. 2016, 179, 412–413. [Google Scholar] [CrossRef]
- Axiak Flammer, S.; Eskes, C.; Kohler, I.; Pernet, A.O.; Jakob, P.; Marahrens, M.; Gent, T.C.; Golledge, H.; Weary, D. Alternatives to Carbon Dioxide-Taking Responsibility for Humanely Ending the Life of Animals. Animals 2019, 9, 482. [Google Scholar] [CrossRef] [PubMed]
- Llonch, P.; Rodriguez, P.; Gispert, M.; Dalmau, A.; Manteca, X.; Velarde, A. Stunning pigs with nitrogen and carbon dioxide mixtures: Effects on Animal welfare and meat quality. Animal 2012, 6, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Berg, C.; Raj, M. A Review of Different Stunning Methods for Poultry-Animal Welfare Aspects (Stunning Methods for Poultry). Animals 2015, 5, 1207–1219. [Google Scholar] [CrossRef] [PubMed]
- Martoft, L.; Stodkilde-Jorgensen, H.; Forslid, A.; Pedersen, H.D.; Jorgensen, P.F. CO2 induced acute respiratory acidosis and brain tissue intracellular pH: A 31P NMR study in swine. Lab. Anim. 2003, 37, 241–248. [Google Scholar] [CrossRef]
- Smith, W.; Harrap, S.B. Behavioural and cardiovascular responses of rats to euthanasia using carbon dioxide gas. Lab. Anim. 1997, 31, 337–346. [Google Scholar] [CrossRef]
- Sharp, J.; Azar, T.; Lawson, D. Comparison of carbon dioxide, argon, and nitrogen for inducing unconsciousness or euthanasia of rats. J. Am. Assoc. Lab. Anim. Sci. 2006, 45, 21–25. [Google Scholar]
- Moody, C.M.; Chua, B.; Weary, D.M. The effect of carbon dioxide flow rate on the euthanasia of laboratory mice. Lab. Anim. 2014, 48, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, M.; Gerritzen, M.; Velarde, A.; Hellebrekers, L.; Kemp, B. Time to Loss of Consciousness and Its Relation to Behavior in Slaughter Pigs during Stunning with 80 or 95% Carbon Dioxide. Front Vet. Sci. 2016, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Forslid, A. Transient neocortical, hippocampal and amygdaloid EEG silence induced by one minute inhalation of high concentration CO2 in swine. Acta Physiol. Scand. 1987, 130, 1–10. [Google Scholar] [CrossRef]
- Poole, G.H.; Fletcher, D.L. A comparison of argon, carbon dioxide, and nitrogen in a broiler killing system. Poult. Sci. 1995, 74, 1218–1223. [Google Scholar] [CrossRef]
- Kirkden, R.D.; Niel, L.; Lee, G.; Makowska, I.J.; Pfaffinger, M.J.; Weary, D.M. The validity of using an approach-avoidance test to measure the strength of aversion to carbon dioxide in rats. Appl. Anim. Behav. Sci. 2008, 114, 216–234. [Google Scholar] [CrossRef]
- Makowska, I.J.; Niel, L.; Kirkden, R.D.; Weary, D.M. Rats show aversionto argon-induced hypoxia. Appl. Anim. Behav. Sci. 2008, 114, 572–581. [Google Scholar] [CrossRef]
- Leach, M.C.; Bowell, V.A.; Allan, T.F.; Morton, D.B. Measurement of aversion to determine humane methods of anaesthesia and euthanasia. Anim. Welfare 2004, 13, S77–S86. [Google Scholar]
- Niel, L.; Weary, D.M. Rats avoid exposure to carbon dioxide and argon. Appl. Anim. Behav. Sci. 2007, 107, 100–109. [Google Scholar] [CrossRef]
- Thomas, A.A.; Flecknell, P.A.; Golledge, H.D. Combining nitrous oxide with carbon dioxide decreases the time to loss of consciousness during euthanasia in mice—Refinement of Animal welfare? PLoS ONE 2012, 7, e32290. [Google Scholar] [CrossRef]
- Detotto, C.; Isler, S.; Wehrle, M.; Vyssotski, L.; Bettschart-Wolfensberger, R.; Gent, T.C. Nitrogen gas produces less behavioural and neurophysiological excitation than carbon dioxide in mice undergoing euthanasia. PLoS ONE 2019, 14, e0210818. [Google Scholar] [CrossRef]
- Raj, A.B.M.; Gregory, N.G. Welfare Implications of the Gas Stunning of Pigs 1. Determination of Aversion to the Initial Inhalation of Carbon Dioxide or Argon. Anim. Welfare 1995, 4, 273–280. [Google Scholar]
- Dalmau, A.; Rodriguez, P.; Llonch, P.; Velarde, A. Stunning pigs with different gas mixtures: Aversion in pigs. Anim. Welfare 2010, 19, 325–333. [Google Scholar]
- McKeegan, D.E.F.; McIntyre, J.; Demmers, T.G.M.; Wathes, C.M.; Jones, R.B. Behavioural responses of broiler chickens during acute exposure to gaseous stimulation. Appl. Anim. Behav. Sci. 2006, 99, 271–286. [Google Scholar] [CrossRef]
- Raj, A.B.M. Aversive reactions of turkeys to argon, carbon dioxide and a mixture of carbon dioxide and argon. Vet. Rec. 1996, 138, 592–593. [Google Scholar] [CrossRef]
