Influence of Farm Management for Calves on Growth Performance and Meat Quality Traits Duration Fattening of Simmental Bulls and Heifers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Growth Performance, Slaughter Procedures, and Carcass Quality
2.2. Slaughter Procedures
2.3. Carcass Quality Traits Evaluation
2.4. Meat Quality Measurements
2.4.1. Physical and Sensory Quality Measurements
2.4.2. Proximate and Mineral Composition
2.4.3. Fatty Acids Composition
2.5. Statistical Analysis
3. Results and Discussion
3.1. Growth Performance
3.2. Carcass Quality Traits Evaluation
3.3. Physical and Sensory Quality Measurements
3.4. Proximate and Mineral Composition
3.5. Fatty Acids Composition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Albertí, P.; Panea, B.; Sañudo, C.; Olleta, J.L.; Ripoll, G.; Ertbjerg, P.; Christensen, M.; Gigli, S.; Failla, S.; Concetti, S.; et al. Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livest. Sci. 2008, 114, 19–30. [Google Scholar]
- Bureš, D.; Bartoň, L.; Zahrádková, R.; Teslík, V.; Krejčová, M. Chemical composition, sensory characteristics, and fatty acid profile of muscle from Aberdeen Angus, Charolais, Simmental, and Hereford bulls. Czech J. Anim. Sci. 2006, 51, 279–284. [Google Scholar]
- Bureš, D.; Bartoň, L. Growth performance, carcass traits and meat quality of bulls and heifers slaughtered at different ages. Czech J. Anim. Sci. 2012, 57, 34–43. [Google Scholar]
- Weglarz, A. Meat quality defined based on pH and colour depending on cattle category and slaughter season. Czech J. Anim. Sci. 2010, 55, 548–556. [Google Scholar] [CrossRef]
- Avilés, C.; Martínez, A.L.; Domenech, V.; Peña, F. Effect of feeding system and breed on growth performance, and carcass and meat quality traits in two continental beef breeds. Meat Sci. 2015, 107, 94–103. [Google Scholar]
- Karolyi, D.; Đikić, M.; Salajpal, K.; Jurić, I. Fatty acid composition of muscle and adipose tissue of beef cattle. Ital. J. Anim. Sci. 2009, 8, 264–266. [Google Scholar] [CrossRef]
- Loudon, K.M.; Tarr, G.; Pethick, D.W.; Lean, I.J.; Polkinghorne, R.; Mason, M.; Dunshea, F.R.; Gardner, G.E.; McGilchrist, P. The Use of Biochemical Measurements to Identify Pre-Slaughter Stress in Pasture Finished Beef Cattle. Animals 2019, 9, 503. [Google Scholar] [CrossRef]
- Monteils, V.; Sibraa, C.; Ellies-Ourya, M.-P.; Botreau, R.; De la Torre, A.; Laurent, C. A set of indicators to better characterize beef carcasses at the slaughterhouse level in addition to the EUROP system. Livest. Sci. 2017, 202, 44–51. [Google Scholar] [CrossRef]
- Ripoll, G.; Albertí, P.; Casasús, I.; Blanco, M. Instrumental meat quality of veal calves reared under three management systems and color evolution of meat stored in three packaging systems. Meat Sci. 2013, 93, 336–343. [Google Scholar] [CrossRef]
- Petrič, N.; Levart, A.; Čepon, M.; Žgur, S. Effect of production system on fatty acid composition of meat from Simmental bulls. Ital. J. Anim. Sci. 2005, 4, 125–127. [Google Scholar]
- McIntyre, B.L.; Tudor, G.D.; Read, D.; Smart, W.; Della Bosca, T.J.; Speijers, E.J.; Orchard, B. Effects of growth path, sire type, calving time and sex on growth and carcass characteristics of beef cattle in the agricultural area of Western Australia. Anim. Prod. Sci. 2009, 49, 504–514. [Google Scholar] [CrossRef] [Green Version]
- Senk, I.; Ostojic, G.; Jovanovic, V.; Tarjan, L.; Stankovski, S. Experiences in Developing Labs for a Supervisory Control and Data Acquisition Course for Undergraduate Mechatronics Education. Comput. Appl. Eng. Educ. 2015, 23, 54–62. [Google Scholar] [CrossRef]
