The Effect of Dietary Oil Type and Energy Intake in Lactating Sows on the Fatty Acid Profile of Colostrum and Milk, and Piglet Growth to Weaning
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Diet Composition
3.2. Sow Characteristics
3.3. Litter Performance
3.4. Piglet Growth to Weaning
3.5. Colostrum and Milk Fatty Acids
3.6. Piglet Blood Plasma and Tissue Fatty Acids
3.6.1. Adipose Tissue
3.6.2. Liver Tissue
3.6.3. Muscle Tissue
3.7. Piglet Serum IgG Concentration and Body Composition at Weaning
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klindt, J. Influence of litter size and creep feeding on preweaning gain and influence of preweaning growth on growth to slaughter in barrows 1 2. J. Anim. Sci. 2003, 81, 2434–2439. [Google Scholar] [CrossRef]
- Quesnel, H.; Farmer, C.; Theil, P. Colostrum and milk production. In The Gestating and Lactating Sow; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 825–833. [Google Scholar]
- Theil, P.K.; Nielsen, T.T.; Kristensen, N.B.; Labouriau, R.; Danielsen, V.; Lauridsen, C.; Jakobsen, K. Estimation of milk production in lactating sows by determination of deuterated water turnover in three piglets per litter. Acta Agric. Scand. A Anim. Sci. 2002, 52, 221–232. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine, 11th ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- AHDB. 2016 Pig Cost of Production in Selected Countries. Available online: https://pork.ahdb.org.uk/media/274535/2016-pig-cost-of-production-in-selected-countries.pdf (accessed on 31 May 2018).
- Park, M.; Yang, Y.; Choi, J.; Yoon, S.; Ahn, S.; Lee, S.; Yang, B.; Lee, J.; Chae, B. Effects of dietary fat inclusion at two energy levels on reproductive performance, milk compositions and blood profiles in lactating sows. Acta Agric. Scand. A Anim. Sci. 2008, 58, 121–128. [Google Scholar] [CrossRef]
- Craig, A.; Gordon, A.; Magowan, E. Understanding the drivers of improved pig weaning weight by investigation of colostrum intake, sow lactation feed intake, or lactation diet specification. J. Anim. Sci. 2017, 95, 4499–4509. [Google Scholar] [CrossRef] [Green Version]
- Lauridsen, C.; Danielsen, V. Lactational dietary fat levels and sources influence milk composition and performance of sows and their progeny. Livest. Prod. Sci. 2004, 91, 95–105. [Google Scholar] [CrossRef]
- Rooke, J.; Sinclair, A.; Edwards, S.; Cordoba, R.; Pkiyach, S.; Penny, P.; Penny, P.; Finch, A.; Horgan, G. The effect of feeding salmon oil to sows throughout pregnancy on pre-weaning mortality of piglets. Animal 2001, 73, 489–500. [Google Scholar] [CrossRef]