- Sandilands, V.; Raj, A.; Baker, L.; Sparks, N. Aversion of chickens to various lethal gas mixtures. Anim. Welfare 2011, 20, 253. [Google Scholar]
- Dripps, R.D.; Comroe, J.H., Jr. The respiratory and circulatory response of normal man to inhalation of 7.6 and 10.4 per cent CO2 with a comparison of the maximal ventilation produced by severe muscular exercise, inhalation of CO2 and maximal voluntary hyperventilation. Am. J. Physiol. 1947, 149, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, A.E.; Allen, J.E.; Dahdaleh, N.S.; Drebot, I.I.; Coryell, M.W.; Wunsch, A.M.; Lynch, C.M.; Faraci, F.M.; Howard, M.A., 3rd; Welsh, M.J.; et al. The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 2009, 139, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.E.; Argyropoulos, S.V.; Kendrick, A.H.; Nutt, D.J. Behavioral and cardiovascular effects of 7.5% CO2 in human volunteers. Depression Anxiety 2005, 21, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.E.; Kendrick, A.; Diaper, A.; Potokar, J.P.; Nutt, D.J. A validation of the 7.5% CO2 model of GAD using paroxetine and lorazepam in healthy volunteers. J. Psychopharmacol. 2007, 21, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Goetz, R.R.; Klein, D.F.; Papp, L.A.; Martinez, J.M.; Gorman, J.M. Acute panic inventory symptoms during CO2 inhalation and room-air hyperventilation among panic disorder patients and normal controls. Depression Anxiety 2001, 14, 123–136. [Google Scholar] [CrossRef]
- Anton, F.; Euchner, I.; Handwerker, H.O. Psychophysical examination of pain induced by defined CO2 pulses applied to the nasal mucosa. Pain 1992, 49, 53–60. [Google Scholar] [CrossRef]
- Thürauf, N.; Friedel, I.; Hummel, C.; Kobal, G. The mucosal potential elicited by noxious chemical stimuli with CO2 in rats: Is it a peripheral nociceptive event? Neurosci. Lett. 1991, 128, 297–300. [Google Scholar] [CrossRef]
- Peppel, P.; Anton, F. Responses of rat medullary dorsal horn neurons following intranasal noxious chemical stimulation: Effects of stimulus intensity, duration, and interstimulus interval. J. Neurophysiol. 1993, 70, 2260–2275. [Google Scholar] [CrossRef]
- McKeegan, D.E.F. Mechano-chemical nociceptors in the avian trigeminal mucosa. Brain Res. Rev. 2004, 46, 146–154. [Google Scholar] [CrossRef]
- Lambooij, E.; Gerritzen, M.A.; Engel, B.; Hillebrand, S.J.W.; Lankhaar, J.; Pieterse, C. Behavioural responses during exposure of broiler chickens to different gas mixtures. Appl. Anim. Behav. Sci. 1999, 62, 255–265. [Google Scholar] [CrossRef]
- Gerritzen, M.A.; Lambooij, B.; Reimert, H.; Stegeman, A.; Spruijt, B. On-farm euthanasia of broiler chickens: Effects of different gas mixtures on behavior and brain activity. Poult. Sci. 2004, 83, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Gerritzen, M.A.; Reimert, H.G.M.; Hindle, V.A.; Verhoeven, M.T.W.; Veerkamp, W.B. Multistage carbon dioxide gas stunning of broilers. Poult. Sci. 2013, 92, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.B.; Fletcher, D.L. Reactions of Laying Hens and Broilers to Different Gases Used for Stunning Poultry. Poult. Sci. 2001, 80, 1371–1377. [Google Scholar] [CrossRef]
- Chisholm, J.; De Rantere, D.; Fernandez, N.J.; Krajacic, A.; Pang, D.S. Carbon dioxide, but not isoflurane, elicits ultrasonic vocalizations in female rats. Lab. Anim. 2013, 47, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, N.; Feja, M.; Hunigen, H.; Plendl, J.; Menken, L.; Fink, H.; Bert, B. Euthanasia of laboratory mice: Are isoflurane and sevoflurane real alternatives to carbon dioxide? PLoS ONE 2018, 13, e0203793. [Google Scholar] [CrossRef]
- Makowska, J.; Golledge, H.; Marquardt, N.; Weary, D.M. Sedation or inhalant anesthesia before euthanasia with CO2 does not reduce behavioral or physiologic signs of pain and stress in mice. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 396–397. [Google Scholar]
- Boivin, G.P.; Bottomley, M.A.; Schiml, P.A.; Goss, L.; Grobe, N. Physiologic, Behavioral, and Histologic Responses to Various Euthanasia Methods in C57BL/6NTac Male Mice. J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 69–78. [Google Scholar]