- Stankovski, S.; Ostojic, G.; Senk, I.; Rakic-Skokovic, M.; Trivunovic, S.; Kucevic, D. Dairy cow monitoring by RFID. Sci. Agric. 2012, 69, 75–80. [Google Scholar] [CrossRef] [Green Version]
- McKean, J. The importance of traceability for public health and consumer protection. Rev. Sci. Tech. 2001, 20, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Kukolj, D.; Ostojić, D.; Stankovski, S.; Nemet, S. Technology Status Visualisation Using Patent Analytics: Multi-Compartment Refrigerators Case. J. Mechatron. Autom. Identif. Technol. 2019, 4, 1–8. [Google Scholar]
- Litwińczuk, Z.; Barłowska, J.; Florek, M.; Tabała, K. Slaughter value of heifers, cows and young bulls from commercial beef production in the central-eastern region of Poland. Anim. Sci. Pap. Rep. 2006, 24, 187–194. [Google Scholar]
- Nuernberg, K.; Dannenberger, D.; Nuernberg, G.; Ender, K.; Voigt, J.; Scollan, N.D.; Wood, J.D.; Nute, G.R.; Richardson, R.I. Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livest. Prod. Sci. 2005, 94, 137–147. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Beef Cattle, Seventh ed.; National Acdemies Press: Washington, DC, USA, 2000. [Google Scholar]
- Commission Regulation (EC). Commission Regulation (EC) No 1249/2008 of 10 December 2008 laying down detailed rules on the implementation of the Community scales for the classification of beef, pig and sheep carcasses and the reporting of prices thereof. Available online: https://op.europa.eu/en/publication-detail/-/publication/9716803a-8887-4956-9877-629031ec7723/language-en (accessed on 31 October 2019).
- International Organisation for Standardisation. ISO 2917: Meat and Meat Products, Measurement of pH (Reference Method); International Organisation for Standardisation: Geneva, Switzerland, 1999. [Google Scholar]
- Tomović, V.M.; Petrović, L.S.; Džinić, N.R. Effects of rapid chilling of carcasses and time of deboning on weight loss and technological quality of pork semimembranosus muscle. Meat Sci. 2008, 80, 1188–1193. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- De LEclairage, C.I. Colorimetry, official recommendations of the international commission on illumination. Publ. CIE 1976, No. (E-1.31). [Google Scholar]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef] [PubMed]
- American Meat Science Association. Meat Color Measurement Guidelines; American Meat Science Association: Campaign, IL, USA, 2012. [Google Scholar]
- Grau, R.; Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung im Muskel. Naturwissenschaften 1953, 40, 29–30. [Google Scholar] [CrossRef]
- Van Oeckel, M.J.; Warnants, N.; Boucqué, C.V. Comparison of different methods for measuring water holding capacity and juiciness of pork versus on-line screening methods. Meat Sci. 1999, 51, 313–320. [Google Scholar] [CrossRef]
- Tomović, V.M.; Šević, R.; Jokanović, M.; Šojić, B.; Škaljac, S.; Tasić, T.; Ikonić, P.; Lušnic Polak, M.; Polak, T.; Demšar, L. Quality traits of longissimus lumborum muscle from White Mangalica, Duroc x White Mangalica and Large White pigs reared under intensive conditions and slaughtered at 150 kg live weight: A comparative study. Arch. Anim. Breed 2016, 59, 401–415. [Google Scholar]
- Van Oeckel, M.J.; Warnants, N.; Boucqué, C.V. Pork tenderness estimation by taste panel, Warner-Bratzler shear force and on-line methods. Meat Sci. 1999, 53, 259–267. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Official Marbling Photographs; National Cattlemen’s Beef Association United States Department of Agriculture: Fort Collins, CO, USA, 2007.