- Mateo, R.; Carroll, J.; Hyun, Y.; Smith, S.; Kim, S. Effect of dietary supplementation of n-3 fatty acids and elevated concentrations of dietary protein on the performance of sows. J. Anim. Sci. 2009, 87, 948–959. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine, 10th ed.; The National Academies Press: Washington, DC, USA, 1998. [Google Scholar]
- Close, W.; Cole, D. Nutrition of Sows and Boars; Nottingham University Press: Nottingham, UK, 2000. [Google Scholar]
- Van der Peet-Schwering, C.; Swinkels, J.; Den Hartog, L. Nutritional strategy and reproduction. In The Lactating Sow; Wageningen Academic Publishers: Wageningen, The Netherlands, 1998. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- O’fallon, J.; Busboom, J.; Nelson, M.; Gaskins, C. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, T.F.; Bruun, T.S.; Feyera, T.; Larsen, U.K.; Theil, P.K. A two-diet feeding regime for lactating sows reduced nutrient deficiency in early lactation and improved milk yield. Livest. Sci. 2016, 191, 165–173. [Google Scholar] [CrossRef]
- Smit, M.; Spencer, J.; Patterson, J.; Dyck, M.; Dixon, W.; Foxcroft, G. Effects of dietary enrichment with a marine oil-based n-3 LCPUFA supplement in sows with predicted birth weight phenotypes on birth litter quality and growth performance to weaning. Animal 2015, 9, 471–480. [Google Scholar] [CrossRef]
- Luo, J.; Huang, F.; Xiao, C.; Chen, W.; Jiang, S.; Peng, J. Effect of dietary supplementation of fish oil for lactating sows and weaned piglets on piglet Th polarization. Livest. Sci. 2009, 126, 286–291. [Google Scholar] [CrossRef]
- Leonard, S.; Sweeney, T.; Bahar, B.; Lynch, B.; O’doherty, J. Effect of maternal fish oil and seaweed extract supplementation on colostrum and milk composition, humoral immune response, and performance of suckled piglets. J. Anim. Sci. 2010, 88, 2988–2997. [Google Scholar] [CrossRef] [Green Version]
- Rooke, J.; Carranca, C.; Bland, I.; Sinclair, A.; Ewen, M.; Bland, V.; Edwards, S. Relationships between passive absorption of immunoglobulin G by the piglet and plasma concentrations of immunoglobulin G at weaning. Livest. Prod. Sci. 2003, 81, 223–234. [Google Scholar] [CrossRef]
- Fritsche, K.L.; Huang, S.C.; Cassity, N.A. Enrichment of omega-3 fatty acids in suckling pigs by maternal dietary fish oil supplementation. J. Anim. Sci. 1993, 71, 1841–1847. [Google Scholar] [CrossRef]
- Taugbøl, O.; Framstad, T.; Saarem, K. Supplements of cod liver oil to lactating sows-Influence on milk fatty acid composition and growth performance of piglets. J. Vet. Med. A 1993, 40, 437–443. [Google Scholar] [CrossRef]
