Differential Expression of ACTL8 Gene and Association Study of Its Variations with Growth Traits in Chinese Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Numbers and Description of Experimental Animals
2.2. DNA Isolation and Primers Design
2.3. PCR Amplification and DNA Sequencing
2.4. Genotyping of Mutations in the ACTL8 Gene
2.5. Tissues Expression Profiling Test
2.6. Statistical Analysis
3. Results
3.1. Seven Mutations of Cattle ACTL8 Gene
3.2. Genotypic and Allelic Frequencies and Genetic Diversity
3.3. Association between Mutations of ACTL8 Gene and Growth Traits
3.4. The Tissue Expression Profile of ACTL8 in QC Cattle
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Taberlet, P.; Coissac, E.; Pansu, J.; Pompanon, F. Conservation genetics of cattle, sheep, and goats. Comptes Rendus Biologies 2011, 334, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Legako, J.F.; Brooks, J.C.; O’Quinn, T.G.; Hagan, T.D.J.; Polkinghorne, R.; Farmer, L.J. Consumer palatability scores and volatile beef flavor compounds of five usda quality grades and four muscles. Meat Sci. 2015, 100, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Bruford, M.W.; Ginja, C.; Hoffmann, I.; Joost, S.; Orozco-terWengel, P.; Alberto, F.J.; Costa, M. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025. Front. Genet. 2015, 6, 314. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Schenkel, F.; Vinsky, M.; Crews, D.H.; Li, C. Accuracy of predicting genomic breeding values for residual feed intake in angus and charolais beef cattle1. J. Anim. Sci. 2013, 91, 4669–4678. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Li, X.; Plastow, G.; Moore, S.S.; Wang, Z. Developing marker-assisted models for evaluating growth traits in Canadian beef cattle genetic improvement. Livest. Sci. 2012, 138, 62–68. [Google Scholar] [CrossRef]
- Sequeira, V.; Jolanda, V.D.V. Historical perspective on heart function: the frank–starling law. Biophysical Reviews 2015, 7, 421–447. [Google Scholar] [CrossRef]
- Elzinga, M.; Collins, J.H.; Kuehl, W.M.; Adelstein, R.S. Complete amino-acid sequence of actin of rabbit skeletal muscle. Proc. Natl. Acad. Sci. USA 1973, 70, 2687–2691. [Google Scholar] [CrossRef]
- Holmes, K.C.; Popp, D.; Gebhard, W.; Kabsch, W. Atomic model of the actin filament. Nature 1990, 347, 44. [Google Scholar] [CrossRef]
- Kabsch, W.; Vandekerckhove, J. Structure and function of actin. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 49–76. [Google Scholar] [CrossRef]
- Vindin, H.; Gunning, P. Cytoskeletal tropomyosins: Choreographers of actin filament functional diversity. J. Muscle Res. Cell Motil. 2013, 34, 261–274. [Google Scholar] [CrossRef]
- Doherty, G.J.; McMahon, H.T. Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu. Rev. Biophys. 2008, 37, 65–95. [Google Scholar] [CrossRef] [PubMed]
- Sahai, E.; Marshall, C.J. Differing modes of tumour cell invasion have distinct requirements for rho/rock signalling and extracellular proteolysis. Nat. Cell Biol. 2003, 5, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Dos Remedios, C.G.; Chhabra, D.; Kekic, M.; Dedova, I.V.; Tsubakihara, M.; Berry, D.A.; Nosworthy, N.J. Actin binding proteins: Regulation of cytoskeletal microfilaments. Physiol. Rev. 2003, 83, 433–473. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, P.; Livstone, M.S.; Lewis, S.E.; Thomas, P.D. Phylogenetic-based propagation of functional annotations within the gene ontology consortium. Brief. Bioinform. 2011, 12, 449. [Google Scholar] [CrossRef]
