Emotional Transfer in Human–Horse Interaction: New Perspectives on Equine Assisted Interventions
Abstract
:Simple Summary
Abstract
1. Introduction
2. From the Encounter to the Relationship: When Humans and Animals Interact
2.1. Human–Animal Bond: A Theoretical Framework
2.2. How Horses Perceive Human World
3. The Equine Social and Emotional Intelligence
3.1. The Emotional Side of Human–Horse Relationship (HHR)
3.2. Horses’ Perception and Communication of Emotions
4. Horses in Equine Assisted Interventions (EAIs)
4.1. Exploring the Hypotheses beyond Positive Outcomes of EAIs: The Emotional Transfer Hypothesis
4.2. Measuring the Emotional Transfer: Nonlinear Dynamical Methods Applied to Physiological Human-Horse Signs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Levinson, B.M. Pet-Oriented Child Psychotherapy, 1st ed.; Charles C Thomas: Springfield, IL, USA, 1969. [Google Scholar]
- Kruger, K.A.; Serpell, J.A. Animal-assisted interventions in mental health: Definitions and theoretical foundations. In Handbook on Animal-Assisted Therapy: Theoretical Foundations and Guidelines for Practice, 3rd ed.; Fine, A.H., Ed.; Elsevier Inc.: San Diego, CA, USA, 2010. [Google Scholar] [CrossRef]
- Jegatheesan, B.; Beetz, A.; Ormerod, E.; Johnson, R.; Fine, A.; Yamazaki, K.; Dudzik, C.; Garcia, R.M.; Winkle, M.; Choi, G. The IAHAIO Definitions for Animal Assisted Intervention and Guidelines for Wellness of Animals Involved in AAI; IAHAIO Whitepaper; The International Association of Human-Animal Interaction Organizations: Seattle, WA, USA, 2014; updated for 2018. [Google Scholar]
- Metcalf, O.; Varker, T.; Forbes, D.; Phelps, A.; Dell, L.; Dibattista, A.; Ralph, N.; O’Donnell, M. Efficacy of fifteen emerging interventions for the treatment of post-traumatic stress disorder: A systematic review. J. Trauma. Stress 2016, 29, 88–92. [Google Scholar] [CrossRef]
- Grandgeorge, M.; Hausberger, M. Human-animal relationships: From daily life to animal-assisted therapies. Annali dell’Istituto Superiore di Sanità 2011, 47, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Trzmiel, T.; Purandare, B.; Michalak, M.; Zasadzka, E.; Pawlaczyk, M. Equine Assisted Activities and Therapies in children with Autism Spectrum Disorder: A systematic review and a meta-analysis. Complement. Ther. Med. 2018, 42, 104–113. [Google Scholar] [CrossRef] [PubMed]
- White-Lewis, S.; Russell, C.; Johnson, R.; Cheng, A.L.; McClain, N. Equine-assisted therapy intervention studies targeting physical symptoms in adults: A systematic review. Appl. Nurs. Res. 2017, 38, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Hoagwood, K.E.; Acri, M.; Morrissey, M.; Peth-Pierce, R. Animal-assisted therapies for youth with or at risk for mental health problems: A systematic review. Appl. Dev. Sci. 2017, 21, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kendall, E.; Maujean, A.; Pepping, C.A.; Downes, M.; Lakhani, A.; Byrne, J.; Macfarlane, K. A systematic review of the efficacy of equine-assisted interventions on psychological outcomes. Eur. J. Psychother. Couns. 2015, 17, 57–79. [Google Scholar] [CrossRef]
- Dabelko-Schoeny, H.; Phillips, G.; Darrough, E.; DeAnna, S.; Jarden, M.; Johnson, D.; Lorch, G. Equine-Assisted Intervention for people with dementia. Anthrozoos 2014, 27, 141–155. [Google Scholar] [CrossRef]
- Gabriels, R.L.; Pan, Z.; Dechant, B.; Agnew, J.A.; Brim, N.; Mesibov, G. Randomized controlled trial of Therapeutic Horseback Riding in children and adolescents with Autism Spectrum Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 541–549. [Google Scholar] [CrossRef]
- Borgi, M.; Loliva, D.; Cerino, S.; Chiarotti, F.; Venerosi, A.; Bramini, M.; Nonnis, E.; Marcelli, M.; Vinti, C.; De Santis, C. Effectiveness of a standardized equine-assisted therapy program for children with autism spectrum disorder. J. Autism Dev. Disord. 2016, 46, 1–9. [Google Scholar] [CrossRef]
- Lechner, H.E.; Feldhaus, S.; Gudmundsen, L.; Hegemann, D.; Michel, D.; Zäch, G.A.; Knecht, H. The short-term effect of hippotherapy on spasticity in patients with spinal cord injury. Spinal Cord. 2003, 41, 502–505. [Google Scholar] [CrossRef]