- Rooke, J.; Sinclair, A.; Edwards, S. Feeding tuna oil to the sow at different times during pregnancy has different effects on piglet long-chain polyunsaturated fatty acid composition at birth and subsequent growth. Br. J. Nutr. 2001, 86, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Smit, M.; Patterson, J.L.; Webel, S.; Spencer, J.; Cameron, A.; Dyck, M.; Dixon, W.; Foxcroft, G. Responses to n-3 fatty acid (LCPUFA) supplementation of gestating gilts, and lactating and weaned sows. Animal 2013, 7, 784–792. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Joo, Y.K.; Lee, J.W.; Ha, Y.J.; Yeo, J.M.; Kim, W.Y. Dietary Conjugated Linoleic Acid (CLA) increases milk yield without losing body weight in lactating sows. JAST J. Anim. Sci. Technol. 2014, 56, 11. [Google Scholar] [CrossRef] [Green Version]
- Bernal-Santos, G.; Perfield, J., II; Barbano, D.; Bauman, D.; Overton, T. Production Responses of Dairy Cows to Dietary Supplementation with Conjugated Linoleic Acid (CLA) During the Transition Period and Early Lactation 1, 2. J. Dairy Sci. 2003, 86, 3218–3228. [Google Scholar] [CrossRef] [Green Version]
- Arbuckle, L.D.; Innis, S.M. Docosahexaenoic acid is transferred through maternal diet to milk and to tissues of natural milk-fed piglets. J. Nutr. 1993, 123, 1668–1675. [Google Scholar] [CrossRef]
- Holub, B.J. Clinical nutrition: 4. Omega-3 fatty acids in cardiovascular care. CMAJ 2002, 166, 608–615. [Google Scholar]
- Muhlhausler, B.; Gibson, R.; Makrides, M. The effect of maternal omega-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) supplementation during pregnancy and/or lactation on body fat mass in the offspring: A systematic review of animal studies. Prostaglandins Leukot. Essent. Fat. Acids 2011, 85, 83–88. [Google Scholar] [CrossRef]
- Dugan, M.; Aalhus, J.; Schaefer, A.; Kramer, J. The effect of conjugated linoleic acid on fat to lean repartitioning and feed conversion in pigs. Can. J. Anim. Sci. 1997, 77, 723–725. [Google Scholar] [CrossRef]
- Ostrowska, E.; Muralitharan, M.; Cross, R.F.; Bauman, D.E.; Dunshea, F.R. Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J. Nutr. 1999, 129, 2037–2042. [Google Scholar] [CrossRef] [Green Version]
- Cordero, G.; Isabel, B.; Menoyo, D.; Daza, A.; Morales, J.; Pineiro, C.; Lopez-Bote, C. Dietary CLA alters intramuscular fat and fatty acid composition of pig skeletal muscle and subcutaneous adipose tissue. Meat Sci. 2010, 85, 235–239. [Google Scholar] [CrossRef]
- Mollard, R.C.; Kovacs, H.R.; Fitzpatrick-Wong, S.C.; Weiler, H.A. Low levels of dietary arachidonic and docosahexaenoic acids improve bone mass in neonatal piglets, but higher levels provide no benefit. J. Nutr. 2005, 135, 505–512. [Google Scholar] [CrossRef]