- Langford, D.J.; Bailey, A.L.; Chanda, M.L.; Clarke, S.E.; Drummond, T.E.; Echols, S.; Glick, S.; Ingrao, J.; Klassen-Ross, T.; Lacroix-Fralish, M.L.; et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 2010, 7, 447–449. [Google Scholar] [CrossRef]
- Sotocinal, S.G.; Sorge, R.E.; Zaloum, A.; Tuttle, A.H.; Martin, L.J.; Wieskopf, J.S.; Mapplebeck, J.C.; Wei, P.; Zhan, S.; Zhang, S.; et al. The Rat Grimace Scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 2011, 7, 55. [Google Scholar] [CrossRef]
- Reid, J.; Nolan, A.; Hughes, J.; Lascelles, D.; Pawson, P.; Scott, E. Development of the short-form Glasgow Composite Measure Pain Scale (CMPS-SF) and derivation of an analgesic intervention score. Anim. Welfare 2007, 16, 97. [Google Scholar]
- Leach, M.C.; Klaus, K.; Miller, A.L.; Scotto di Perrotolo, M.; Sotocinal, S.G.; Flecknell, P.A. The assessment of post-vasectomy pain in mice using behaviour and the Mouse Grimace Scale. PLoS ONE 2012, 7, e35656. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, A.; Nande, A.; Vieira-Pinto, M.; Zamprogna, S.; Di Martino, G.; Ribas, J.C.R.; da Costa, M.P.; Halinen-Elemo, K.; Velarde, A. Application of the Welfare Quality protocol in pig slaughterhouses of five countries. Livestock Sci. 2016, 193, 78–87. [Google Scholar] [CrossRef]
- Walf, A.A.; Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2007, 2, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, C.L.; Gremel, C.M.; Groblewski, P.A. Drug-induced conditioned place preference and aversion in mice. Nat. Protoc. 2006, 1, 1662–1670. [Google Scholar] [CrossRef]
- Dawkins, M. Chapter Two—Animal Welfare and the Paradox of Animal Consciousness. In Advances in the Study of Behavior; Naguib, M., Brockmann, H.J., Mitani, J.C., Simmons, L.W., Barrett, L., Healy, S., Slater, P.J.B., Eds.; Academic Press: Cambridge, MA, USA, 2015; Volume 47, pp. 5–38. [Google Scholar]
- Gould, T.D.; Dao, D.T.; Kovacsics, C.E. The open field test. In Mood and Anxiety Related Phenotypes in Mice; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–20. [Google Scholar]
- Kulesskaya, N.; Voikar, V. Assessment of mouse anxiety-like behavior in the light–dark box and open-field arena: Role of equipment and procedure. Physiol. Behav. 2014, 133, 30–38. [Google Scholar] [CrossRef]
- Shekhar, A.; Katner, J.S. Dorsomedial hypothalamic GABA regulates anxiety in the social interaction test. Pharmacol. Biochem. Behav. 1995, 50, 253–258. [Google Scholar] [CrossRef]
- Beausoleil, N.J.; Fisher, P.; Littin, K.E.; Warburton, B.; Mellor, D.J.; Dalefield, R.R.; Cowan, P. A systematic approach to evaluating and ranking the relative Animal welfare impacts of wildlife control methods: Poisons used for lethal control of brushtail possums (Trichosurus vulpecula) in New Zealand. Wildlife Res. 2016, 43, 553–565. [Google Scholar] [CrossRef]
- Littin, K.; Fisher, P.; Beausoleil, N.J.; Sharp, T. Welfare aspects of vertebrate pest control and culling: Ranking control techniques for humaneness. Rev. Sci. Tech. 2014, 33, 281–289. [Google Scholar] [CrossRef]
- Gent, T.; Adamantidis, A. Sleep and Anaesthesia: Where are we now? Clin. Transl. Neurosci. 2017, 1. [Google Scholar] [CrossRef]
- Franks, N.P. General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 2008, 9, 370–386. [Google Scholar] [CrossRef] [PubMed]
- Coburn, M.; Maze, M.; Franks, N.P. The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury. Crit. Care Med. 2008, 36, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.; Gent, T.C.; Yang, Q.; Parker, S.; Vyssotski, A.L.; Wisden, W.; Brickley, S.G.; Franks, N.P. Altered activity in the central medial thalamus precedes changes in the neocortex during transitions into both sleep and propofol anesthesia. J. Neurosci. 2014, 34, 13326–13335. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.; Kim, S.; Shin, H.S.; Choi, J.H. The forced walking test: A novel test for pinpointing the anesthetic-induced transition in consciousness in mouse. J. Neurosci. Methods 2010, 188, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Dunnet, J.M.; Prys-Roberts, C.; Holland, D.E.; Browne, B.L. Propofol infusion and the suppression of consciousness: Dose requirements to induce loss of consciousness and to suppress response to noxious and non-noxious stimuli† †Presented in part to the Anaesthetic Research Society, Exeter, March 1991 (British Journal of Anaesthesia 1991; 67: 214-215P). Br. J. Anaesthesia 1994, 72, 29–34. [Google Scholar] [CrossRef]