- Bremel, R.D.; Weber, A. Cooperation within actin filament in vertebrate skeletal muscle. Nat. New Biol. 1972, 238, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Cannon, B.; Nedergaard, J.A.N. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 2004, 84, 277–359. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Leibenguth, F. Studies on multilocus fingerprints, RAPD markers, and mitochondrial DNA of a gynogenetic fish (Carassius auratus gibelio). Biochem. Genet. 1995, 33, 297–306. [Google Scholar] [CrossRef]
- Pelgas, B.; Isabel, N.; Bousquet, J. Efficient screening for expressed sequence tag polymorphisms (ESTPs) by DNA pool sequencing and denaturing gradient gel electrophoresis (DGGE) in spruces. Mol. Breed. 2004, 13, 263–279. [Google Scholar] [CrossRef]
- Liu, J.B.; Lan, X.Y.; Xu, Y.; Li, Z.J.; Lei, C.Z.; Chen, H. Combined effects of three novel SNPs within goat LHX3 gene on milk performance. Genes Genom. 2011, 33, 549. [Google Scholar] [CrossRef]
- Yong, Y.O.N.G.; Lin, H.E. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005, 15, 97. [Google Scholar] [CrossRef]
- Nei, M.; Roychoudhury, A.K. Sampling variances of heterozygosity and genetic distance. Genetics 1974, 76, 379–390. [Google Scholar] [PubMed]
- Olson, M.F.; Sahai, E. The actin cytoskeleton in cancer cell motility. Clin. Exp. Metastasis 2009, 26, 273. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Liu, Y.H.; Dong, S.Y.; Yao, Z.H.; Lv, L.; Ma, R.M.; Wang, O.C. Co-expression networks revealed potential core lncRNAs in the triple-negative breast cancer. Gene 2016, 591, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Caballero, O.L.; Yung, W.K.A.; Weinstein, J.N.; Riggins, G.J.; Strausberg, R.L.; Zhao, Q. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol. Res. 2014, 2, 371–379. [Google Scholar] [CrossRef]
- Li, F.; Chen, H.; Lei, C.Z.; Ren, G.; Wang, J.; Li, Z.J.; Wang, J.Q. Novel SNPs of the bovine NUCB2 gene and their association with growth traits in three native Chinese cattle breeds. Mol. Biol. Rep. 2010, 37, 541–546. [Google Scholar] [CrossRef]
- Msalya, G.; Shimogiri, T.; Nishitani, K.; Okamoto, S.; Kawabe, K.; Minesawa, M.; Maeda, Y. Indels within promoter and intron 1 of bovine prion protein gene modulate the gene expression levels in the medulla oblongata of two Japanese cattle breeds. Anim. Genet. 2010, 41, 218–221. [Google Scholar] [CrossRef]
- Praharani, L. Genetic Evaluation for Growth Traits, Reproductive Performance and Meat Tenderness in Beef Cattle; University of Florida: Gainesville, FL, USA, 2004. [Google Scholar]
- Berg, R.T.; Butterfield, R.M. Growth patterns of bovine muscle, fat and bone. J. Anim. Sci. 1968, 27, 611–619. [Google Scholar] [CrossRef]
- Buckingham, M.; Meilhac, S.; Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 2005, 6, 826. [Google Scholar] [CrossRef]
- Shahin, K.A.; Berg, R.T. Growth patterns of muscle, fat and bone, and carcass composition of double muscled and normal cattle. Can. J. Anim. Sci. 1985, 65, 279–293. [Google Scholar] [CrossRef]
- Berg, R.T.; Butterfield, R.M. New Concepts of Cattle Growth; Sydney University Press: Sydney, Australia, 1968. [Google Scholar]