- Rossi, R.; Pastorelli, G.; Cannata, S.; Corino, C. Recent advances in the use of fatty acids as supplements in pig diets: A review. Anim. Feed Sci. Technol. 2010, 162, 1–11. [Google Scholar] [CrossRef]
- Whittemore, C.T.; Hazzledine, M.J.; Close, W.H. Nutrient Requirement Standards for Pigs; British Society of Animal Science: London, UK, 2003. [Google Scholar]
- Kruse, S.; Traulsen, I.; Krieter, J. Analysis of water, feed intake and performance of lactating sows. Livest. Sci. 2011, 135, 177–183. [Google Scholar] [CrossRef]
- Smits, R.; Henman, D.; King, R. Increasing the energy content of lactation diets fed to first-litter sows reduces weight loss and improves productivity over two parities. Anim. Prod. Sci. 2013, 53, 23–29. [Google Scholar] [CrossRef]
- Eissen, J.; Apeldoorn, E.; Kanis, E.; Verstegen, M.; De Greef, K. The importance of a high feed intake during lactation of primiparous sows nursing large litters. J. Anim. Sci. 2003, 81, 594–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaker, M.; Bilkei, G. Lactation weight loss influences subsequent reproductive performance of sows. Anim. Reprod. Sci. 2005, 88, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Tokach, M.; Pettigrew, J.; Crooker, B.; Dial, G.; Sower, A. Quantitative influence of lysine and energy intake on yield of milk components in the primiparous sow. J. Anim. Sci. 1992, 70, 1864–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, A.; Henry, W.; Magowan, E. Effect of phase feeding and valine-to-lysine ratio during lactation on sow and piglet performance. J. Anim. Sci. 2016, 94, 3835–3843. [Google Scholar] [CrossRef] [PubMed]
- Beyer, M.; Jentsch, W.; Kuhla, S.; Wittenburg, H.; Kreienbring, F.; Scholze, H.; Rudolph, P.E.; Metges, C.C. Effects of dietary energy intake during gestation and lactation on milk yield and composition of first, second and fourth parity sows. Arch. Anim. Nutr. 2007, 61, 452–468. [Google Scholar] [CrossRef] [PubMed]
- Bee, G. Dietary conjugated linoleic acids alter adipose tissue and milk lipids of pregnant and lactating sows. J. Nutr. 2000, 130, 2292–2298. [Google Scholar] [CrossRef]
- Watkins, B.A.; Li, Y.; Allen, K.G.; Hoffmann, W.E.; Seifert, M.F. Dietary ratio of (n-6)/(n-3) polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in rats. J. Nutr. 2000, 130, 2274–2284. [Google Scholar] [CrossRef]
- Weiler, H.A.; Fitzpatrick-Wong, S.C. Modulation of essential (n-6):(n-3) fatty acid ratios alters fatty acid status but not bone mass in piglets. J. Nutr. 2002, 132, 2667–2672. [Google Scholar] [CrossRef] [Green Version]
Item | Soya Oil | Salmon Oil | ||
---|---|---|---|---|
