The Effect of Strain and Rearing Medium on the Chemical Composition, Fatty Acid Profile and Carotenoid Content in Silkworm (Bombyx mori) Pupae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Silkworm Rearing
2.2. Samples Collection
2.3. Chemical Characterization
2.4. Statistical Analysis
3. Results
3.1. Chemical Composition of Feeding Substrates
3.2. Chemical Composition of Silkworm Pupae
3.3. Multivariate Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brouceck, J. Production of methane emissions from ruminant husbandry: A review. J. Environ. Prot. 2014, 5, 1482–1493. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Van den Bergb, M.; Westhoekb, H.J.; Witzkec, H.P.; Oenema, O. Greenhouse gas emission profiles of European livestock sectors. Anim. Feed Sci. Technol. 2011, 166, 16–28. [Google Scholar] [CrossRef]
- Belforti, M.; Gai, F.; Lussiana, C.; Renna, M.; Malfatto, V.; Rotolo, L.; De Marco, M.; Dabbou, S.; Schiavone, A.; Zoccarato, I.; et al. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: Effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital. J. Anim. Sci. 2015, 14, 670–676. [Google Scholar] [CrossRef]
- Shepherd, C.J.; Jackson, A.J. Global fishmeal and fish-oil supply: Inputs, outputs and markets. J. Fish. Biol. 2013, 83, 1046–1066. [Google Scholar] [CrossRef] [PubMed]
- Ñiquen, M.; Bouchon, M. Impact of El Niño events on pelagic fisheries in Peruvianwaters. Deep Sea Res. Pt. II 2004, 51, 563–574. [Google Scholar] [CrossRef]
- Morales, A.E.; Cardenete, G.; De la Higuera, M.; Sanz, A. Effects of dietary protein source on growth, feed conversion and energy utilisation in rainbow trout, Oncorhynchus mykiss. Aquaculture 1994, 124, 117–126. [Google Scholar] [CrossRef]
- Xu, Q.Y.; Wang, C.A.; Zhao, Z.G.; Luo, L. Effects of replacement of fish meal by soy protein isolate on the growth, digestive enzyme activity and serum biochemical parameters for juvenile amur sturgeon (Acipenserschrenckii). Asian Aust. J. Anim. Sci. 2012, 25, 1588–1594. [Google Scholar] [CrossRef]
- Ghazi, S.; Rooke, J.A.; Galbraith, H. Improvement of the nutritive value of soybean meal by protease and alpha-galactosidase treatment in broiler cockerels and broiler chicks. Brit. Poult. Sci. 2003, 44, 410–418. [Google Scholar] [CrossRef]
- Barroso, F.G.; de Haro, C.; Sanchez-Muros, M.J.; Venegas, E.; Martinez-Sanchez, A.; Perez-Banon, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422, 193–201. [Google Scholar] [CrossRef]
- Hardy, R.W. Alternate protein sources for salmon and trout diets. Anim. Feed Sci. Technol. 1996, 59, 71–80. [Google Scholar] [CrossRef]
- Barona, E.; Ramankutty, N.; Hyman, G.; Coomes, O.T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 2010, 5, 1–9. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Ijaiya, A.T.; Eko, E.O. Effect of replacing dietary fish meal with silkworm (Anaphe infracta) caterpillar meal on performance, carcass characteristics and haematological parameters of finishing broiler chicken. Pak. J. Nutr. 2009, 8, 850–855. [Google Scholar] [CrossRef]
- Shakoori, M.; Gholipour, H.; Naseri, S. Effect of replacing dietary fish meal with silkworm (Bombyx mori) pupae on hematological parameters of rainbow trout Oncorhynchus mykiss. Comp. Clin. Pathol. 2015, 24, 139–143. [Google Scholar] [CrossRef]