- Wilkie, K.D.; Germain, S.; Theule, J. Evaluating the efficacy of Equine Therapy among at-risk youth: A meta-analysis. Anthrozoos 2016, 29, 377–393. [Google Scholar] [CrossRef]
- Lessick, M.; Shinaver, R.; Post, K.M.; Rivera, J.E.; Lemon, B. Therapeutic horseback riding. AWHONN Lifelines 2004, 8, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Kendall, E.; Maujean, A.; Pepping, C.A.; Wright, J.J. Hypotheses about the psychological benefits of horses. Explore NY 2014, 10, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Favali, V.; Milton, M. Disabled horse-rider’s experience of horse-riding: Exploring the therapeutic benefits of contact with animals. Existent. Anal. 2010, 21, 251–262. [Google Scholar]
- Kersten, G.; Thomas, L. Equine Assisted Psychotherapy: Training Manual; Equine Assisted Growth and Learning Association (EAGALA): Santaquin, UT, USA, 2000. [Google Scholar]
- Lagarde, J.; Peham, C.; Licka, T.; Kelso, J.S. Coordination dynamics of the horse-rider system. J. Mot. Behav. 2005, 37, 418–424. [Google Scholar] [CrossRef]
- Payne, E.; Boot, M.; Starling, M.; Henshall, C.; McLean, A.; Bennett, P.; McGreevy, P. Evidence of horsemanship and dogmanship and their application in veterinary contexts. Vet. J. 2015, 204, 247–254. [Google Scholar] [CrossRef]
- Payne, E.; DeAraugo, J.; Bennett, P.; McGreevy, P. Exploring the existence and potential underpinnings of dog–human and horse–human attachment bonds. Behav. Process. 2016, 125. [Google Scholar] [CrossRef]
- Hinde, R.A. Towards Understanding Relationships; Academic Press: London, UK, 1979. [Google Scholar] [CrossRef]
- De Santis, M.; Contalbrigo, L.; Borgi, M.; Cirulli, F.; Luzi, F.; Redaelli, V.; Stefani, A.; Toson, M.; Odore, R.; Vercelli, C.; et al. Equine Assisted Interventions (EAIs): Methodological considerations for stress assessment in horses. Vet. Sci. 2017, 4, 44. [Google Scholar] [CrossRef]
- Clayton, H.M.; Hobbs, S.J. The role of biomechanical analysis of horse and rider in equitation science. Appl. Anim. Behav. Sci. 2017, 190, 123–132. [Google Scholar] [CrossRef]
- Williams, J.; Tabor, G. Rider impacts on equitation. Appl. Anim. Behav. Sci. 2017, 190, 28–42. [Google Scholar] [CrossRef]
- Sterba, J.A.; Rogers, B.T.; France, A.P.; Vokes, D.A. Horseback riding in children with cerebral palsy: Effect on gross motor function. Dev. Med. Child. Neurol. 2002, 44, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, H.; Ohtani, N.; Ohta, M. Three-dimensional analysis of horse and human gaits in therapeutic riding. Appl. Anim. Behav. Sci. 2011, 135, 271–276. [Google Scholar] [CrossRef]
- Viry, S.; Sleimen-Malkoun, R.; Temprado, J.J.; Frances, J.P.; Berton, E.; Laurent, M.; Nicol, C. Patterns of horse-rider coordination during endurance race: A dynamical system approach. PLoS ONE 2013, 8, e71804. [Google Scholar] [CrossRef] [PubMed]
- Wolframm, I.A.; Bosga, J.; Meulenbroek, R.G. Coordination dynamics in horse-rider dyads. Hum. Mov. Sci. 2013, 32, 157–170. [Google Scholar] [CrossRef]
- Keeling, L.J.; Jonare, L.; Lanneborn, L. Investigating horse–human interactions: The effect of a nervous human. Vet. J. 2009, 181, 70–71. [Google Scholar] [CrossRef]
- Hawson, L.A. Compliance, cooperation, conditioning and cognition: Four Cs in the assessment of the horse-rider dyad. Vet. J. 2012, 192, 4. [Google Scholar] [CrossRef]
- Barsalou, L.W.; Niedenthal, P.M.; Barbey, A.K.; Ruppert, J.A. Social embodiment. Psychol. Learn. Motiv. 2003, 43, 43–92. [Google Scholar]
- Niedenthal, P.M.; Brauer, M. Social functionality of human emotion. Annu. Rev. Psychol. 2012, 63, 259–285. [Google Scholar] [CrossRef]
- Munsters, C.C.; Visser, K.E.; van den Broek, J.; van Oldruitenborgh-Oosterbaan, M.M.S. The influence of challenging objects and horse-rider matching on heart rate, heart rate variability and behavioural score in riding horses. Vet. J. 2012, 192, 75–80. [Google Scholar] [CrossRef]
- Crews, D. The Bond between a Horse and a Human. Nature Precedings Arizona State University, 2009. Available online: http://hdl.handle.net/10101/npre.2009.3454.1 (accessed on 5 December 2018).
