Computational Analysis of Movement Patterns of Dogs with ADHD-Like Behavior
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
- This was the subjects’ first visit to the behavioral expert veterinarian.
- During that visit the expert diagnosed the subject with ADHD-like behavior.
- During that visit the expert prescribed a medical treatment for the above condition.
2.2. Location
2.3. Analysis Software
2.4. Processed Videos
2.5. Analyzed Parameters
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Overall, K.L. The ethogram project. J. Vet. Behav. Clin. Appl. Res. 2014, 9, 1–5. [Google Scholar] [CrossRef]
- Masson, S.; Gaultier, E. Retrospecive study on hypersensitivity-hyperactivity syndrome in dogs: Long-term outcome of high dose fluoxetine treatment and proposal of a clinical score. Dog Behav. 2018, 4, 15–35. [Google Scholar]
- Vas, J.; Topál, J.; Péch, E.; Miklósi, A. Measuring attention deficit and activity in dogs: A new application and validation of a human ADHD questionnaire. Appl. Anim. Behav. Sci. 2007, 103, 105–117. [Google Scholar] [CrossRef]
- Hoppe, N.; Bininda-Emonds, O.R.P.; Gansloßer, U. Correlates of attention deficit hyperactivity disorder (ADHD)-like behavior in domestic dogs: First results from a questionnaire-based study. Vet. Med. Open J. 2017, 2, 95–131. [Google Scholar] [CrossRef]
- Puurunen, J.; Sulkama, S.; Tiira, K.; Araujo, C.; Lehtonen, M.; Hanhineva, K.; Lohi, H. A non-targeted metabolite profiling pilot study suggests that tryptophan and lipid metabolisms are linked with ADHD-like behaviours in dogs. Behav. Brain Funct. 2016, 12, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, Y.; Serpell, J.A. Development and validation of a questionnaire for measuring behavior and temperament traits in pet dogs. J. Am. Vet. Med Assoc. 2003, 223, 1293–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, H.F.; Mills, D.S.; Pollux, P.M. Development and validation of a psychometric tool for assessing impulsivity in the domestic dog (Canis familiaris). Int. J. Comp. Psychol. 2011, 24, 210–225. [Google Scholar]
- Lit, L.; Schweitzer, J.B.; Iosif, A.M.; Oberbauer, A.M. Owner reports of attention, activity, and impulsivity in dogs: A replication study. Behav. Brain Funct. 2010, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egnor, S.R.; Branson, K. Computational analysis of behavior. Annu. Rev. Neurosci. 2016, 39, 217–236. [Google Scholar] [CrossRef] [PubMed]
- Amir, S.; Zamansky, A.; van der Linden, D. K9-Blyzer: Towards Video-Based Automatic Analysis of Canine Behavior. In Proceedings of the Fourth International Conference on Animal-Computer Interaction, Milton Keynes, UK, 21–23 November 2017; p. 9. [Google Scholar]
- Zamansky, S.; Bleuer-Elsner, S.; Masson, S.; Amir, O.; Magen, D.v.d.L. Effects of anxiety on canine movement in dog-robot interactions. Anim. Behav. Cogn. 2018, 5, 280–287. [Google Scholar] [CrossRef]
- Zamansky, A.; Sinitca, A.M.; Kaplun, D.I.; Plazner, M.; Schork, I.G.; Young, R.J.; de Azevedo, C.S. An Application of Convolutional Neural Networks for Analyzing Dogs’ Sleep Patterns. In Proceedings of the ICANN: International Conference on Artificial Neural Networks, Munich, Germany, 17–19 September 2019. [Google Scholar]
- Kaplun, D.A.; Sinitca, A.; Zamansky, M.; Plazner, S.; Bleuer-Elsner, D.v.d.L. Animal Health Informatics: Towards a Generic Framework for Automatic Behavior Analysis. In Proceedings of the 12th International Conference on Health Informatics, Prague, Czech Republic, 22–24 February 2019. [Google Scholar]
- Almeida, P.J.; Vieira, M.V.; Kajin, M.; Forero-Medina, G.; Cerqueira, R. Indices of movement behaviour: Conceptual background, effects of scale and location errors. Zoologia 2010, 27. [Google Scholar] [CrossRef]
- Saalfeld, A. Topologically consistent line simplification with the Douglas-Peucker algorithm. Cartogr. Geogr. Inf. Sci. 1999, 26, 7–18. [Google Scholar] [CrossRef]
C-Group (N = 12) | |||||
Name | Sex (m/f) | Age (yrs) | Breed | Weight (kgs) | Neutered |
Wally | m | 3 | Saluki | 23 | y |
Gino | m | 0.67 | Cane Corso | 44 | n |
Jema | f | 3 | Mixed | 25 | y |
Laila | f | 1 | Mixed | 20 | y |
Loli | f | 6 | Mixed | 17 | y |