- Lin, S.; Njaa, L.R.; Eggum, B.O.; Shen, H. Chemical and biological evaluation of silk worm chrysalid protein. J. Sci. Food Agric. 1983, 34, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.U. Chemical composition and nutritional evaluation of spent silk worm pupae. J. Agric. Food Chem. 1994, 42, 2201–2203. [Google Scholar] [CrossRef]
- Nakasone, S.; Toshio, I. Fatty acid composition of the silkworm, Bombyx mori L. J. Insect Physiol. 1967, 13, 1237–1246. [Google Scholar] [CrossRef]
- Pereira, N.R.; Ferrarese-Filho, O.; Matsushita, M.; de Souza, N.E. Proximate composition and fatty acid profile of Bombyx mori L. chrysalis toast. J. Food Compos. Anal. 2003, 16, 451–457. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.-Q. Identification and analysis of the pigment composition and sources in the coloured cocoon of the silkworm, Bombyx mori, by HPLC-DAD. J. Insect Sci. 2014, 14, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Daimon, T.; Hirayama, C.; Kanai, M.; Ruike, Y.; Meng, Y.; Kosegawa, E.; Shimada, T. The silkworm Green b locus encodes a quercetin 5-O-glucosyltransferase that produces green cocoons with UV-shielding properties. Proc. Natl. Acad. Sci. USA 2010, 107, 11471–11476. [Google Scholar] [CrossRef] [PubMed]
- Torrissen, O.J. Pigmentation of salmonids: Interactions of astaxanthin and canthaxanthin on pigment deposition in rainbow trout. Aquaculture 1989, 79, 363–374. [Google Scholar] [CrossRef]
- Leeson, S.; Caston, L. Enrichment of eggs with lutein. Poult. Sci. 2004, 83, 1709–1712. [Google Scholar] [CrossRef]
- Hayashiya, K. Artificila diet and fresh mulberry leaves for silkworms. In Silkworm Rearing on Artificial Diet; Hamamura, Y., Ed.; Science Publisher: Enfield, NH, USA, 2001; pp. 71–105. [Google Scholar]
- Sealey, W.M.; Gaylord, T.G.; Barrows, F.T.; Tomberlin, J.K.; McGuire, M.A.; Ross, C.; St-Hilaire, S. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J. World Aquacult. Soc. 2011, 42, 34–45. [Google Scholar] [CrossRef]
- Cappellozza, L.; Cappellozza, S.; Saviane, A.; Sbrenna, G. Artificial diet rearing system for the silkworm Bombyxmori (Lepidoptera: Bombycidae): Effect of vitamin C deprivation on larval growth and cocoon production. Appl. Entomol. Zool. 2005, 40, 405–412. [Google Scholar] [CrossRef]
- Dumas, J.P. Lettre de M. Dumas a M. Gay-Lussac, sur les procedes de l’analyse organique. Ann. Chim. Phys. 1831, 2, 198–215. [Google Scholar]
- Bligh, S.K.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Zanetti, F.; Chieco, C.; Alexopoulou, E.; Vecchi, A.; Bertazza, G.; Monti, A. Comparison of new castor (Ricinuscommunis L.) genotypes in the mediterranean area and possible valorization of residual biomass for insect rearing. Ind. Crops Prod. 2017, 107, 581–587. [Google Scholar] [CrossRef]
- Schoefs, B. Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methodsof analysis. Trends Food Sci. Technol. 2002, 13, 361–371. [Google Scholar] [CrossRef]
- Craft, N.E.; Soares, J.H. Relative solubility, stability, and absorptivity of lutein and β-carotene in organic solvents. J. Agric. Food Chem. 1992, 40, 431–434. [Google Scholar] [CrossRef]