- Guidi, A.; Lanatà, A.; Baragli, P.; Valenza, G.; Scilingo, E.P. A wearable system for the evaluation of the human-horse interaction: A preliminary study. Electronics 2016, 5, 63. [Google Scholar] [CrossRef]
- Srinivasan, S.M.; Cavagnino, D.T.; Bhat, A.N. Effects of equine therapy on individuals with autism spectrum disorder: A systematic review. Rev. J. Autism. Dev. Disord. 2018, 5, 156–157. [Google Scholar] [CrossRef] [PubMed]
- Martín-Valero, R.; Vega-Ballón, J.; Perez-Cabezas, V. Benefits of hippotherapy in children with cerebral palsy: A narrative review. Eur. J. Paediatr. Neurol. 2018, 22, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, A.; Tzoufi, M.; Ntzani, E.; Varvarousis, D.; Beris, A.; Ploumis, A. Therapeutic effects of horseback riding interventions: A systematic review and meta-analysis. Am. J. Phys. Med. Rehab. 2017, 96, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.T.; Dakin, E.; McLure, M. Narrative synthesis of equine-assisted psychotherapy literature: Current knowledge and future research directions. Health Soc. Care Community 2016, 24, 225–246. [Google Scholar] [CrossRef] [PubMed]
- American Veterinary Medical Association. Statement from the committee on the human-animal bond. JAMVA 1998, 212, 1675. [Google Scholar]
- Bowlby, J. Attachment and Loss: Attachment, Anxiety and Anger; Hogarth Press: London, UK, 1969; Volume I. [Google Scholar]
- Porges, S.W. The role of social engagement in attachment and bonding: A phylogenetic perspective. In Attachment and Bonding: A New Synthesis; Carter, C.S., Ahnert, L., Grossman, K.E., Hrdy, S.B., Lamb, M.E., Porges, S.W., Sachser, N., Eds.; MIT Press: Cambridge, MA, USA, 2003; pp. 85–100. [Google Scholar]
- Baylis, P.J. The neurobiology of affective interventions: A cross-theoretical model. Clin. Soc. Work J. 2006, 34, 61–81. [Google Scholar] [CrossRef]
- Yorke, J.; Adams, C.; Coady, N. Therapeutic value of equine-human bonding in recovery from trauma. Anthrozoos 2008, 21, 17–30. [Google Scholar] [CrossRef]
- Barba, B. The positive influence of animals: Animal-assisted therapy in acute care. Clin. Nurse Spec. 1995, 9, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Hosey, G.; Melfi, V. Human-animal interactions, relationships and bonds: A review and analysis of the literature. IJCP 2014, 27. [Google Scholar]
- Hinde, R.A. Individuals, Relationships and Culture; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Russow, L.M. Ethical implications of the human-animal bond in the laboratory. ILAR J. 2002, 43, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Luna, D.; Tadich, T.A. Why Should Human-Animal Interactions Be Included in Research of Working Equids’ Welfare? Animals 2019, 9, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausberger, M.; Stomp, M.; Sankey, C.; Brajon, S.; Lunel, C.; Henry, S. Mutual interactions between cognition and welfare: The horse as an animal model. Neurosci. Biobehav. Rev. 2019, 107, 540–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausberger, M.; Roche, H.; Henry, S.; Visser, E.K. A review of the human–horse relationship. Appl. Anim. Behav. Sci. 2008, 109, 1–24. [Google Scholar] [CrossRef]
- Boivin, X.; LeNeindre, P.; Chupin, J.M.; Garel, J.P.; Trillat, C. Influence of breed and early management on ease of handling and open-field behaviour of cattle. Appl. Anim. Behav. Sci. 1992, 32, 313–323. [Google Scholar] [CrossRef]
- Markowitz, T.M.; Dally, M.R.; Gursky, K.; Price, E.O. Early handling increases lamb affinity for humans. Anim. Behav. 1998, 55, 573–587. [Google Scholar] [CrossRef] [Green Version]
- Krohn, C.; Jago, J.G.; Boivin, X. The effect of early handling on the socialisation of young calves to humans. Appl. Anim. Behav. Sci. 2001, 74, 121–133. [Google Scholar] [CrossRef]
- Henry, S.; Richard-Yris, M.A.; Hausberger, M. Influence of various early human-foal interferences on subsequent human- foal relationship. Dev. Psychobiol. 2006, 48, 712–718. [Google Scholar] [CrossRef]
- Sankey, C.; Richard-Yris, M.A.; Leroy, H.; Henry, S.; Hausberger, M. Positive interactions lead to lasting positive memories in horses, Equus. Caballus. Anim. Behav. 2010, 79, 869–875. [Google Scholar] [CrossRef]
- Clutton-Brock, J. Domesticated Animals from Early Times; Heinemann & British Museum (Natural History): London, UK, 1981. [Google Scholar]
- Krueger, K.; Flauger, B.; Farmer, K.; Maros, K. Horses (Equus caballus) use human local enhancement cues and adjust to human attention. Anim. Cogn. 2011, 14, 187–201. [Google Scholar] [CrossRef]
- Sankey, C.; Henry, S.; André, N.; Richard-Yris, M.A.; Hausberger, M. Do horses have a concept of person? PLoS ONE 2011, 6, e18331. [Google Scholar] [CrossRef]