- Vyazovskiy, V.V.; Olcese, U.; Hanlon, E.C.; Nir, Y.; Cirelli, C.; Tononi, G. Local sleep in awake rats. Nature 2011, 472, 443. [Google Scholar] [CrossRef]
- Huber, R.; Ghilardi, M.F.; Massimini, M.; Tononi, G. Local sleep and learning. Nature 2004, 430, 78. [Google Scholar] [CrossRef]
- Sherman, S.M. Thalamus plays a central role in ongoing cortical functioning. Nat. Neurosci. 2016, 19, 533. [Google Scholar] [CrossRef]
- Schuller, P.J.; Newell, S.; Strickland, P.A.; Barry, J.J. Response of bispectral index to neuromuscular block in awake volunteers. Br. J. Anaesth. 2015, 115 (Suppl. 1), i95–i103. [Google Scholar] [CrossRef] [Green Version]
- Musall, S.; Haiss, F.; Weber, B.; von der Behrens, W. Deviant Processing in the Primary Somatosensory Cortex. Cereb. Cortex 2017, 27, 863–876. [Google Scholar] [CrossRef]
- Palva, S.; Linkenkaer-Hansen, K.; Näätänen, R.; Palva, J.M. Early neural correlates of conscious somatosensory perception. J. Neurosci. 2005, 25, 5248–5258. [Google Scholar] [CrossRef] [PubMed]
- Kaskinoro, K.; Maksimow, A.; Georgiadis, S.; Långsjö, J.; Scheinin, H.; Karjalainen, P.; Jääskeläinen, S. Electroencephalogram reactivity to verbal command after dexmedetomidine, propofol and sevoflurane-induced unresponsiveness. Anaesthesia 2015, 70, 190–204. [Google Scholar] [CrossRef] [PubMed]
- Sreenivasan, V.; Kyriakatos, A.; Mateo, C.; Jaeger, D.; Petersen, C.C. Parallel pathways from whisker and visual sensory cortices to distinct frontal regions of mouse neocortex. Neurophotonics 2016, 4, 031203. [Google Scholar] [CrossRef] [PubMed]
- Avidan, M.S.; Zhang, L.; Burnside, B.A.; Finkel, K.J.; Searleman, A.C.; Selvidge, J.A.; Saager, L.; Turner, M.S.; Rao, S.; Bottros, M.; et al. Anesthesia Awareness and the Bispectral Index. N. Engl. J. Med. 2008, 358, 1097–1108. [Google Scholar] [CrossRef]
- Liotti, M.; Brannan, S.; Egan, G.; Shade, R.; Madden, L.; Abplanalp, B.; Robillard, R.; Lancaster, J.; Zamarripa, F.E.; Fox, P.T.; et al. Brain responses associated with consciousness of breathlessness (air hunger). Proc. Natl. Acad. Sci. USA 2001, 98, 2035–2040. [Google Scholar] [CrossRef] [Green Version]
- Gorman, J.M.; Papp, L.A.; Martinez, J.; Goetz, R.R.; Hollander, E.; Liebowitz, M.R.; Jordan, F. High-dose carbon dioxide challenge test in anxiety disorder patients. Biol. Psychiatry 1990, 28, 743–757. [Google Scholar] [CrossRef]
- Burkholder, T.H.; Niel, L.; Weed, J.L.; Brinster, L.R.; Bacher, J.D.; Foltz, C.J. Comparison of carbon dioxide and argon euthanasia: Effects on behavior, heart rate, and respiratory lesions in rats. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 448–453. [Google Scholar]
- Moosavi, S.H.; Binks, A.P.; Lansing, R.W.; Topulos, G.P.; Banzett, R.B.; Schwartzstein, R.M. Effect of inhaled furosemide on air hunger induced in healthy humans. Respir. Physiol. Neurobiol. 2007, 156, 1–8. [Google Scholar] [CrossRef]
- Gent, T.C.; Detotto, C.; Vyssotski, A.L.; Bettschart-Wolfensberger, R. Epileptiform activity during inert gas euthanasia of mice. PLoS ONE 2018, 13, e0195872. [Google Scholar] [CrossRef]
- Llonch, P.; Rodriguez, P.; Jospin, M.; Dalmau, A.; Manteca, X.; Velarde, A. Assessment of unconsciousness in pigs during exposure to nitrogen and carbon dioxide mixtures. Animal 2013, 7, 492–498. [Google Scholar] [CrossRef]
- Nijdam, E.; Arens, P.; Lambooij, E.; Decuypere, E.; Stegeman, J.A. Factors influencing bruises and mortality of broilers during catching, transport, and lairage. Poult. Sci. 2004, 83, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Geverink, N.A.; Bühnemann, A.; van de Burgwal, J.A.; Lambooij, E.; Blokhuis, H.J.; Wiegant, V.M. Responses of Slaughter Pigs to Transport and Lairage Sounds. Physiol. Behav. 1998, 63, 667–673. [Google Scholar] [CrossRef]
- Takao, K.; Miyakawa, T. Light/dark transition test for mice. JoVE J. Visual. Exp. 2006, 1, e104. [Google Scholar] [CrossRef] [PubMed]
- Castelhano-Carlos, M.J.; Baumans, V. The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. Lab. Anim. 2009, 43, 311–327. [Google Scholar] [CrossRef] [PubMed]