- Pistone, A.; Sagnella, A.; Chieco, C.; Bertazza, G.; Varchi, G.; Formaggio, F.; Posati, T.; Saracino, E.; Caprini, M.; Bonetti, S.; et al. Silk fibroin film from Golden-Yellow Bombyxmori is a biocomposite that contains lutein and promotes axonal growth of primary neurons. Biopolymers 2016, 105, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Thomson, S.N. A review and comparative characterization of the fatty acid compositions of seven insect orders. Comp. Biochem. Physiol. 1973, 45b, 467–482. [Google Scholar]
- Romos-Elorduy, J. Energy supplied by edible insects from Mexico and their nutritional and ecological importance. Ecol. Food Nutr. 2008, 47, 280–297. [Google Scholar] [CrossRef]
- Sakudoh, T.; Kuwazaki, S.; Iizuka, T.; Narukawa, J.; Yamamoto, K.; Uchino, K.; Sezutsu, H.; Banno, Y.; Tsuchida, K. CD36 homolog divergence is responsible for the selectivity of carotenoid species migration to the silk gland of the silkworm Bombyxmori. J. Lipid Res. 2013, 54, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, K.; Sakudoh, T. Recent progress in molecular genetic studies on the carotenoid transport system using cocoon-color mutants of the silkworm. Arch. Biochem. Biophys. 2015, 572, 151–157. [Google Scholar] [CrossRef]
- Achir, N.; Randrianatoandro, V.A.; Bohuon, P.; Laffargue, A.; Avallone, S. Kinetic study of β-carotene and lutein degradation in oils during heat treatment. Eur. J. Lipid Sci. Technol. 2010, 112, 349–361. [Google Scholar] [CrossRef]
- Muñoz-Díaz, J.I.; Fuente-Martínez, B.; Hernández-Velasco, X.; Ávila-González, E. Skin pigmentation in broiler chickens fed various levels of metabolizable energy and xanthophylls from Tageteserecta. J. Appl. Poult. Res. 2012, 21, 788–796. [Google Scholar] [CrossRef]
- Sagnella, A.; Chieco, C.; Benfenati, V.; Di Virgilio, N.; Toffanin, S.; Cavallini, S.; Posati, T.; Pistone, A.; Varchi, G.; Ruani, G; et al. SILK.IT project: Silk Italian Technology for industrial biomanufacturing. Compos. Part B Eng. 2015, 68, 281–287. [Google Scholar] [CrossRef]
- Benfenati, V.; Toffanin, S.; Chieco, C.; Sagnella, A.; Di Virgilio, N.; Posati, T.; Varchi, G.; Natali, M.; Ruani, G.; Muccini, M.; et al. Silk fibroin based technology for industrial biomanufacturing. In Factories of the Future, the Italian Flagship Initiative, 1st ed.; Tolio, T., Copani, G., Terkaj, W., Eds.; Springer: Cham, Switzerland, 2019; pp. 409–430. [Google Scholar]
Chemical Component | AD | ML | p-Value |
---|---|---|---|
Moisture (%) | 73.2 ± 0.2 | 67.8 ± 1.1 | 0.001 |
Crude fat (%) | 3.2 ± 0.1 | 4.0 ± 0.7 | 0.096 |
Crude Protein (%) | 21.1 ± 0.6 | 12.4 ± 0.3 | 0.003 |
Total free sugar (mg/g) | 59.4 ±2.6 | 104 ± 2 | <0.0001 |
C16:0 (%) | 23.0 ± 0.5 | 20.1 ± 0.4 | 0.001 |
C16:1 (%) | 1.3 ± 0.1 | 1.4 ± 0.1 | 0.172 |
C18:0 (%) | 4.2 ± 0.1 | 4.3 ± 0.1 | 0.458 |
C18:1 (%) | 10.3 ± 0.3 | 9.5 ± 0.3 | 0.033 |
C18:2 (n-6) (%) | 33.6 ± 0.2 | 27.5 ± 0.3 | <0.0001 |
C18:3 (n-3) (%) | 26.8 ± 0.3 | 36.5 ± 0.5 | <0.0001 |
SFA (%) | 27.2 ±0.4 | 24.4 ±0.5 | 0.001 |
MUFA (%) | 11.6 ±0.3 | 10.9 ± 0.3 | 0.037 |
PUFA (%) | 60.4 ± 0.1 | 64.0 ± 0.6 | 0.001 |
n3/n6 | 0.8 ± 0.1 | 1.3 ± 0.1 | <0.0001 |
Neoxanthin (ug/g) | nd | 38.8 ± 5.6 | |
Violaxanthin (ug/g) | nd | 51.9 ± 2.5 | |
Antheraxanthin (ug/g) | nd | 26.4 ± 1.0 | |
Lutein (ug/g) | 47.0 ± 1.9 | 197 ± 9 | <0.0001 |
β-Carotene (ug/g) | 21.6 ± 1.1 | 148 ± 9 | <0.0001 |