- International Organisation for Standardisation. ISO 1442: Meat and Meat Products, Determination of Moisture Content (Reference Method); International Organisation for Standardisation: Geneva, Switzerland, 1997. [Google Scholar]
- International Organisation for Standardisation. ISO 937: Meat and Meat Products, Determination of Nitrogen Content (Reference Method); International Organisation for Standardisation: Geneva, Switzerland, 1978. [Google Scholar]
- International Organisation for Standardisation. ISO 1443: Meat and Meat Products, Determination of Total Fat Content; International Organisation for Standardisation: Geneva, Switzerland, 1973. [Google Scholar]
- International Organisation for Standardisation. ISO 936: Meat and Meat Products, Determination of Total Ash; International Organisation for Standardisation: Geneva, Switzerland, 1998. [Google Scholar]
- Tomović, V.M.; Petrović, L.S.; Tomović, M.S.; Kevrešan, Ž.S.; Džinić, N.R. Determination of mineral contents of semimembranosus muscle and liver from pure and crossbred pigs in Vojvodina (northern Serbia). Food Chem. 2011, 124, 342–348. [Google Scholar]
- International Organisation for Standardisation. ISO 13730: Meat and Meat Products, Determination of Total Phosphorus Content—Spectrometric Method; International Organisation for Standardisation: Geneva, Switzerland, 1996. [Google Scholar]
- International Organisation for Standardisation. ISO 1444: Meat and Meat Products, Determination of Free Fat Content; International Organisation for Standardisation: Geneva, Switzerland, 1996. [Google Scholar]
- Arneth, W. Über die Bestimmung des intramuskulären Fettes. Fleischwirtschaft 1998, 78, 218–220. [Google Scholar]
- Yurchenko, S.; Sats, A.; Poikalainen, V.; Karus, A. Method for determination of fatty acids in bovine colostrum using GC-FID. Food Chem. 2016, 212, 117–122. [Google Scholar] [CrossRef]
- Kaminiecki, H.; Wójcik, J.; Pilarczyk, R.; Lachowicz, K.; Sobczak, M.; Grzesiak, W.; Błaszczyk, P. Growth and carcass performance of bull calves born from Hereford, Simmental and Charolais cows sired by Charolais bulls. Czech J. Anim. Sci. 2009, 54, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Scollan, N.; Hocquette, J.F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef]
- Herva, T.; Huuskonen, A.; Virtala, A.M.; Peltoniemi, O. On-farm welfare and carcass fat score of bulls at slaughter. Livest. Sci. 2011, 138, 159–166. [Google Scholar] [CrossRef]
- Monteils, V.; Sibra, C. Rearing practices in each life period of beef heifers can be used to influence the carcass characteristics. Ital. J. Anim. Sci. 2019, 18, 734–745. [Google Scholar] [CrossRef] [Green Version]
- Chambaz, A.; Scheeder, M.R.L.; Kreuzer, M.; Dufey, P.-A. Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat Sci. 2003, 63, 491–500. [Google Scholar] [CrossRef]