- Powell, K.; Ethun, K.; Taylor, D.K. The effect of light level, CO2 flow rate, and anesthesia on the stress response of mice during CO2 euthanasia. Lab. Anim. 2016, 45, 386–395. [Google Scholar] [CrossRef]
- Martin, J.E.; Christensen, K.; Vizzier-Thaxton, Y.; McKeegan, D.E. Effects of light on responses to low atmospheric pressure stunning in broilers. Br. Poult. Sci. 2016, 57, 585–600. [Google Scholar] [CrossRef]
- Grandin, T. Pig behavior studies applied to slaughter-plant design. Appl. Anim. Ethol. 1982, 9, 141–151. [Google Scholar] [CrossRef]
- Chloupek, P.; Voslářová, E.; Chloupek, J.; Bedáňová, I.; Pištěková, V.; Večerek, V. Stress in broiler chickens due to acute noise exposure. Acta Vet. Brno 2009, 78, 93–98. [Google Scholar] [CrossRef]
- Portfors, C.V. Types and Functions of Ultrasonic Vocalizations in Laboratory Rats and Mice. J. Am. Assoc. Lab. Anim. Sci. 2007, 46, 28–34. [Google Scholar]
- Alworth, L.C.; Buerkle, S.C. The effects of music on Animal physiology, behavior and welfare. Lab. Anim. 2013, 42, 54–61. [Google Scholar] [CrossRef]
- Kikusui, T.; Winslow, J.T.; Mori, Y. Social buffering: Relief from stress and anxiety. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 2215–2228. [Google Scholar] [CrossRef] [PubMed]
- Creamer-Hente, M.A.; Lao, F.K.; Dragos, Z.P.; Waterman, L.L. Sex- and Strain-related Differences in the Stress Response of Mice to CO(2) Euthanasia. J. Am. Assoc. Lab. Anim. Sci. 2018, 57, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Hickman, D.L. Home Cage Compared with Induction Chamber for Euthanasia of Laboratory Rats. J. Am. Assoc. Lab. Anim. Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Mackie, N.; McKeegan, D.E.F. Behavioural responses of broiler chickens during low atmospheric pressure stunning. Appl. Anim. Behav. Sci. 2016, 174, 90–98. [Google Scholar] [CrossRef]
- Jongman, E.C.; Barnett, J.L.; Hemsworth, P.H. The aversiveness of carbon dioxide stunning in pigs and a comparison of the CO2 stunner crate vs. the V-restrainer. Appl. Anim. Behav. Sci. 2000, 67, 67–76. [Google Scholar] [CrossRef]
- Ambrose, N.; Wadham, J.; Morton, D. Refinement of euthanasia. In Progress in the Reduction, Refinement and Replacement in Animal Experimentation; Balls, M., van Zeller, A., Halder, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 1159–1170. [Google Scholar]
- Krohn, T.C.; Hansen, A.K.; Dragsted, N. The impact of low levels of carbon dioxide on rats. Lab. Animals 2003, 37, 94–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makowska, I.J.; Vickers, L.; Mancell, J.; Weary, D.M. Evaluating methods of gas euthanasia for laboratory mice. Appl. Anim. Behav. Sci. 2009, 121, 230–235. [Google Scholar] [CrossRef]
- Bleymehl, K.; Pérez-Gómez, A.; Omura, M.; Moreno-Pérez, A.; Macías, D.; Bai, Z.; Johnson, R.S.; Leinders-Zufall, T.; Zufall, F.; Mombaerts, P. A Sensor for Low Environmental Oxygen in the Mouse Main Olfactory Epithelium. Neuron 2016, 92, 1196–1203. [Google Scholar] [CrossRef] [Green Version]
- Niel, L.; Stewart, S.A.; Weary, D.A. Effect of flow rate on aversion to gradual-fill carbon dioxide exposure in rats. Appl. Anim. Behav. Sci. 2008, 109, 77–84. [Google Scholar] [CrossRef]
- Kirkden, R.D.; Niel, L.; Weary, D.M. Aversion to carbon dioxide. Lab. Anim. 2005, 39, 453–455. [Google Scholar] [CrossRef] [Green Version]
- Moody, C.M.; Weary, D.M. Mouse aversion to isoflurane versus carbon dioxide gas. Appl. Anim. Behav. Sci. 2014, 158, 95–101. [Google Scholar] [CrossRef]
- Leach, M.C.; Bowell, V.A.; Allan, T.F.; Morton, D.B. Aversion to gaseous euthanasia agents in rats and mice. Comp. Med. 2002, 52, 249–257. [Google Scholar] [PubMed]
- Niel, L.; Weary, D.M. Behavioural responses of rats to gradual-fill carbon dioxide euthanasia and reduced oxygen concentrations. Appl. Anim. Behav. Sci. 2006, 100, 295–308. [Google Scholar] [CrossRef]
- Vollmer, L.L.; Strawn, J.R.; Sah, R. Acid–base dysregulation and chemosensory mechanisms in panic disorder: A translational update. Transl. Psychiatry 2015, 5, e572. [Google Scholar] [CrossRef] [PubMed]
- Hohlbaum, K.; Bert, B.; Dietze, S.; Palme, R.; Fink, H.; Thone-Reineke, C. Severity classification of repeated isoflurane anesthesia in C57BL/6JRj mice-Assessing the degree of distress. PLoS ONE 2017, 12, e0179588. [Google Scholar] [CrossRef] [PubMed]