Flat 1 | Phased 2 | Flat 1 | Phased 2 | |
Ingredient, % | ||||
Wheat | 28.2 | 30.0 | 28.2 | 30.0 |
Maize | 39.99 | 33.8 | 39.99 | 33.8 |
Soya | 16.7 | 16.6 | 16.7 | 16.6 |
Full fat soya | 10.0 | 10.0 | 10.0 | 10.0 |
Soya oil | 1.79 | 5.98 | - | - |
Salmon oil | - | - | 1.79 | 5.98 |
Lysine | 0.12 | 0.27 | 0.12 | 0.27 |
Mineral and Vitamin premix 3 | 3.20 | 3.20 | 3.20 | 3.20 |
Formulated | ||||
Dry matter (%) | 84.8 | 85.4 | 84.8 | 85.4 |
Crude Protein (%) | 17.0 | 17.0 | 17.0 | 17.0 |
Crude Fibre (%) | 2.88 | 2.80 | 2.88 | 2.80 |
Oil A (%) | 5.67 | 9.62 | 5.67 | 9.62 |
Digestible Energy (MJ/kg) | 14.5 | 15.5 | 14.5 | 15.5 |
Total Lysine (%) | 1.20 | 1.30 | 1.20 | 1.30 |
Ash (%) | 5.00 | 5.00 | 5.00 | 5.00 |
Calcium (%) | 0.67 | 0.67 | 0.67 | 0.67 |
Phosphorus (%) | 0.55 | 0.54 | 0.55 | 0.54 |
Actual | ||||
Dry matter (%) | 87.3 | 88.1 | 87.4 | 88.3 |
CP (%) | 17.7 | 18.0 | 18.0 | 17.4 |
CF (%) | 2.20 | 1.95 | 2.10 | 1.90 |
Oil A (%) | 5.54 | 9.56 | 5.52 | 10.22 |
DE (MJ/kg) | 15.0 | 15.9 | 15.0 | 15.9 |
Total Lysine (%) | 1.19 | 1.33 | 1.23 | 1.29 |
Ash (%) | 4.75 | 4.80 | 4.85 | 5.00 |
Calcium (%) | 0.68 | 0.73 | 0.68 | 0.79 |
Phosphorus (%) | 0.49 | 0.46 | 0.46 | 0.45 |
Fatty Acids 4 | ||||
Total saturated 5 | 16.4 | 16.0 | 17.3 | 17.9 |
Total MUFA 6 | 24.1 | 24.8 | 30.7 | 38.5 |
Total PUFA 7 | 53.8 | 53.2 | 46.4 | 37.8 |
Total n-3 PUFA 8 | 5.71 | 6.11 | 7.00 | 8.78 |
C18:3 (n-3) | 5.60 | 6.03 | 5.43 | 5.45 |
C22:6 (n-3) | <1.00 | <1.00 | 1.11 | 2.38 |
Total n-6 PUFA 9 | 53.7 | 53.1 | 44.9 | 34.6 |
C18:2 (n-6) | 53.7 | 53.0 | 44.4 | 33.5 |
n-6:n-3 10 | 9.41 | 8.69 | 6.42 | 3.94 |
Variable | Oil Type | Energy Regimen | ||||||
---|---|---|---|---|---|---|---|---|
Soya | Salmon | SEM 1 | p | Flat 2 | Phased 3 | SEM | p | |
Feed Intake, kg | ||||||||
Week 1 | 30.23 | 29.53 | 0.700 | 0.482 | - | - | - | - |
Week 2 | 49.76 | 50.07 | 0.916 | 0.813 | - | - | - | - |
Week 3 | 58.07 | 61.55 | 1.226 | 0.048 | 59.29 | 60.33 | 1.220 | 0.552 |
Week 4 | 61.94 | 64.31 | 2.133 | 0.435 | 61.23 | 65.01 | 2.131 | 0.226 |
Day 1–14 | 80.01 | 79.58 | 1.376 | 0.829 | - | - | - | - |
Day 15–28 | 119.9 | 125.6 | 2.919 | 0.172 | 120.3 | 125.1 | 2.911 | 0.256 |
Total | 200.0 | 205.3 | 3.634 | 0.315 | 199.1 | 206.2 | 3.622 | 0.170 |
Energy Intake, MJ DE | ||||||||
Day 1–14 | 1160 | 1154 | 19.96 | 0.829 | - | - | - | - |
Day 15–28 | 1798 | 1886 | 43.59 | 0.161 | 1745 | 1940 | 43.48 | 0.002 |
Day 1–28 | 2961 | 3042 | 53.89 | 0.300 | 2887 | 3115 | 53.71 | 0.004 |
Litter Weight, kg | ||||||||
Birth | 20.89 | 21.65 | 0.425 | 0.209 | - | - | - | - |
Live-born | 19.18 | 20.03 | 0.542 | 0.269 | - | - | - | - |
Day 1 | 19.53 | 20.44 | 0.484 | 0.190 | - | - | - | - |