Misty | f | 2.5 | Mixed | 20 | y |
Pie | m | 1 | Mixed | 25 | y |
Sparki | m | 5 | Golden Retriever | 40 | n |
Mila | f | 3.5 | Mixed | 22 | y |
Mika | f | 7 | Mixed | 7 | y |
Theresa | f | 0.67 | Saluki | 16.5 | y |
Pit | m | 1 | Mixed | 25 | y |
H-Group (N = 12) | |||||
Name | Sex (m/f) | Age (yrs) | Breed | Weight (kgs) | Neutered |
Sia | f | 2 | Mixed | 19 | y |
Tomy | m | 2.5 | French Bulldog | 13 | y |
Humus | m | 1.5 | Mixed | 23 | y |
Indi | f | 1.5 | Vizsla | 20 | y |
Max | m | 1 | Labrador | 36 | y |
Pit | m | 3 | Mixed | 24 | y |
Nancy | m | 0.67 | Mixed | 21 | y |
Bana | f | 1.5 | Doberman | 32 | y |
Patrick | m | 0.5 | Husky | 23 | n |
Mitch | m | 6 | French Bulldog | 13 | n |
Lichi | f | 7 | Mixed | 22 | y |
Kim | f | 1 | Mixed | 18 | y |
Variable | Explanation | Unit |
---|---|---|
n-distance | Distance covered by the dog normalized by its weight | cm |
turn30_60 | Number of turns between 30 and 60 degrees | |
turn60_90 | Number of turns between 60 and 90 degrees | |
turn90_120 | Number of turns between 90 and 120 degrees | |
turn120 | Number of turns greater than 120 degrees | |
IU | (Intensity of Use) the ratio between total movement and the square root of the area of movement | Percentage |
number_of_points | Number of approximation points on the curve resulting from applying a variant of Dougles–Peuker curve approximation algorithm to the dog’s trajectory | |
average_speed | Dog’s walking distance in relation to calculated video duration | cm/s |
ST | Straightness-net displacement distance divided by the total length of the dog’s movement | Varies from 0 to 1 |
MSD | Mean squared displacement—measure of the deviation of the position of a particle with respect to the dog’s reference position over time | cm2 s−1 |
SI | Sinuosity—calculattion of the actual path length divided by the shortest path length of the dog’s movement | Varies from 1 to infinity |
FD | Fractal Dimension—statistical index ratio of complexity comparing the space-filling capacity of the dog’s movement pattern |
Variable | H-Group | C-Group | Mann–Whitney U Test of Independence (n1 = n2) | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | U | p | Effect Size (Cohen’s d) | Power (posthoc) | |
n-distance | 214.88 | 169.63 | 57.79 | 38.81 | 15 | <0.01 | 1.28 | 0.83 |
turn30_60 | 27.00 | 14.85 | 11.08 | 5.48 | 24 | <0.01 | 1.42 | 0.90 |
turn60_90 | 12.08 | 6.75 | 3.42 | 3.20 | 12 | <0.01 | 1.64 | 0.96 |
turn90_120 | 7.75 | 5.55 | 2.17 | 2.72 | 18.5 | <0.01 | 1.28 | 0.83 |
turn120 | 20.92 | 21.90 | 6.00 | 5.38 | 29 | <0.05 | 0.94 | 0.57 |
IU | 25.50 | 19.66 | 9.13 | 4.88 | 17 | <0.01 | 1.14 | 0.74 |
number_of_points | 217.42 | 138.43 | 73.33 | 34.92 | 14 | <0.01 | 1.43 | 0.90 |
average_speed (normalized) | 1.49 | 1.08 | 0.36 | 0.23 | 10 | <0.01 | 1.45 | 0.91 |
ST | 0.02 | 0.03 | 0.10 | 0.09 | 16 | <0.05 | −1.24 | 0.81 |
MSD | 198.65 | 62.51 | 231.12 | 195.05 | 67 | =0.77 | −0.22 | 0.08 |
SI | 0.33 | 0.09 | 0.39 | 0.08 | 43 | =0.1 | −0.68 | 0.34 |
FD | 1.40 | 0.11 | 1.20 | 0.10 | 14 | <0.01 | 1.96 | 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bleuer-Elsner, S.; Zamansky, A.; Fux, A.; Kaplun, D.; Romanov, S.; Sinitca, A.; Masson, S.; van der Linden, D. Computational Analysis of Movement Patterns of Dogs with ADHD-Like Behavior. Animals 2019, 9, 1140. https://doi.org/10.3390/ani9121140
Bleuer-Elsner S, Zamansky A, Fux A, Kaplun D, Romanov S, Sinitca A, Masson S, van der Linden D. Computational Analysis of Movement Patterns of Dogs with ADHD-Like Behavior. Animals. 2019; 9(12):1140. https://doi.org/10.3390/ani9121140
Chicago/Turabian StyleBleuer-Elsner, Stephane, Anna Zamansky, Asaf Fux, Dmitry Kaplun, Sergey Romanov, Aleksandr Sinitca, Sylvia Masson, and Dirk van der Linden. 2019. "Computational Analysis of Movement Patterns of Dogs with ADHD-Like Behavior" Animals 9, no. 12: 1140. https://doi.org/10.3390/ani9121140
APA StyleBleuer-Elsner, S., Zamansky, A., Fux, A., Kaplun, D., Romanov, S., Sinitca, A., Masson, S., & van der Linden, D. (2019). Computational Analysis of Movement Patterns of Dogs with ADHD-Like Behavior. Animals, 9(12), 1140. https://doi.org/10.3390/ani9121140