- Yokota, S.; Suzuki, Y.; Hamami, K.; Harada, A.; Komai, S. Sex differences in avoidance behavior after perceiving potential risk in mice. Behav. Brain Funct. 2017, 13, 9. [Google Scholar] [CrossRef]
- Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A. Euthanasia of Neonatal Mice with Carbon Dioxide. Comp. Med. 2005, 55, 275–281. [Google Scholar]
- Klaunberg, B.A.; O’Malley, J.; Clark, T.; Davis, J.A. Euthanasia of Mouse Fetuses and Neonates. J. Am. Assoc. Lab. Anim. Sci. 2004, 43, 29–34. [Google Scholar]
- Avery, R.C.; Johlin, J.M. Relative Susceptibility of Adult and Young Mice to Asphyxiation. Proc. Soc. Exp. Biol. Med. 1932, 29, 1184–1186. [Google Scholar] [CrossRef]
- Reiss, M.; Haurowitz, F. Über das Verhalten Junger und Alter Tiere bei Erstickung. Klinische Wochenschrift 1929, 8, 743–744. [Google Scholar] [CrossRef]
- Gouveia, K.; Hurst, J.L. Optimising reliability of mouse performance in behavioural testing: The major role of non-aversive handling. Sci. Rep. 2017, 7, 44999. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.L.; West, R.S. Taming anxiety in laboratory mice. Nat. Methods 2010, 7, 825. [Google Scholar] [CrossRef] [PubMed]
- Wuri, L.; Agca, C.; Agca, Y. Euthanasia via CO2 inhalation causes premature cortical granule exocytosis in mouse oocytes and influences in vitro fertilization and embryo development. Mol. Reprod. Dev. 2019. [Google Scholar] [CrossRef] [PubMed]
- Gent, T.C.; Isler, S.; Wehrle, M.; Detotto, C.; Vyssotski, A.L.; Bettschart-Wolfensberger, R. Is xenon a suitable euthanasia agent for mice? Vet. Anaesth Analg. 2019. [Google Scholar] [CrossRef]
- Atland, P.D.; Brubach, H.F.; Parker, M.G. Effects of inert gases on tolerance of rats to hypoxia. J. Appl. Physiol. 1968, 24, 778–781. [Google Scholar] [CrossRef]
- Neuhaus, C.; Hinkelbein, J. Cognitive responses to hypobaric hypoxia: Implications for aviation training. Psychol. Res. Behav. Manag. 2014, 7, 297–302. [Google Scholar] [CrossRef]
- Arieli, R. Can the rat detect hypoxia in inspired air? Respir. Physiol. 1990, 79, 243–253. [Google Scholar] [CrossRef]
- Bertolus, J.B.; Nemeth, G.; Makowska, I.J.; Weary, D.M. Rat aversion to sevoflurane and isoflurane. Appl. Anim. Behav. Sci. 2015, 164, 73–80. [Google Scholar] [CrossRef]
- Wong, D.; Makowska, I.J.; Weary, D.M. Rat aversion to isoflurane versus carbon dioxide. Biol. Lett. 2013, 9, 20121000. [Google Scholar] [CrossRef]
- Makowska, I.J.; Weary, D.M. Rat aversion to induction with inhalant anaesthetics. Appl. Anim. Behav. Sci. 2009, 119, 229–235. [Google Scholar] [CrossRef]
- Leach, M.C.; Bowell, V.A.; Allan, T.F.; Morton, D.B. Degrees of aversion shown by rats and mice to different concentrations of inhalational anaesthetics. Vet. Rec. 2002, 150, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Guedes, S.R.; Valentim, A.M.; Antunes, L.M. Mice aversion to sevoflurane, isoflurane and carbon dioxide using an approach-avoidance task. Appl. Anim. Behav. Sci. 2017, 189, 91–97. [Google Scholar] [CrossRef]
- Hewett, T.A.; Kovacs, M.S.; Artwohl, J.E.; Bennett, B.T. A comparison of euthanasia methods in rats, using carbon dioxide in prefilled and fixed flow rate filled chambers. Lab. Anim. Sci. 1993, 43, 579–582. [Google Scholar] [PubMed]
- Orliaguet, G.; Vivien, B.; Langeron, O.; Bouhemad, B.; Coriat, P.; Riou, B. Minimum Alveolar Concentration of Volatile Anesthetics in Rats during Postnatal Maturation. Anesthesiol. J. Am. Soc. Anesthesiol. 2001, 95, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Carbone, L.; Carbone, E.T.; Yi, E.M.; Bauer, D.B.; Lindstrom, K.A.; Parker, J.M.; Austin, J.A.; Seo, Y.; Gandhi, A.D.; Wilkerson, J.D. Assessing cervical dislocation as a humane euthanasia method in mice. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 352–356. [Google Scholar] [PubMed]
- Kongara, K.; McIlhone, A.; Kells, N.; Johnson, C. Electroencephalographic evaluation of decapitation of the anaesthetized rat. Lab. Anim. 2014, 48, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Robins, A.; Pleiter, H.; Latter, M.; Phillips, C.J.C. The efficacy of pulsed ultrahigh current for the stunning of cattle prior to slaughter. Meat Sci. 2014, 96, 1201–1209. [Google Scholar] [CrossRef]
- Uk, g.t. Available online: https://goodnaturetraps.co.uk (accessed on 23 May 2019).