Day 14 | 54.72 | 57.51 | 1.442 | 0.174 | - | - | - | - |
Day 21 | 78.76 | 82.06 | 1.989 | 0.244 | 79.16 | 81.36 | 1.989 | 0.518 |
Day 28 | 102.5 | 105.5 | 1.884 | 0.275 | 102.4 | 105.5 | 1.867 | 0.254 |
Litter ADG, kg/day | ||||||||
Week 1 | 1.74 | 1.49 | 0.162 | 0.278 | - | - | - | - |
Week 2 | 3.33 | 3.81 | 0.116 | 0.004 | - | - | - | - |
Week 3 | 3.41 | 3.53 | 0.120 | 0.493 | 3.40 | 3.55 | 0.120 | 0.380 |
Week 4 | 3.15 | 3.56 | 0.128 | 0.024 | 3.28 | 3.44 | 0.127 | 0.372 |
Day 1–28 | 2.94 | 3.03 | 0.061 | 0.301 | 2.94 | 3.02 | 0.060 | 0.387 |
Fatty Acid 1 | Soya Oil | Salmon Oil | SEM 4 | Oil | Energy | Oil × Energy | ||
---|---|---|---|---|---|---|---|---|
Flat 2 | Phased 3 | Flat | Phased | p | p | p | ||
Total saturated 5 | 40.4 | 38.2 | 42.6 | 39.8 | 0.926 | 0.045 | 0.009 | 0.713 |
Total MUFA 6 | 37.7 | 34.4 | 37.8 | 37.3 | 0.873 | 0.088 | 0.038 | 0.099 |
Total PUFA 7 | 21.6 b | 27.3 c | 19.3 a | 22.4 b | 0.609 | <0.001 | <0.001 | 0.038 |
Total n-3 PUFA 8 | 2.26 a | 2.93 b | 2.89 b | 5.07 c | 0.128 | <0.001 | <0.001 | <0.001 |
C18:3 (n-3) | 1.83 | 2.45 | 1.75 | 2.43 | 0.075 | 0.490 | <0.001 | 0.713 |
C20:5 (n-3) | 0.05 a | 0.06 a | 0.25 b | 0.70 c | 0.021 | <0.001 | <0.001 | <0.001 |
C22:5 (n-3) | 0.18 a | 0.2 a | 0.34 b | 0.66 c | 0.024 | <0.001 | <0.001 | <0.001 |
C22:6 (n-3) | 0.07 a | 0.09 a | 0.42 b | 1.10 c | 0.04 | <0.001 | <0.001 | <0.001 |
Total n-6 PUFA 9 | 19.4 b | 24.4 c | 16.4 a | 17.3 a | 0.54 | <0.001 | <0.001 | <0.001 |
C18:2 (n-6) | 18.4 b | 23.4 c | 15.5 a | 16.3 a | 0.534 | <0.001 | <0.001 | <0.001 |
C20:4 (n-6) | 0.36 | 0.35 | 0.32 | 0.28 | 0.012 | <0.001 | 0.066 | 0.391 |
n6:n3 10 | 8.65 c | 8.30 c | 5.72 b | 3.45 a | 0.158 | <0.001 | <0.001 | <0.001 |
Fatty Acid 1 | Soya Oil | Salmon Oil | SEM 3 | Oil | Day | Oil × Day | ||||
---|---|---|---|---|---|---|---|---|---|---|
D0 2 | D14 2 | D21 2 | D0 | D14 | D21 | p | p | p | ||
Total saturated 4 | 26.5 | 41.5 | 39.3 | 27.5 | 40.8 | 41.2 | 0.556 | 0.013 | <0.001 | 0.111 |
Total MUFA 5 | 31.1 | 36.9 | 36 | 33.1 | 39.1 | 37.7 | 0.625 | 0.002 | <0.001 | 0.859 |
Total PUFA 6 | 42.3 e | 21.5 b | 24.5 c | 39.2 d | 19.9 a | 20.8 a,b | 0.582 | <0.001 | <0.001 | 0.04 |
Total n-3 PUFA 7 | 4.32 c | 2.29 a | 2.60 a,b | 5.03 d | 2.90 b | 3.98 c | 0.118 | <0.001 | <0.001 | 0.006 |
C18:3 (n-3) | 3.22 | 1.85 | 2.15 | 3.13 | 1.79 | 2.09 | 0.065 | 0.181 | <0.001 | 0.959 |
C20:5 (n-3) | 0.08 a,b,c | 0.06 a,b | 0.06 a | 0.09 a,c | 0.22 d | 0.47 e | 0.019 | <0.001 | <0.001 | <0.001 |
C22:5 (n-3) | 0.57 c | 0.19 a | 0.20 a | 0.84 d | 0.35 b | 0.50 c | 0.021 | <0.001 | <0.001 | <0.001 |