- Proops, L.; McComb, K. Attributing attention: The use of human-given cues by domestic horses (Equus caballus). Anim. Cogn. 2010, 13, 197–205. [Google Scholar] [CrossRef]
- Proops, L.; Walton, M.; McComb, K. The use of human-given cues by domestic horses, Equus caballus, during an object choice task. Anim. Behav. 2010, 79, 1205–1209. [Google Scholar] [CrossRef]
- Kaminski, J.; Riedel, J.; Call, J.; Tomasello, M. Domestic goats (Capra hircus) follow gaze direction and use social cues in an object choice task. Anim. Behav. 2005, 69, 11–18. [Google Scholar] [CrossRef]
- Miklösi, Á.; Polgárdi, R.; Topál, J.; Csányi, V. Use of experimenter-given cues in dogs. Anim. Cogn. 1998, 1, 113–121. [Google Scholar] [CrossRef]
- Lovrovich, P.; Sighieri, C.; Baragli, P. Following human-given cues or not? Horses (Equus caballus) get smarter and change strategy in a delayed three choice task. Appl. Anim. Behav. Sci. 2015, 166, 80–88. [Google Scholar] [CrossRef]
- Bates, E.; Benigni, L.; Bretherton, I.; Camaioni, L.; Volterra, V. The Emergence of Symbols: Cognition and Communication in Infancy; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Emery, N.J. The eyes have it: The neuroethology, function and evolution of social gaze. Neurosc. Biobehav. Rev. 2000, 24, 581–604. [Google Scholar] [CrossRef]
- Pika, S. The case of referential gestural signaling. Where next? Commun. Integr. Biol. 2012, 5, 578–582. [Google Scholar] [CrossRef]
- Malavasi, R.; Huber, L. Evidence of heterospecific referential communication from domestic horses (Equus caballus) to humans. Anim. Cogn. 2016, 19, 899–909. [Google Scholar] [CrossRef]
- Tomasello, M. Why don’t apes point? In Roots of Human Sociality: Culture, Cognition and Interaction, 1st ed.; Enfield, N.J., Levinson, S.C., Eds.; Berg: Oxford, UK, 2006; pp. 506–524. [Google Scholar]
- Proops, L.; McComb, K.; Reby, D. Cross-modal individual recognition in domestic horses (Equus caballus). PNAS 2009, 106, 947–951. [Google Scholar] [CrossRef] [Green Version]
- Lampe, J.; Andre, J. Cross-modal recognition of human individuals in domestic horses (Equus caballus). Anim. Cogn. 2012, 15, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Proops, L.; McComb, K. Cross-modal individual recognition in domestic horses (Equus caballus) extends to familiar humans. Proc. R. Soc. B Biol. Sci. 2012, 279, 3131–3138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvert, G.A. Crossmodal processing in the human brain: Insights from functional neuroimaging studies. Cereb. Cortex 2001, 11, 1110–1123. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, W.D. The evolution of altruistic behavior. Am. Nat. 1963, 97, 354–356. [Google Scholar] [CrossRef] [Green Version]
- Trivers, R.L. Parent-offspring conflict. Integr. Compar. Biol. 1974, 14, 249–264. [Google Scholar] [CrossRef] [Green Version]
- Feldman, R.; Weller, A.; Zagoory-Sharon, O.; Levine, A. Evidence for a neuroendocrinological foundation of human affiliation: Plasma oxytocin levels across pregnancy and the post-partum period predict mother-infant bonding. Psychol. Sci. 2007, 18, 965–970. [Google Scholar] [CrossRef]
- Todd, R.; Lewis, M.D. Self-regulation in the developing bra. In Child Neuropsychology: Concepts, Theory and Practice, 1st ed.; Reed, J., Rogers, J.W., Eds.; Blackwell: London, UK, 2008; pp. 285–315. [Google Scholar]
- Lowinger, S.; Dimitrovsky, L.; Strauss, H.; Mogilner, C. Maternal social and physical contact: Links to early infant attachment behaviors. J. Genet. Psychol. 1995, 156, 461–476. [Google Scholar] [CrossRef]
- Anisfeld, E.; Casper, V.; Nozyce, M.; Cunningham, N. Does infant carrying promote attachment: An experimental study of the effects of increased physical contact on the development of attachment. Child Dev. 1990, 61, 1617–1627. [Google Scholar] [CrossRef]
- Hama, H.; Yogo, M.; Matsuyama, Y. Effects of stroking horses on both humans’ and horses’ heart rate responses 1. Jpn. Psychol. Res. 1996, 38, 66–73. [Google Scholar] [CrossRef]
- Shiverdecker, M.D.; Schiml, P.A.; Hennessy, M.B. Human interaction moderates plasma cortisol and behavioral responses of dogs to shelter housing. Physiol. Behav. 2013, 109, 75–79. [Google Scholar] [CrossRef]
- Shapiro, K.J. Understanding dogs through kinesthetic empathy, social construction, and history. Anthrozoös 1990, 3, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Mayer, J.D.; Salovey, P.; Caruso, D.R.; Sitarenios, G. Emotional Intelligence as a standard intelligence. Emotion 2001, 1, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Rubin, M.M. Emotional Intelligence and Its Role in Mitigating Aggression: A Correlational Study of the Relationship between Emotional Intelligence and Aggression in Urban Adolescents; Immaculata College: Immaculata, PA, USA, 1999; Unpublished manuscript. [Google Scholar]