Breeds | Number | Origin | Age |
---|---|---|---|
QC | 394 | Qinchuan cattle Varieties Breeding Center, Shaanxi Province | 24–36 months |
XN | 213 | three family prairie red bull farm, Jilin Province | 24 month |
JN | 180 | cattle farm, Wanrong county, Yuncheng city, and Wutai county, Xinzhou city, Shanxi Province | 24 month |
JX | 82 | Jia county and Baofeng county, Henan Province | 24 month |
NY | 81 | Nanyang city, Henan Province | 24 month |
DN | 44 | Goulin county, Dengzhou city, Henan Province | 24 month |
GY | 144 | Guyuan City, Ningxia Hui Autonomous Region | 24 month |
Loci | Primer Sequences (5′–3′) | Restriction Enzymes | Fragment Size (bp) | Temperature (°C) |
---|---|---|---|---|
S1 | F1 ACCCTGGCTTTAGATACTGA R1 ACGGCTAGTGCGTGGGGAGC (AA) G | Hha I | 297, 215, 186, 82, 29 | 65.0 |
S2 | F2 GGGGCAACACCCTCTACC R2 GGGAACCACCGCTCACAG | Mae I | 885, 588, 297 | 62.5 |
S3 | F3 GGTGGGATGGGAGAGTTT (G) AA R3 TCCTCCTTCGTCAGCCACTC | Aha III | 452, 432, 20 | 59.4 |
S4 | F4 CTATCCGCCCATCCCTCT R4 TCAGTGGGCGGGTCAGGA | Hae III | 235, 182, 53 | 63.9 |
S5 | F5 ATTGAGGGCAAGCGAAGG R5 TGCGCCAGACAGCACAGG (T) T | Asu I | 268, 247, 21 | 64.1 |
DL-ACTL8 | F: ATTTGCCGACCTGACACCTT | 84bp | 60.0 | |
R: GAACGACCAGATGTGCTCCA | ||||
DL-β-actin | F: GTCATCACCATCGGCAATGAG | 84bp | 60.0 | |
R: AATGCCGCAGGATTCCATG |
Mutations | Breeds | Genotype/Genotypic Frequency | Alle /Allelic Frequency | |||
---|---|---|---|---|---|---|
SNP 1 | QC (394) | AA/0.633 | GG/0.092 | AG/0.275 | A/0.771 | G/0.229 |
XN (213) | 0.925 | 0.045 | 0.030 | 0.940 | 0.060 | |
SNP 2 | QC (394) | AA/0.122 | GG/0.464 | AG/0.414 | A/0.329 | G/0.671 |
XN (213) | 0.473 | 0.014 | 0.513 | 0.270 | 0.730 | |
SNP 3 | QC (394) | AA/0.168 | GG/0.584 | AG/0.248 | A/0.292 | G/0.708 |
XN (213) | 0.396 | 0.434 | 0.170 | 0.481 | 0.519 | |
SNP 4 | QC (394) | CC/0.159 | GG/0.576 | CG/0.265 | C/0.291 | G/0.709 |
SNP5 | QC (394) | AA/0.389 | GG/0.250 | AG/0.361 | A/0.569 | G/0.431 |
indel 1 | QC (394) | WW/0.555 | MM/0.132 | WM/0.313 | W/0.711 | M/0.289 |
XN (213) | 0.651 | 0.163 | 0.186 | 0.744 | 0.256 | |
indel 2 | QC (394) | WW/0.278 | MM/0.526 | WM/0.196 | W/0.376 | M/0.624 |
XN (213) | 0.337 | 0.419 | 0.244 | 0.459 | 0.541 |
Mutations | Breeds | HWE | Exp-Hom | Exp-He | Ae | PIC |
---|---|---|---|---|---|---|
SNP 1 | QC (394) | 10.689 | 0.646 | 0.354 | 1.547 | 0.291 |
XN (213) | 26.318 | 0.888 | 0.112 | 1.126 | 0.106 | |
SNP 2 | QC (394) | 0.959 * | 0.558 | 0.442 | 1.791 | 0.344 |
XN (213) | 6.742 | 0.606 | 0.394 | 1.651 | 0.317 | |
SNP 3 | QC (394) | 25.635 | 0.587 | 0.413 | 1.705 | 0.328 |
XN (213) | 23.079 | 0.501 | 0.499 | 1.997 | 0.375 | |
SNP 4 | QC (394) | 21.877 | 0.587 | 0.413 | 1.703 | 0.328 |
SNP5 | QC (394) | 10.004 | 0.510 | 0.490 | 1.962 | 0.370 |
indel 1 | QC (394) | 12.880 | 0.589 | 0.411 | 1.697 | 0.326 |
XN (213) | 22.488 | 0.619 | 0.381 | 1.615 | 0.308 | |
indel 2 | QC (394) | 70.736 | 0.531 | 0.469 | 1.883 | 0.359 |
XN (213) | 22.226 | 0.503 | 0.497 | 1.987 | 0.373 |
Loci | Growth Traits | Genotypes (Mean ± SE) | ||
---|---|---|---|---|
SNP 1 | AA | GG | AG | |
Chest girth (cm) | 180.8 ± 1.3 A | 167.7 ± 10.3 B | 181.9 ± 1.7 A | |
SNP 2 | AA | GG | AG | |
Chest depth (cm) | 60.9 ± 2.5 b | 65.2 ± 0.7 a | 64.3 ± 0.7 a | |
Rump length (cm) | 42.9 ± 0.7 b | 44.4 ± 0.3 a | 44.1 ± 0.4 a | |
SNP 3 | AA | GG | AG | |