- Heyes, C.M.; Dawson, G. A demonstration of observational learning in rats using a bidirectional control. Q. J. Exp. Psychol. Sect. B 1990, 42, 59–71. [Google Scholar]
- Blaisdell, A.P.; Sawa, K.; Leising, K.J.; Waldmann, M.R. Causal Reasoning in Rats. Science 2006, 311, 1020–1022. [Google Scholar] [CrossRef] [Green Version]
- Litvin, Y.; Blanchard, D.C.; Blanchard, R.J. Rat 22kHz ultrasonic vocalizations as alarm cries. Behav. Brain Res. 2007, 182, 166–172. [Google Scholar] [CrossRef]
- Kikusui, T.; Takigami, S.; Takeuchi, Y.; Mori, Y. Alarm pheromone enhances stress-induced hyperthermia in rats. Physiol. Behav. 2001, 72, 45–50. [Google Scholar] [CrossRef]
- Brechbühl, J.; Moine, F.; Klaey, M.; Nenniger-Tosato, M.; Hurni, N.; Sporkert, F.; Giroud, C.; Broillet, M.-C. Mouse alarm pheromone shares structural similarity with predator scents. Proc. Natl. Acad. Sci. USA 2013, 110, 4762–4767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, C.; Yngvesson, J.; Nimmermark, S.; Sandström, V.; Algers, B. Killing of spent laying hens using CO2 in poultry barns. Anim. Welfare 2014, 23, 445–457. [Google Scholar] [CrossRef]
- McKeegan, D.E.; Abeyesinghe, S.M.; McLeman, M.A.; Lowe, J.C.; Demmers, T.G.; White, R.P.; Kranen, R.W.; van Bemmel, H.; Lankhaar, J.A.; Wathes, C.M. Controlled atmosphere stunning of broiler chickens. II. Effects on behaviour, physiology and meat quality in a commercial processing plant. Br. Poult. Sci. 2007, 48, 430–442. [Google Scholar] [CrossRef] [PubMed]
- McKeegan, D.E.F.; Smith, F.S.; Demmers, T.G.M.; Wathes, C.M.; Jones, R.B. Behavioral correlates of olfactory and trigeminal gaseous stimulation in chickens, Gallus domesticus. Physiol. Behav. 2005, 84, 761–768. [Google Scholar] [CrossRef]
- Battula, V.; Schilling, M.W.; Vizzier-Thaxton, Y.; Behrends, J.M.; Williams, J.B.; Schmidt, T.B. The effects of low-atmosphere stunning and deboning time on broiler breast meat quality. Poult. Sci. 2008, 87, 1202–1210. [Google Scholar] [CrossRef]
- Lambooij, E.; Reimert, H.G.M.; Verhoeven, M.T.W.; Hindle, V.A. Cone restraining and head-only electrical stunning in broilers: Effects on physiological responses and meat quality. Poult. Sci. 2014, 93, 512–518. [Google Scholar] [CrossRef] [Green Version]
- Gibson, T.J.; Taylor, A.H.; Gregory, N.G. Assessment of the effectiveness of head only and back-of-the-head electrical stunning of chickens. Br. Poult. Sci. 2016, 57, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Raj, A.B.; Smith, C.; Hickman, G. Novel method for killing poultry in houses with dry foam created using nitrogen. Vet. Rec. 2008, 162, 722–723. [Google Scholar] [CrossRef]
- Gurung, S.; White, D.; Archer, G.; Zhao, D.; Farnell, Y.; Byrd, J.A.; Peebles, E.D.; Farnell, M. Evaluation of Alternative Euthanasia Methods of Neonatal Chickens. Animals 2018, 8, 37. [Google Scholar] [CrossRef]
- Gentle, M.; Tilston, V. Nociceptors in the legs of poultry: Implications for potential pain in pre-slaughter shackling. Anim. Welfare 2000, 9, 227–236. [Google Scholar]
- Webster, A.B.; Fletcher, D.L. Assessment of the aversion of hens to different gas atmospheres using an approach-avoidance test. Appl. Anim. Behav. Sci. 2004, 88, 275–287. [Google Scholar] [CrossRef]
- Baker, B.I.; Torrey, S.; Widowski, T.M.; Turner, P.V.; Knezacek, T.D.; Nicholds, J.; Crowe, T.G.; Schwean-Lardner, K. Evaluation of carbon dioxide induction methods for the euthanasia of day-old cull broiler chicks. Poult. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Raj, M.; O’Callaghan, M.; Thompson, K.; Beckett, D.; Morrish, I.; Love, A.; Hickman, G.; Howson, S. Large scale killing of poultry species on farm during outbreaks of diseases: Evaluation and development of a humane containerised gas killing system. World Poult. Sci. J. 2008, 64, 227–243. [Google Scholar] [CrossRef]
- McKeegan, D.E.; Reimert, H.G.; Hindle, V.A.; Boulcott, P.; Sparrey, J.M.; Wathes, C.M.; Demmers, T.G.; Gerritzen, M.A. Physiological and behavioral responses of poultry exposed to gas-filled high expansion foam. Poult. Sci. 2013, 92, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Hindle, V.A.; Lambooij, E.; Reimert, H.G.M.; Workel, L.D.; Gerritzen, M.A. Animal welfare concerns during the use of the water bath for stunning broilers, hens, and ducks. Poult. Sci. 2010, 89, 401–412. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Animal Health and Welfare. Scientific Opinion on electrical requirements for poultry waterbath stunning equipment. EFSA J. 2014, 12, 3745. [Google Scholar] [CrossRef]
- Lambooij, E.; Reimert, H.; Workel, L.; Hindle, V. Head-cloaca controlled current stunning: Assessment of brain and heart activity and meat quality. Br. Poult. Sci. 2012, 53, 168–174. [Google Scholar] [CrossRef]
- TopKip. Odigos Head Only Stunning System. Available online: http://www.topkip.com/general-head-stunning (accessed on 23 May 2019).