- Greenberg, M.T.; Kuschè, C.A.; Cook, E.T.; Quamma, J.P. Promoting emotional competence in school-aged children: The effects of the PATHS curriculum. Dev. Psychopathol. 1995, 7, 117–136. [Google Scholar] [CrossRef]
- Lopes, P.N.; Brackett, M.A.; Nezlek, J.B.; Schutz, A.; Sellin, I.; Salovey, P. Emotional intelligence and social interaction. Pers. Soc. Psychol. Bull. 2004, 30, 1018–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendl, M.; Burman, O.H.; Paul, E.S. An integrative and functional framework for the study of animal emotion and mood. Proc. Royal. Soc. B Biol. Sci. 2010, 277, 2895–2904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, J.A. A circumplex model of affect. J. Pers. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Silberman, E.K.; Weingartner, H. Hemispheric lateralization of functions related to emotion. Brain Cognit. 1986, 5, 322–353. [Google Scholar] [CrossRef] [Green Version]
- Demaree, H.A.; Everhart, D.E.; Youngstrom, E.A.; Harrison, D.W. Brain lateralization of emotional processing: Historical roots and a future incorporating “dominance”. Behav. Cogn. Neurosci. Rev. 2005, 4, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Phillips, H. The pleasure seekers. New Sci. 2003, 180, 36–40. [Google Scholar]
- Feh, C.; De Mazieres, J. Grooming at a preferred site reduces heart rate in horses. Anim. Behav. 1993, 46, 1191–1194. [Google Scholar] [CrossRef] [Green Version]
- Silk, J.B. The adaptive value of sociality in mammalian groups. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 539–559. [Google Scholar] [CrossRef] [Green Version]
- Cameron, E.Z.; Linklater, W.L.; Stafford, K.J.; Minot, E.O. A case of co-operative nursing and offspring care by mother and daughter feral horses. J. Zool. Lond. 1999, 249, 486–489. [Google Scholar] [CrossRef]
- Baragli, P.; Gazzano, A.; Martelli, F.; Sighieri, C. How do horses appraise humans’ actions? A brief note over a practical way to assess stimulus perception. J. Equine Vet. Sci. 2009, 29, 739–742. [Google Scholar] [CrossRef]
- Proops, L.; Grounds, K.; Smith, A.V.; McComb, K. Animals remember previous facial expressions that specific humans have exhibited. Curr. Biol. 2018, 28, 1428–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, W.R.; Skowronski, J.; Gibbons, J.; Vogl, R.; Thompson, C. On the emotions that accompany autobiographical memories: Dysphoria disrupts the fading affect bias. Cognit. Emot. 2003, 17, 703–723. [Google Scholar] [CrossRef]
- Hall, C.; Randle, H.; Pearson, G.; Preshaw, L.; Waran, N. Assessing equine emotional state. Appl. Anim. Behav. Sci. 2018, 205, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, E.; Cacioppo, J.T.; Rapson, R.L. Emotional Contagion; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- de Waal, F.B. Putting the altruism back into altruism: The evolution of empathy. Annu. Rev. Psychol. 2008, 59, 279–300. [Google Scholar] [CrossRef]
- Spinka, M. Social dimension of emotions and its implication for animal welfare. Appl. Anim. Behav. Sci. 2012, 138, 170–181. [Google Scholar] [CrossRef]
- Boyd, L.; Keiper, R. Behavioural ecology of feral horses. In The Domestic Horse: The Evolution, Development and Management of Its Behaviour; Mills, D., McDonnell, S., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 55–82. [Google Scholar]
- Feh, C. Relationships and communication in socially natural horse herds. In The Domestic Horse: The Origins, Development and Management of Its Behaviour; Mills, D., McDonnell, S., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 83–93. [Google Scholar]
- Cooper, J.J.; Albentosa, M.J. Behavioral adaptation in the domestic horse: Potential role of apparently abnormal responses including stereotypic behaviour. Live Prod. Sci. 2005, 92, 177–182. [Google Scholar] [CrossRef]
- Briefer, E.F.; Mandel, R.; Maigrot, A.L.; Freymond, S.B.; Bachmann, I.; Hillmann, E. Perception of emotional valence in horse whinnies. Front. Zool. 2017, 14, 8. [Google Scholar] [CrossRef] [Green Version]
- Wathan, J.; Burrows, A.M.; Waller, B.M.; McComb, K. EquiFACS: The equine facial action coding system. PLoS ONE 2015, 10, e0137818. [Google Scholar] [CrossRef] [Green Version]
- Wathan, J.; Proops, L.; Grounds, K.; Mccomb, K. Horses discriminate between facial expressions of conspecifics. Sci. Rep. 2016, 6, 38322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.V.; Proops, L.; Grounds, K.; Wathan, J.; McComb, K. Functionally relevant responses to human facial expressions of emotion in the domestic horse (Equus caballus). Biol. Lett. 2016, 12, 20150907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, K.; Takimoto-Inose, A.; Hasegawa, T. Cross-modal perception of human emotion in domestic horses (Equus caballus). Sci. Rep. 2018, 8, 8660. [Google Scholar] [CrossRef] [PubMed]