- Pilarczyk, R. Concentrations of toxic and nutritional essential elements in meat from different beef breeds reared under intensive production systems. Biol. Trace Elem. Res. 2014, 158, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Florek, M.; Domaradzki, P.; Skałecki, P.; Stanek, P.; Litwińczuk, Z. Longissimus lumborum quality of Limousine suckler beef in relation to age and post-mortem vacuum ageing. Ann. Anim. Sci. 2015, 15, 785–797. [Google Scholar] [CrossRef]
- Bureš, D.; Bartoň, L. Performance, carcass traits and meat quality of Aberdeen Angus, Gascon, Holstein and Fleckvieh finishing bulls. Livest. Sci. 2018, 214, 231–237. [Google Scholar] [CrossRef]
- Sami, A.S.; Augustini, C.; Schwarz, F.J. Effects of feeding intensity and time on feed on performance, carcass characteristics and meat quality of Simmental bulls. Meat Sci. 2004, 67, 195–201. [Google Scholar] [CrossRef]
- Nogalski, Z.; Pogorzelska-Przybyłek, P.; Sobczuk-Szul, M.; Purwin, C.; Modzelewska-Kapituła, M. Effects of rearing system and feeding intensity on the fattening performance and slaughter value of young crossbred bulls. Ann. Anim. Sci. 2018, 18, 835–847. [Google Scholar] [CrossRef] [Green Version]
- Marti, S.; Realini, C.E.; Bach, A.; Pérez-Juan, M.; Devant, M. Effect of castration and slaughter age on performance, carcass, and meat quality traits of Holstein calves fed a high-concentrate diet. J. Anim. Sci. 2013, 91, 1129–1140. [Google Scholar] [CrossRef]
- Domaradzki, P.; Florek, M.; Staszowska, A.; Litwińczuk, Z. Evaluation of the Mineral Concentration in Beef from Polish Native Cattle. Biol. Trace Elem. Res. 2016, 171, 328–332. [Google Scholar] [CrossRef]
- Nogalski, Z.; Pogorzelska-Przybyłek, P.; Sobczuk-Szul, M.; Nogalska, A.; Modzelewska-Kapituła, M.; Purwin, C. Carcass characteristics and meat quality of bulls and steers slaughtered at two different ages. Ital. J. Anim. Sci. 2017, 17, 279–288. [Google Scholar] [CrossRef] [Green Version]
- De Smet, S.; Webb, E.C.; Claeys, E. Effect of dietary energy and protein levels on fatty acid composition of intramuscular fat in double-muscled Belgian Blue bulls. Meat sci. 2000, 56, 73–79. [Google Scholar] [CrossRef]
Parameter | 1st Group (Same Herd) | 2nd Group (Different Herds) | p-Values | ||||
---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Group | Gender | Group × Gender | |
IW (kg) | 142.4 ± 23.2 | 145.0 ± 9.4 | 148.3 ± 17.1 | 135.1 ± 11.6 | 0.672 | 0.262 | 0.099 |
TG (kg) | 426.3 b ± 33.8 | 402.5 c ± 25.9 | 465.4 a ± 23.2 | 382.8 c ± 31.0 | 0.250 | <0.001 | <0.001 |
SW (kg) | 568.8 b ± 35.3 | 547.5 b ± 24.8 | 613.8 a ± 31.78 | 517.9 c ± 24.2 | 0.369 | <0.001 | <0.001 |
DIF (days) | 416.3 b ± 19.9 | 410.7 b ± 16.7 | 421.8 b ± 17.5 | 456.8 a ± 12.9 | <0.001 | <0.001 | <0.001 |
SA (days) | 491.6 b ± 27.6 | 491.7 b ± 14.5 | 512.2 ab ± 43.3 | 530.3 a ± 9.9 | <0.001 | 0.253 | 0.257 |
Parameter | 1st Group (Calves from the Same Herd) | 2nd Group (Calves from the Different Herds) | p-Values | ||||
---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Group | Gender | Group × Gender | |