Tot. carotenoids (ug/g) | 68.6 ± 2.8 | 462 ± 25 | <0.0001 |
Rearing Medium | Strain | Moisture (%) | Crude Fat (%) | Crude Protein (%) |
---|---|---|---|---|
AD | WP | 73.0 a,b ± 1.0 | 23.3 c ± 0.1 | 61.9 a ± 1.5 |
GN | 76.8 a ± 0.3 | 25.1 c ± 1.1 | 62.7 a ± 0.1 | |
ML | WP | 73.0 b ± 0.7 | 33.3 a ± 0.8 | 53.1 c ± 0.4 |
GN | 75.1 a,b ± 0.4 | 30.7 b ± 0.9 | 56.4 b ± 0.4 | |
Strain | 85.4 *** | 0.3 ns | 6.9 * | |
FeedSubstr | 7.5 ** | 92.2 *** | 90.4 *** | |
StrainX FeedSubstr | 7.2 * | 7.6 ** | 2.7 ns | |
p-value | <0.0001 | <0.0001 | 0.001 |
Rearing Medium | Strain | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 (n-6) | C18:3 (n-3) | SFA | MUFA | PUFA | n3/n6 |
---|---|---|---|---|---|---|---|---|---|---|---|
AD | WP | 29.2 a ± 0.4 | 1.5 a ± 0.0 | 10.9 a ± 0.1 | 35.1 b ± 0.3 | 11.4 a ± 0.5 | 11.7 c ± 0.3 | 40.1 a ± 0.5 | 36.6 b± 0.4 | 23.1 c ± 0.8 | 1.0 c ± 0.0 |
GN | 25.1 b ± 0.3 | 1.5 a ± 0.0 | 9.3 b ± 0.2 | 39.8 a ± 0.3 | 11.8 a ± 0.1 | 12.3 c ± 0.2 | 34.3 b ± 0.5 | 41.3 a ± 0.3 | 24.1 c ± 0.3 | 1.0 c ± 0.0 | |
ML | WP | 25.2 b ± 0.7 | 0.8 b ± 0.1 | 7.2 c ± 0.2 | 35.2 b ± 0.3 | 7.1 c ± 0.4 | 24.3 b ± 0.2 | 32.4 b ± 0.8 | 36.0 b± 0.3 | 31.4 b ± 0.7 | 3.4 a ± 0.2 |
GN | 21.6 c ± 0.4 | 1.4 a ± 0.0 | 4.8 d ± 0.1 | 32.3 c ± 0.1 | 10.4 b ± 0.2 | 29.3 a ± 0.2 | 26.3 b ±0.5 | 33.8 c± 0.2 | 39.7 a± 0.5 | 2.8 b ± 0.1 | |
Strain | 51.3 *** | 35.0 *** | 19.9 *** | 2.7 *** | 24.8 *** | 3.3 *** | 35.3 *** | 4.7 *** | 12.2 *** | 1.9 *** | |
FeedSubstr | 48.4 *** | 37.1 *** | 79.4 *** | 47.1 *** | 60.5 *** | 94.5 *** | 64.7 *** | 54.4 *** | 80.2 *** | 96.0 *** | |
StrainX FeedSubstr | 0.3 ns | 27.9 *** | 0.8 ** | 50.2 *** | 14.7 *** | 2.2 *** | 0.0 ns | 40.9 *** | 7.7 *** | 2.0 *** | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Rearing Medium | Strain | Lutein | β-Carotene | Total |
---|---|---|---|---|
AD | WP | 2.4 d ± 0.1 | 0.6 d ± 0.2 | 3.0 ± 0.1 |
GN | 27.0 a ± 0.1 | 2.2 c ± 0.2 | 29.2 ± 0.2 | |
ML | WP | 11.1 c ± 0.3 | 6.0 b ± 0.3 | 17.1 ± 0.5 |
GN | 21.7 ± 0.2 | 13.3 a ± 0.4 | 35.0 ± 0.5 | |
Strain | 85.6 *** | 20.6 *** | 80.6 *** | |
FeedSubstr | 0.8 *** | 71.1 *** | 16.5 *** | |
StrainX FeedSubstr | 13.6 *** | 8.3 *** | 2.9 *** | |
p-value | <0.0001 | <0.0001 | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chieco, C.; Morrone, L.; Bertazza, G.; Cappellozza, S.; Saviane, A.; Gai, F.; Di Virgilio, N.; Rossi, F. The Effect of Strain and Rearing Medium on the Chemical Composition, Fatty Acid Profile and Carotenoid Content in Silkworm (Bombyx mori) Pupae. Animals 2019, 9, 103. https://doi.org/10.3390/ani9030103
Chieco C, Morrone L, Bertazza G, Cappellozza S, Saviane A, Gai F, Di Virgilio N, Rossi F. The Effect of Strain and Rearing Medium on the Chemical Composition, Fatty Acid Profile and Carotenoid Content in Silkworm (Bombyx mori) Pupae. Animals. 2019; 9(3):103. https://doi.org/10.3390/ani9030103
Chicago/Turabian StyleChieco, Camilla, Lucia Morrone, Giampaolo Bertazza, Silvia Cappellozza, Alessio Saviane, Francesco Gai, Nicola Di Virgilio, and Federica Rossi. 2019. "The Effect of Strain and Rearing Medium on the Chemical Composition, Fatty Acid Profile and Carotenoid Content in Silkworm (Bombyx mori) Pupae" Animals 9, no. 3: 103. https://doi.org/10.3390/ani9030103