- Schmoll, T. Can horses read emotional cues from human faces? Re-analysis of Smith et al. Biol. Lett. 2016, 12, 20160201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterba, J.A. Does horseback riding therapy or therapist-directed hippotherapy rehabilitate children with cerebral palsy? Dev. Med. Child Neurol. 2007, 49, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Lechner, H.E.; Kakebeeke, T.H.; Hegemann, D.; Baumberger, M. The effects of hippotherapy on spasticity and on mental well-being of persons with spinal cord injury. Arch. Phys. Med. Rehabil. 2007, 88, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- O’Haire, M.E. Animal-assisted intervention for autism spectrum disorder: A systematic literature review. J. Autism. Dev. Disord. 2013, 43, 1606–1622. [Google Scholar] [CrossRef]
- O’Haire, M.E. Research on animal-assisted intervention and autism spectrum disorder, 2012–2015. Appl. Dev. Sci. 2017, 21, 200–216. [Google Scholar] [CrossRef]
- Merkies, K.; McKechnie, M.J.; Zakrajsek, E. Behavioural and physiological responses of therapy horses to mentally traumatized humans. Appl. Anim. Behav. Sci. 2018, 205, 61–67. [Google Scholar] [CrossRef]
- Christian, J.E. All creatures great and small: Utilizing equine-assisted therapy to treat eating disorders. J. Psychol. Christ. 2005, 24, 65–67. [Google Scholar]
- Haumery, L.; Delavous, P.; Teste, B.; Leroy, C.; Gaboriau, J.C.; Berthier, A. Equine Assisted Therapy and Autism. Ann. Med. Psychol. 2010, 168, 655–659. [Google Scholar]
- Yorke, J.; Nugent, W.; Strand, E.; Bolen, R.; New, J.; Davis, C. Equine assisted therapy and its impact on cortisol levels of children and horses: A pilot study and meta-analysis. Early Child. Dev. Care 2013, 183, 874–894. [Google Scholar] [CrossRef]
- Stern, C.; Chur-Hansen, A. An umbrella review of the evidence for equine-assisted interventions. Aust. J. Psychol. 2019. [Google Scholar] [CrossRef]
- Fine, A.H. Handbook on Animal-Assisted Therapy: Foundations and Guidelines for Animal-Assisted Interventions, 4th ed.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Bachelor, A. Clients’ perception of the therapeutic alliance: A qualitative analysis. J. Counsel. Psychol. 1995, 42, 323–337. [Google Scholar] [CrossRef]
- Carkhuff, R.R. The Art of Helping; Human Resource Development Press: Amherst, MA, USA, 1993. [Google Scholar]
- Ackerman, S.J.; Hilsenroth, M.J. A review of therapist characteristics and techniques positively impacting the therapeutic alliance. Clin. Psychol. Rev. 2003, 23, 1–33. [Google Scholar] [CrossRef]
- Chandler, C.K. Human-animal Relational Theory: A Guide for Animal-assisted Counseling. J. Creativ. Ment. Health 2018, 13, 429–444. [Google Scholar] [CrossRef]
- Gunter, B. Pets and People: The Psychology of Pet Ownership; Whurr Publishers Ltd.: London, UK, 1999. [Google Scholar]
- Parish-Plass, N. Animal assisted therapy and children suffering from insecure attachment due to abuse and neglect: A method to lower the risk of intergenerational transmission of abuse? Clin. Child Psychol. 2008, 13, 7–30. [Google Scholar] [CrossRef]
- Krause-Parello, C.A.; Thames, M.; Ray, C.M.; Kolassa, J. Examining the Effects of a Service-Trained Facility Dog on Stress in Children Undergoing Forensic Interview for Allegations of Child Sexual Abuse. J. Child Sex. Abus. 2018, 27, 305–320. [Google Scholar] [CrossRef]
- O’Haire, M.E.; McKenzie, S.J.; Beck, A.M.; Slaughter, V. Animals may act as social buffers: Skin conductance arousal in children with autism spectrum disorder in a social context. Dev. Psychobiol. 2015, 57, 584–595. [Google Scholar] [CrossRef]
- Shen, R.Z.; Xiong, P.; Chou, U.I.; Hall, B.J. We need them as much as they need us: A systematic review of the qualitative evidence for possible mechanisms of effectiveness of animal-assisted intervention (AAI). Complement. Ther. Med. 2018, 41, 203–207. [Google Scholar] [CrossRef]
- Beetz, A.; Uvnas-Moberg, K.; Julius, H.; Kortrschal, K. Psychosocial and psychophysical effects of human-animal interactions: The possible role of oxytocin. Front. Psychol. 2012, 3, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, H.E.; Young, L.J. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocrinol. 2009, 30, 534–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, R. Oxytocin and social affiliation in humans. Horm. Behav. 2012, 61, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Olff, M.; Frijling, J.L.; Kubzansky, L.D.; Bradley, B.; Ellenbogen, M.A.; Cardoso, C.; Bartz, J.A.; Yee, J.R.; van Zuiden, M. The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology 2013, 38, 1883–1894. [Google Scholar] [CrossRef] [Green Version]