C22:6 (n-3) | 0.23 b | 0.08 a | 0.09 a | 0.71 d | 0.40 c | 0.76 d | 0.035 | <0.001 | <0.001 | <0.001 |
Total n-6 PUFA 8 | 38.0 e | 19.2 b | 21.9 c | 34.1 d | 17.0 a | 16.8 a | 0.511 | <0.001 | <0.001 | <0.001 |
C18:2 (n-6) | 35.5 e | 18.3 b | 20.9 c | 31.7 d | 16.0 a | 15.9 a | 0.503 | <0.001 | <0.001 | <0.001 |
C20:4 (n-6) | 1.09 | 0.38 | 0.35 | 1.01 | 0.36 | 0.3 | 0.02 | <0.001 | <0.001 | 0.065 |
n6:n3 9 | 8.79 e | 8.4 d | 8.45 d,e | 6.80 c | 5.94 b | 4.57 a | 0.141 | <0.001 | <0.001 | <0.001 |
Fatty Acid 1 | Soya Oil | Salmon Oil | SEM 4 | Oil | Energy | Oil × Energy | ||
---|---|---|---|---|---|---|---|---|
Flat 2 | Phased 3 | Flat | Phased | p | p | p | ||
Blood Plasma | ||||||||
Total Saturated 5 | 42.6 | 41.4 | 41.3 | 45.3 | 1.375 | 0.348 | 0.295 | 0.073 |
Total MUFA 6 | 23.7 | 19.8 | 24.5 | 23.0 | 0.806 | 0.018 | 0.002 | 0.145 |
Total PUFA 7 | 33.5 | 38.4 | 33.7 | 31.3 | 1.838 | 0.069 | 0.539 | 0.055 |
Total n-3 PUFA 8 | 2.75 | 3.19 | 4.49 | 4.39 | 0.483 | 0.005 | 0.734 | 0.577 |
C18:3 (n-3) | 0.97 | 1.2 | 1.23 | 1.3 | 0.104 | 0.094 | 0.167 | 0.445 |
C22:6 (n-3) | 0.92 | 1.08 | 2.18 | 2.04 | 0.294 | <0.001 | 0.988 | 0.620 |
Total n-6 PUFA 9 | 30.8 a | 35.2 b | 29.2 a | 26.9 a | 1.431 | 0.002 | 0.495 | 0.025 |
C18:2 (n-6) | 25.4 a | 29.7 b | 24.8 a | 23.6 a | 1.01 | 0.002 | 0.138 | 0.011 |
C20:4 (n-6) | 4.55 | 4.58 | 3.53 | 2.41 | 0.451 | 0.001 | 0.235 | 0.213 |
n6:n3 10 | 12.8 | 12.7 | 7.4 | 7.2 | 1.01 | <0.001 | 0.864 | 1.000 |
Adipose Tissue | ||||||||
Total Saturated | 35 | 34.2 | 36.2 | 35.5 | 0.593 | 0.044 | 0.226 | 0.93 |
Total MUFA | 43 | 39.2 | 44.2 | 43.1 | 0.687 | <0.001 | 0.001 | 0.065 |
Total PUFA | 21.8 a | 26.3 b | 19.3 c | 21.2 a | 0.412 | <0.001 | <0.001 | 0.002 |
Total n-3 PUFA | 2.15 | 2.42 | 2.47 | 3.11 | 0.131 | <0.001 | 0.001 | 0.165 |
C18:3 (n-3) | 1.63 | 2.04 | 1.55 | 1.87 | 0.051 | 0.02 | <0.001 | 0.351 |
C20:5 (n-3) | 0.06 a | 0.04 a | 0.12 b | 0.20 c | 0.017 | <0.001 | 0.06 | 0.004 |
C22:5 (n-3) | 0.19 a | 0.14 a | 0.31 b | 0.40 c | 0.032 | <0.001 | 0.515 | 0.025 |
C22:6 (n-3) | 0.12 a | 0.07 a | 0.32 b | 0.47 c | 0.047 | <0.001 | 0.332 | 0.035 |
Total n-6 PUFA | 19.6 a | 23.9 b | 16.8 c | 18.0 c | 0.448 | <0.001 | <0.001 | 0.001 |
C18:2 (n-6) | 18.5 a | 22.8 b | 15.8 c | 17.0 c | 0.447 | <0.001 | <0.001 | 0.001 |
C20:4 (n-6) | 0.31 | 0.32 | 0.28 | 0.27 | 0.013 | 0.003 | 0.878 | 0.413 |
n6:n3 | 9.44 | 9.88 | 6.84 | 6.09 | 0.434 | <0.001 | 0.723 | 0.168 |
Liver Tissue | ||||||||
Total Saturated | 41.8 a | 39.8 b | 42.9 a,c | 43.6 c | 0.484 | <0.001 | 0.205 | 0.009 |
Total MUFA | 13.5 | 12.4 | 12.4 | 12.8 | 0.493 | 0.534 | 0.487 | 0.133 |
Total PUFA | 44.4 a | 47.5 b | 44.4 a | 43.3 c | 0.368 | <0.001 | 0.011 | <0.001 |