HCW (kg) | 354.0 b ± 18.5 | 327.9 c ± 16.7 | 379.4 a ± 23.4 | 309.7 c ± 39.1 | 0.634 | <0.001 | <0.001 |
Dressing (%) | 62.3 ± 1.7 | 59.9 ± 1.5 | 61.8 ± 1.2 | 59.7 ± 6.2 | 0.726 | 0.271 | 0.877 |
Conformation | 2.8 ± 0.4 | 2.6 ± 0.4 | 2.8 ± 0.4 | 2.5 ± 0.4 | 0.869 | 0.141 | 0.620 |
Fat cover | 4.0 a ± 0.4 | 3.8 ab ± 0.2 | 4.0 a ± 0.2 | 3.6 b ± 0.4 | 0.394 | <0.001 | 0.204 |
Parameter | 1st Group (Same Herd) | 2nd Group (Different Herds) | p-Values | ||||
---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Group | Gender | Group × Gender | |
pH24 | 5.50 a ± 0.04 | 5.45 ab ± 0.02 | 5.50 a ± 0.04 | 5.44 b ± 0.10 | 0.817 | <0.001 | 0.817 |
L* | 38.22 bc ± 1.32 | 39.02 ab ± 1.57 | 39.76 a ± 1.89 | 37.73 c ± 1.04 | 0.780 | 0.157 | <0.001 |
a* | 19.60 c ± 1.02 | 22.13 a ± 1.11 | 20.79 b ± 1.00 | 19.81 bc ± 2.01 | 0.158 | 0.054 | <0.001 |
b* | 8.84 b ± 0.83 | 10.16 a ± 0.89 | 9.90 a ± 0.70 | 8.42 b ± 1.05 | 0.192 | 0.756 | <0.001 |
C* | 21.51 c ± 1.23 | 24.36 a ± 1.37 | 23.03 b ± 1.16 | 21.53 c ± 2.23 | 0.158 | 0.141 | <0.001 |
h | 24.20 b ± 1.29 | 24.54 ab ± 0.86 | 25.42 a ± 0.94 | 22.93 c ± 1.13 | 0.523 | <0.001 | <0.001 |
λ(nm) | 609.16 b ± 1.90 | 609.34 b ± 1.08 | 607.60 c ± 1.35 | 611.47 a ± 1.97 | 0.546 | <0.001 | <0.001 |
WHC-M (cm2) | 4.10 b ± 0.45 | 3.98 b ± 0.19 | 4.64 a ± 0.46 | 4.25 b ± 0.39 | <0.001 | <0.001 | 0.244 |
WHC–T (cm2) | 11.37 a ± 0.40 | 11.15 ab ± 0.33 | 11.42 a ± 0.42 | 11.03 b ± 0.33 | 0.744 | <0.001 | 0.432 |
WHC–RZ (cm2) | 7.26 a ± 0.59 | 7.18 ab ± 0.44 | 6.78 b ± 0.52 | 6.79 b ± 0.53 | <0.001 | 0.805 | 0.763 |
WHC-M/RZ | 0.57 b ± 0.10 | 0.56 b ± 0.06 | 0.70 a ± 0.12 | 0.63 ab ± 0.10 | <0.001 | 0.190 | 0.396 |
WHC-M/T | 0.36 b ± 0.04 | 0.36 b ± 0.02 | 0.41 a ± 0.04 | 0.39 ab ± 0.04 | <0.001 | 0.232 | 0.413 |
Cooking loss (%) | 38.34 a ± 1.75 | 33.93 b ± 1.46 | 37.17 a ± 1.83 | 33.30 b ± 2.24 | 0.099 | <0.001 | 0.610 |
WBSF (N) | 56.03 b ± 6.65 | 52.98 bc ± 3.96 | 61.02 a ± 6.76 | 50.13 c ± 5.34 | 0.526 | <0.001 | <0.001 |
Color sensoric(1–8) | 4.50 ± 1.15 | 4.50 ± 0.60 | 4.50 ± 0.83 | 4.54 ± 0.58 | 0.930 | 0.930 | 0.930 |
Marbling scores(1–7) | 4.08 a ± 1.00 | 3.25 b ± 0.45 | 3.00 b ± 0.74 | 4.17 a ± 0.83 | 0.713 | 0.464 | <0.001 |
Parameter | 1st Group (Same Herd) | 2nd Group (Different Herds) | p-Values | ||||
---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Group | Gender | Group × Gender | |
Moisture | 73.21 b ± 0.94 | 72.24 bc ± 0.99 | 74.54 a ± 1.32 | 72.11 c ± 1.43 | 0.086 | <0.001 | <0.001 |
Protein | 21.32 ± 0.45 | 21.07 ± 0.72 | 21.18 ± 0.27 | 21.38 ± 0.68 | 0.625 | 0.868 | 0.165 |
Total fat (IMF) | 4.38 ab ± 1.30 | 5.40 a ± 1.59 | 3.00 b ± 1.37 | 5.19 a ± 1.68 | 0.071 | <0.001 | 0.185 |
Total ash | 1.04 c ± 0.04 | 1.14 a ± 0.03 | 1.08 b ± 0.06 | 1.13 ab ± 0.07 | 0.254 | <0.001 | 0.088 |
Parameter | 1st Group (Same Herd) | 2nd Group (Different Herds) | p-Values | ||||
---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Group | Gender | Group × Gender | |