- Algoe, S.B.; Kurtz, L.E.; Grewen, K. Oxytocin and social bonds: The role of oxytocin in perceptions of romantic partners’ bonding behavior. Psychol. Sci. 2017, 28, 1763–1772. [Google Scholar] [CrossRef]
- Zoratto, F.; Sbriccioli, M.; Martinelli, A.; Glennon, J.C.; Macrì, S.; Laviola, G. Intranasal oxytocin administration promotes emotional contagion and reduces aggression in a mouse model of callousness. Neuropharmacolgy 2018, 143, 250–267. [Google Scholar] [CrossRef]
- Sivaselvachnandran, S.; Acland, L.E.; Abdallah, S.; Martin, L.J. Behavioural and mechanistic insight into rodent empathy. Neurosci. Behav. Rev. 2018, 91, 130–137. [Google Scholar] [CrossRef]
- Sippel, L.M.; Allington, C.E.; Pietrzak, R.H.; Harpaz-Rotem, I.; Mayes, L.C.; Olff, M. Oxytocin and stress-related disorders: Neurobiological mechanisms and treatment opportunities. Chronic Stress 2017, 1, 2470547016687996. [Google Scholar] [CrossRef]
- Yap, E.; Scheinberg, A.; Williams, K. Attitudes to and beliefs about animal assisted therapy for children with disabilities. Complement. Ther. Clin. Pract. 2017, 26, 47–52. [Google Scholar] [CrossRef]
- Freud, S. The Interpretation of Dreams; Basic Books: New York, NY, USA, 1959. [Google Scholar]
- von Uexküll, J. The theory of meaning. Semiotica 1982, 42, 25–79. [Google Scholar] [CrossRef]
- Fureix, C.; Pagès, M.; Bon, R.; Lassalle, J.M.; Kuntz, P.; Gonzalez, G. A preliminary study of the effects of handling type on horses’ emotional reactivity and the human–horse relationship. Behav. Process. 2009, 82, 202–210. [Google Scholar] [CrossRef]
- Bachi, K.; Terkel, J.; Teichman, M. Equine-facilitated psychotherapy for at-risk adolescents: The influence on self-image, self-control and trust. Clin. Child Psychol. 2011, 17, 298–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunbar, R.I.M. The social brain hypothesis. Evol. Anthropol. 1998, 6, 178–190. [Google Scholar] [CrossRef]
- Eisenberg, J.F.; Groves, C.P.; Mackinnon, K. Grzimek’s Encyclopedia of Mammals; Parker, S.P., Ed.; McGraw Hill Publishing Company: New York, NY, USA, 1990; Volume 4, pp. 598–620. [Google Scholar]
- Houpt, K.A.; Law, K.; Martinisi, V. Dominance hierarchies in domestichorses. Appl. Anim. Ethol. 1978, 4, 273–283. [Google Scholar] [CrossRef]
- Shultz, S.; Dunbar, R.I.M. Both social and ecological factors predict ungulate brain size. Proc. Royal. Soc. B Biol. Sci. 2005, 273, 207–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Doux, J. The Emotional Brain: The Mysterious Underpinnings of Emotional Life; Simon and Schuster Paperbacks: New York, NY, USA, 1998. [Google Scholar]
- Atzil, S.; Hendler, T.; Feldman, R. The brain basis of social synchrony. Soc. Cogn. Afect. Neurosci. 2013, 9, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Hasson, U.; Honey, C.J. Future trends in Neuroimaging: Neural processes as expressed within real-life contexts. Neuroimage 2012, 62, 1272–1278. [Google Scholar] [CrossRef] [Green Version]
- Schippers, M.B.; Roebroeck, A.; Renken, R.; Nanetti, L.; Keysers, C. Mapping the information flow from one brain to another during gestural communication. PNAS 2010, 107, 9388–9393. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Heinzle, J.; Weiskopf, N.; Ethofer, T.; Haynes, J.D. Flow of affective information between communicating brains. Neuroimage 2011, 54, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Lanatà, A.; Nardelli, M.; Valenza, G.; Baragli, P.; D’Aniello, B.; Alterisio, A.; Scandurra, A.; Semin, G.R.; Scilingo, E.P. A Case for the Interspecies Transfer of Emotions: A Preliminary Investigation on How Humans Odors Modify Reactions of the Autonomic Nervous System in Horses. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 522–525. [Google Scholar] [CrossRef]
- Mujica-Parodi, L.R.; Strey, H.H.; Frederick, B.; Savoy, R.; Cox, D.; Botanov, Y.; Tolkunov, D.; Rubin, D.; Weber, J. Chemosensory cues to conspecific emotional stress activate amygdala in humans. PLoS ONE 2009, 4, e6415. [Google Scholar] [CrossRef]
- D’Aniello, B.; Semin, G.R.; Alterisio, A.; Aria, M.; Scandurra, A. Interspecies transmission of emotional information via chemosignals: From humans to dogs (Canis lupus familiaris). Anim. Cogn. 2018, 21, 67–78. [Google Scholar] [CrossRef]
- Fiebich, A.; Gallagher, S. Joint attention in joint action. Philos. Psychol. 2013, 26, 571–587. [Google Scholar] [CrossRef] [Green Version]
- Hartup, W.W. Relationships in early and middle childhood. In The Cambridge Handbook of Personal Relationships; Vangelisti, A.N., Perlman, D., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 177–190. [Google Scholar]