Total n-3 PUFA | 8.81 | 8.15 | 13.7 | 14.6 | 0.693 | <0.001 | 0.874 | 0.263 |
C18:3 (n-3) | 0.68 | 0.99 | 0.54 | 0.78 | 0.066 | 0.01 | <0.001 | 0.578 |
C22:5 (n-3) | 2.39 a,b | 2.15 a | 2.55 b | 2.84 c | 0.094 | <0.001 | 0.737 | 0.008 |
C22:6 (n-3) | 5.61 | 4.9 | 10.6 | 10.9 | 0.662 | <0.001 | 0.758 | 0.449 |
Total n-6 PUFA | 35.5 a | 39.3 b | 30.6 c | 28.6 c | 0.878 | <0.001 | 0.308 | <0.001 |
C18:2 (n-6) | 19.5 a | 23.1 b | 16.5 c | 16.4 c | 0.507 | <0.001 | 0.002 | <0.001 |
C20:4 (n-6) | 14.7 | 14.6 | 12.6 | 10.7 | 0.606 | <0.001 | 0.111 | 0.146 |
n6:n3 | 4.37 | 4.88 | 2.25 | 2.17 | 0.274 | <0.001 | 0.424 | 0.277 |
Muscle Tissue | ||||||||
Total Saturated | 36.7 | 36.1 | 38.2 | 37.6 | 0.589 | 0.014 | 0.331 | 0.954 |
Total MUFA | 37.1 | 33.4 | 38.4 | 36.7 | 0.865 | 0.01 | 0.005 | 0.263 |
Total PUFA | 26 | 30.5 | 23.3 | 25.5 | 0.592 | <0.001 | <0.001 | 0.06 |
Total n-3 PUFA | 2.65 | 2.85 | 3.19 | 4.12 | 0.224 | <0.001 | 0.016 | 0.113 |
C18:3 (n-3) | 1.52 | 1.9 | 1.48 | 1.71 | 0.044 | 0.01 | <0.001 | 0.096 |
C22:5 (n-3) | 0.59 | 0.52 | 0.76 | 0.99 | 0.075 | <0.001 | 0.269 | 0.061 |
C22:6 (n-3) | 0.4 a | 0.30 a | 0.80 b | 1.25 c | 0.129 | <0.001 | 0.192 | 0.036 |
Total n-6 PUFA | 23.3 a | 27.7 b | 20.0 c | 21.3 c | 0.582 | <0.001 | <0.001 | 0.012 |
C18:2 (n-6) | 20.4 a | 24.7 b | 17.5 c | 18.6 c | 0.463 | <0.001 | <0.001 | 0.001 |
C20:4 (n-6) | 1.88 | 1.96 | 1.5 | 1.62 | 0.148 | 0.018 | 0.519 | 0.911 |
n6:n3 | 9.34 | 9.73 | 6.25 | 5.46 | 0.463 | <0.001 | 0.663 | 0.212 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavery, A.; Lawlor, P.G.; Miller, H.M.; Magowan, E. The Effect of Dietary Oil Type and Energy Intake in Lactating Sows on the Fatty Acid Profile of Colostrum and Milk, and Piglet Growth to Weaning. Animals 2019, 9, 1092. https://doi.org/10.3390/ani9121092
Lavery A, Lawlor PG, Miller HM, Magowan E. The Effect of Dietary Oil Type and Energy Intake in Lactating Sows on the Fatty Acid Profile of Colostrum and Milk, and Piglet Growth to Weaning. Animals. 2019; 9(12):1092. https://doi.org/10.3390/ani9121092
Chicago/Turabian StyleLavery, Anna, Peadar G. Lawlor, Helen M. Miller, and Elizabeth Magowan. 2019. "The Effect of Dietary Oil Type and Energy Intake in Lactating Sows on the Fatty Acid Profile of Colostrum and Milk, and Piglet Growth to Weaning" Animals 9, no. 12: 1092. https://doi.org/10.3390/ani9121092
APA StyleLavery, A., Lawlor, P. G., Miller, H. M., & Magowan, E. (2019). The Effect of Dietary Oil Type and Energy Intake in Lactating Sows on the Fatty Acid Profile of Colostrum and Milk, and Piglet Growth to Weaning. Animals, 9(12), 1092. https://doi.org/10.3390/ani9121092