P | 152.28 a ± 14.92 | 106.91 b ± 5.37 | 157.97 a ± 8.15 | 110.26 b ± 11.96 | 0.152 | <0.001 | 0.708 |
Ca | 4.99 a ± 0.64 | 4.02 c ± 0.86 | 4.76 ab ± 0.73 | 4.23 bc ± 1.05 | 0.978 | <0.001 | 0.366 |
Na | 51.90a ± 4.01 | 48.06 b ± 5.62 | 47.67 b ± 2.56 | 47.50 b ± 3.73 | 0.050 | 0.099 | 0.130 |
Mg | 24.61 a ± 1.98 | 22.07 bc ± 1.33 | 21.03 c ± 3.20 | 23.78 ab ± 1.94 | 0.153 | 0.869 | <0.001 |
Fe | 1.89 b ± 0.18 | 2.09 b ± 0.36 | 1.91 b ± 0.24 | 2.46 a ± 0.34 | <0.001 | <0.001 | <0.001 |
Zn | 6.26 a ± 0.89 | 5.26 b ± 0.50 | 5.21 b ± 0.62 | 5.35 b ± 0.57 | <0.001 | <0.001 | <0.001 |
Cu | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.921 | 0.370 | 0.728 |
Parameter | 1st Group (Same Herd) | 2nd Group (Different Herds) | p-Values | ||||
---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Group | Gender | Group × Gender | |
C14:0 | 2.56 a ± 0.39 | 2.18 b ± 0.26 | 2.29 ab ± 0.29 | 2.54 ab ± 0.65 | 0.723 | 0.594 | <0.001 |
C16:0 | 25.03 a ± 1.33 | 24.23 ab ± 1.18 | 23.32 b ± 1.68 | 25.36 a ± 1.43 | 0.483 | 0.137 | <0.001 |
C18:0 | 19.28 a ± 1.92 | 16.37 c ± 1.69 | 18.50 ab ± 3.52 | 17.06 bc ± 1.52 | 0.944 | <0.001 | 0.274 |
C18:1 | 42.21 bc ± 1.45 | 44.98 a ± 2.86 | 40.26 c ± 2.14 | 42.75 b ± 2.97 | <0.001 | <0.001 | 0.844 |
C18:2 | 4.01 a ± 0.37 | 3.09 b ± 0.70 | 4.08 a ± 0.53 | 3.13 b ± 0.41 | 0.722 | <0.001 | 0.885 |
∑SFAs | 46.88 a ± 1.59 | 42.68 b ± 1.91 | 44.11 b ± 4.39 | 44.00 b ± 2.10 | 0.362 | <0.001 | <0.001 |
∑UFAs | 46.39 ab ± 1.33 | 47.83 a ± 2.36 | 44.84 b ± 1.55 | 45.38 b ± 3.04 | <0.001 | 0.123 | 0.476 |
∑OFAs | 6.74 b ± 1.75 | 9.49 a ± 3.41 | 11.05 a ± 3.98 | 10.62 a ± 3.57 | <0.001 | 0.226 | 0.101 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kučević, D.; Papović, T.; Tomović, V.; Plavšić, M.; Jajić, I.; Krstović, S.; Stanojević, D. Influence of Farm Management for Calves on Growth Performance and Meat Quality Traits Duration Fattening of Simmental Bulls and Heifers. Animals 2019, 9, 941. https://doi.org/10.3390/ani9110941
Kučević D, Papović T, Tomović V, Plavšić M, Jajić I, Krstović S, Stanojević D. Influence of Farm Management for Calves on Growth Performance and Meat Quality Traits Duration Fattening of Simmental Bulls and Heifers. Animals. 2019; 9(11):941. https://doi.org/10.3390/ani9110941
Chicago/Turabian StyleKučević, Denis, Tamara Papović, Vladimir Tomović, Miroslav Plavšić, Igor Jajić, Saša Krstović, and Dragan Stanojević. 2019. "Influence of Farm Management for Calves on Growth Performance and Meat Quality Traits Duration Fattening of Simmental Bulls and Heifers" Animals 9, no. 11: 941. https://doi.org/10.3390/ani9110941
APA StyleKučević, D., Papović, T., Tomović, V., Plavšić, M., Jajić, I., Krstović, S., & Stanojević, D. (2019). Influence of Farm Management for Calves on Growth Performance and Meat Quality Traits Duration Fattening of Simmental Bulls and Heifers. Animals, 9(11), 941. https://doi.org/10.3390/ani9110941