- Haubenhofer, D.K.; Kirchengast, S. Dog Handlers’ and Dogs’ Emotional and Cortisol Secretion Responses Associated with Animal-Aassisted Therapy Sessions. Soc. Anim. 2007, 15, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Serpell, J.A. Animal-assisted interventions in historical perspective. In Handbook on Animal-Assisted Therapy: Theoretical Foundations and Guidelines for Practice, 3rd ed.; Fine, A.H., Ed.; Elsevier Inc.: San Diego, CA, USA, 2010; pp. 17–32. [Google Scholar] [CrossRef]
- Yorke, J. The significance of human–animal relationships as modulators of trauma effects in children: A developmental neurobiological perspective. Early Child Dev. Care 2010, 180, 559–570. [Google Scholar] [CrossRef]
- Drinkhouse, M.; Birmingham, S.S.; Fillman, R.; Jedlicka, H. Correlation of human and horse heart rates during equine-assisted therapy sessions with at-risk youths: A pilot study. JSR 2012, 1, 22–25. [Google Scholar]
- Naber, A.; Kreuzer, L.; Zink, R.; Millesi, E.; Palme, R.; Hediger, K.; Glenk, L.M. Heart rate, heart rate variability and salivary cortisol as indicators of arousal and synchrony in clients with intellectual disability, horses and therapist during equine-assisted interventions. Pet Behav. Sci. 2019, 7, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Fureix, C.; Jego, P.; Sankey, C.; Hausberger, M. How horses (Equus caballus) see the world: Humans as significant “objects”. Anim. Cogn. 2009, 12, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Fureix, C.; Menguy, H.; Hausberger, M. Partners with bad temper: Reject or cure? A study of chronic pain and aggression in horses. PLoS ONE 2010, 5, e12434. [Google Scholar] [CrossRef] [Green Version]
- Lanatà, A.; Guidi, A.; Valenza, G.; Baragli, P.; Scilingo, E.P. Quantitative heartbeat coupling measures in human-horse interaction. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2696–2699. [Google Scholar] [CrossRef]
- Lanatà, A.; Guidi, A.; Valenza, G.; Baragli, P.; Scilingo, E.P. The role of nonlinear coupling in Human-Horse Interaction: A preliminary study. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 1320–1323. [Google Scholar] [CrossRef]
- Aihara, K.; Suzuki, H. Theory of hybrid dynamical systems and its applications to biological and medical systems. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 4893–4914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbieri, R.; Matten, E.C.; Alabi, A.A.; Brown, E.N. A pointprocess model of human heartbeat intervals: New definitions of heart rate and heart rate variability. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H424–H435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenblum, M.G.; Pikovsky, A.S.; Kurths, J. Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 1996, 76, 1804–1807. [Google Scholar] [CrossRef] [PubMed]
- Principe, J.C.; Xu, D.; Fisher, J. Information theoretic learning. In Unsupervised Adaptive Filtering; Haykin, S., Ed.; Wiley-Interscience: Hoboken, NJ, USA, 2000; Volume 1, pp. 265–319. [Google Scholar]
- Heagy, J.; Carroll, T.; Pecora, L. Synchronous chaos in coupled oscillator systems. Phys. Rev. E 1994, 50, 1874–1885. [Google Scholar] [CrossRef] [PubMed]
- Nummenmaa, L.; Glerean, E.; Viinikainen, M.; Jääskeläinen, I.P.; Hari, R.; Sams, M. Emotions promote social interaction by synchronizing brain activity across individuals. PNAS 2012, 109, 9599–9604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagasawa, M.; Mitsui, S.; En, S.; Ohtani, N.; Ohta, M.; Sakuma, Y.; Onaka, T.; Mogi, K.; Kikusui, T. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science 2015, 348, 333–336. [Google Scholar] [CrossRef]
- Bronfenbrenner, U.; Evans, G.W. Developmental science in the 21st century: Emerging questions, theoretical models, research designs and empirical findings. Soc. Dev. 2000, 9, 115–125. [Google Scholar] [CrossRef]
- Wilson, E.O. Biophilia; Harvard University Press: Harvard, MA, USA, 1984. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scopa, C.; Contalbrigo, L.; Greco, A.; Lanatà, A.; Scilingo, E.P.; Baragli, P. Emotional Transfer in Human–Horse Interaction: New Perspectives on Equine Assisted Interventions. Animals 2019, 9, 1030. https://doi.org/10.3390/ani9121030
Scopa C, Contalbrigo L, Greco A, Lanatà A, Scilingo EP, Baragli P. Emotional Transfer in Human–Horse Interaction: New Perspectives on Equine Assisted Interventions. Animals. 2019; 9(12):1030. https://doi.org/10.3390/ani9121030
Chicago/Turabian StyleScopa, Chiara, Laura Contalbrigo, Alberto Greco, Antonio Lanatà, Enzo Pasquale Scilingo, and Paolo Baragli. 2019. "Emotional Transfer in Human–Horse Interaction: New Perspectives on Equine Assisted Interventions" Animals 9, no. 12: 1030. https://doi.org/10.3390/ani9121030
APA StyleScopa, C., Contalbrigo, L., Greco, A., Lanatà, A., Scilingo, E. P., & Baragli, P. (2019). Emotional Transfer in Human–Horse Interaction: New Perspectives on Equine Assisted Interventions. Animals, 9(12), 1030. https://doi.org/10.3390/ani9121030