Rump length (cm) | 44.4 ± 0.6 a | 43.0 ± 0.4 b | 44.9 ± 0.6 a | |
SNP 4 | CC | GG | CG | |
Chest girth (cm) | 165.1 ± 7.1 B | 178.0 ± 2.4 AB | 181.7 ± 2.1 A | |
SNP 5 | AA | GG | AG | |
Withers height (cm) | 128.8 ± 0.9 b | 132.0 ± 1.2 a | 130.8 ± 0.8 a | |
Body length (cm) | 134.6 ± 1.8 B | 141.5 ± 1.7 A | 140.1 ± 1.1 A | |
Rump length (cm) | 43.4 ± 0.5 B | 44.1 ± 0.4 AB | 45.2 ± 0.5 A | |
Hip width (cm) | 42.2 ± 0.6 b | 43.6 ± 0.5 ab | 43.9 ± 0.6 a | |
indel 1 | WW | MM | WM | |
Withers height (cm) | 129.2 ± 0.6 a | 131.3 ± 1.2 a | 128.2 ± 0.7 b | |
Body length (cm) | 138.1 ± 0.8 A | 138.6 ± 2.4 A | 133.0 ± 1.6 B | |
Rump length (cm) | 43.5 ± 0.3 B | 45.5 ± 0.7 A | 43.1 ± 0.4 B | |
indel 2 | WW | MM | WM | |
Body length (cm) | 139.5 ± 1.1 a | 134.0 ± 1.7 b | 136.4 ± 2.0 a | |
Chest breadth (cm) | 37.2 ± 0.6 a | 36.5 ± 0.7 b | 39.3 ± 0.7 a | |
Hucklebone width (cm) | 21.9 ± 0.5 a | 22.2 ± 0.4 ab | 23.7 ± 0.6 b |
Loci | Growth Traits | Genotypes (Mean ± SE) | ||
---|---|---|---|---|
SNP 1 | AA | GG | AG | |
Chest depth (cm) | 18.3 ± 0.1 a | 18.8 ± 0.4 a | 16.8 ± 0.3 b | |
SNP 2 | AA | GG | AG | |
Withers height (cm) | 129.5 ± 3.5 AB | 126.6 ± 0.8 B | 131.1 ± 0.8 A | |
Height of hip cross (cm) | 135.0 ± 1.0 B | 135.8 ± 0.8 B | 139.0 ± 0.8 A | |
Chest girth (cm) | 157.0 ± 31.0 B | 186.0 ± 1.5 A | 189.2 ± 1.5 A | |
Rump length (cm) | 444.5 ± 13.5 ab | 439.4 ± 8.3 b | 470.7 ± 11.1 a | |
SNP 3 | AA | GG | AG | |
Withers height (cm) | 129.9 ± 1.2 a | 129.7 ± 0.9 a | 125.1 ± 1.4 b | |
Height of hip cross (cm) | 139.3 ± 1.0 a | 137.8 ± 0.9 ab | 134.7 ± 1.5 b | |
Chest girth (cm) | 192.4 ± 2.4 b | 186.7 ± 1.9 a | 183.6 ± 2.3 a | |
Chest breadth (cm) | 227.0 ± 2.8 A | 213.8 ± 2.8 B | 215.3 ± 3.0 B | |
indel 1 | WW | MM | WM | |
Height of hip cross (cm) | 136.4 ± 0.6 b | 139.7 ± 1.1 a | 137.6 ± 1.1 ab | |
Chest girth (cm) | 186.2 ± 1.2 b | 192.1 ± 3.1 a | 184.7 ± 2.4 ab | |
Rump length (cm) | 447.1 ± 8.5 b | 487.9 ± 18.7 a | 440.1 ± 10.4 b | |
indel 2 | WW | MM | WM | |
Height of hip cross (cm) | 137.9 ± 0.8 a | 135.7 ± 0.7 b | 138.5 ± 1.0 a | |
Chest girth (cm) | 188.8 ± 2.0 a | 182.1 ± 2.1 b | 189.6 ± 2.0 a | |
Rump length (cm) | 477.7 ± 13.2 A | 428.1 ± 7.2 B | 458.6 ± 14.0 A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, C.; Xu, J.; Huang, Y.; Lan, X.; Lei, C.; Yang, X.; Xie, J.; Li, Y.; Chen, H. Differential Expression of ACTL8 Gene and Association Study of Its Variations with Growth Traits in Chinese Cattle. Animals 2019, 9, 1068. https://doi.org/10.3390/ani9121068
Cai C, Xu J, Huang Y, Lan X, Lei C, Yang X, Xie J, Li Y, Chen H. Differential Expression of ACTL8 Gene and Association Study of Its Variations with Growth Traits in Chinese Cattle. Animals. 2019; 9(12):1068. https://doi.org/10.3390/ani9121068
Chicago/Turabian StyleCai, Cuicui, Jiawei Xu, Yongzhen Huang, Xianyong Lan, Chuzhao Lei, Xueyao Yang, Jianliang Xie, Yuhua Li, and Hong Chen. 2019. "Differential Expression of ACTL8 Gene and Association Study of Its Variations with Growth Traits in Chinese Cattle" Animals 9, no. 12: 1068. https://doi.org/10.3390/ani9121068
APA StyleCai, C., Xu, J., Huang, Y., Lan, X., Lei, C., Yang, X., Xie, J., Li, Y., & Chen, H. (2019). Differential Expression of ACTL8 Gene and Association Study of Its Variations with Growth Traits in Chinese Cattle. Animals, 9(12), 1068. https://doi.org/10.3390/ani9121068