- Bedanova, I.; Voslarova, E.; Chloupek, P.; Pistekova, V.; Suchy, P.; Blahova, J.; Dobsikova, R.; Vecerek, V. Stress in Broilers Resulting from Shackling. Poult. Sci. 2007, 86, 1065–1069. [Google Scholar] [CrossRef]
- Brandt, P.; Aaslyng, M.D. Welfare measurements of finishing pigs on the day of slaughter: A review. Meat Sci. 2015, 103, 13–23. [Google Scholar] [CrossRef]
- Brandt, P.; Rousing, T.; Herskin, M.S.; Aaslyng, M.D. Identification of post-mortem indicators of welfare of finishing pigs on the day of slaughter. Livestock Sci. 2013, 157, 535–544. [Google Scholar] [CrossRef]
- Edwards, L.N.; Grandin, T.; Engle, T.E.; Porter, S.P.; Ritter, M.J.; Sosnicki, A.A.; Anderson, D.B. Use of exsanguination blood lactate to assess the quality of pre-slaughter pig handling. Meat Sci. 2010, 86, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.B. Behaviour of pigs exposed to mixtures of gases and the time required to stun and kill them: Welfare implications. Vet. Rec. 1999, 144, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Troeger, K. Pig slaughtering in accordance with Animal welfare: Deficits and solutions. Tierarztliche Praxis Supplem. 2008, 36, S34–S38. [Google Scholar]
- Meyer, R.E. Physiologic Measures of Animal Stress during Transitional States of Consciousness. Animals 2015, 5, 702–716. [Google Scholar] [CrossRef] [Green Version]
- Velarde, A.; Gispert, M.; Faucitano, L.; Manteca, X.; Diestre, A. Survey of the effectiveness of stunning procedures used in Spanish pig abattoirs. Vet. Rec. 2000, 146, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Rault, J.L.; Hemsworth, P.H.; Cakebread, P.L.; Mellor, D.J.; Johnson, C.B. Evaluation of microwave energy as a humane stunning technique based on electroencephalography (EEG) of anaesthetised cattle. Anim. Welfare 2014, 23, 391–400. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner, A.R.; Axiak Flammer, S.; Beausoleil, N.J.; Berg, C.; Bettschart-Wolfensberger, R.; García Pinillos, R.; Golledge, H.D.R.; Marahrens, M.; Meyer, R.; Schnitzer, T.; et al. Humanely Ending the Life of Animals: Research Priorities to Identify Alternatives to Carbon Dioxide. Animals 2019, 9, 911. https://doi.org/10.3390/ani9110911
Steiner AR, Axiak Flammer S, Beausoleil NJ, Berg C, Bettschart-Wolfensberger R, García Pinillos R, Golledge HDR, Marahrens M, Meyer R, Schnitzer T, et al. Humanely Ending the Life of Animals: Research Priorities to Identify Alternatives to Carbon Dioxide. Animals. 2019; 9(11):911. https://doi.org/10.3390/ani9110911
Chicago/Turabian StyleSteiner, Aline R., Shannon Axiak Flammer, Ngaio J. Beausoleil, Charlotte Berg, Regula Bettschart-Wolfensberger, Rebeca García Pinillos, Huw D.R. Golledge, Michael Marahrens, Robert Meyer, Tobias Schnitzer, and et al. 2019. "Humanely Ending the Life of Animals: Research Priorities to Identify Alternatives to Carbon Dioxide" Animals 9, no. 11: 911. https://doi.org/10.3390/ani9110911
APA StyleSteiner, A. R., Axiak Flammer, S., Beausoleil, N. J., Berg, C., Bettschart-Wolfensberger, R., García Pinillos, R., Golledge, H. D. R., Marahrens, M., Meyer, R., Schnitzer, T., Toscano, M. J., Turner, P. V., Weary, D. M., & Gent, T. C. (2019). Humanely Ending the Life of Animals: Research Priorities to Identify Alternatives to Carbon Dioxide. Animals, 9(11), 911. https://doi.org/10.3390/ani9110911