Fossil Shell Flour in Livestock Production: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Physical and Chemical Characteristics of FSF
3. Availability and Accessibility
4. Types of Farmers Making Use of FSF
5. Potentials of Fossil Shell Flour
5.1. Potential of FSF in Parasite Control in Livestock
5.2. Potential of Fossil Shell Flour as Detoxifier in Livestock Feed
5.3. Potential of Fossil Shell Flour as Animal Performance Enhancer
5.4. Potential of Fossil Shell Flour as Water Purifier for Livestock Usage
5.5. Potential of Fossil Shell Flour as Source of Minerals for Livestock
5.6. Potential of Fossil Shell Flour in Feed Storage
5.7. Potential of Fossil Shell Flour on Quality of Wool and Mohair
5.8. Fossil Shell Flour Can Be a Replacement of Antibiotic in Animal Feed
5.9. Other Potentials of Fossil Shell Flour in Feed Industry and Livestock Production
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; ISBN 9789251095515. [Google Scholar]
- Sejian, V.; Maurya, V.P.; Naqui, S.M.K. Adaptability and growth of Malpura ewes subjected to therma and nutritional stress. Trop. Anim. Health Prod. 2012, 42, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Garcia, L.; Lunadei, L. The role of RFID in agriculture: Applications, limitations and challenges. Comput. Electron. Agric. 2011, 79, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Bennett, D.C.; Yee, A.; Rhee, Y.J.; Cheng, K.M. Effect of diatomaceous earth on parasite load, egg production, and egg quality of free-range organic laying hens. Poult. Sci. 2011, 90, 1416–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koster, H. Diatomite in Animal Feeds. 2013. Available online: agrisilica.co.za/pdf/eng/Diatoms%20in%20Animal%20Feeds%20HH%20Koster.pdf (accessed on 20 June 2018).
- Dolatabadi, J.E.N.; de la Guardia, M. Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures. Trends Anal. Chem. 2011, 30, 1538–1548. [Google Scholar] [CrossRef]
- Bakr, M.; Hossam, E.; Galal, M. Diatomite: Its Characterization, Modifications and Applications. Asian J. Mater. Sci. 2010, 2, 121–136. [Google Scholar]
- Wang, Z.Y.; Jang, Y.X.; Zhang, L.P. Structural Investigation of some important Chinese diatomites. Glass Phys. Chem. 2009, 35, 673–679. [Google Scholar] [CrossRef]
- Aw, M.S.; Bariana, M.; Yu, Y.; Addai-Mensah, J.; Losic, D. Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs. J. Biomater. Appl. 2013, 28, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Weaver, A.C.; Todd See, M.; Hansen, J.A.; Kim, Y.B.; De Souza, A.L.P.; Middleton, T.F.; Kim, S.W. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ health and immune status during chronic exposure. Toxins 2013, 5, 1261–1281. [Google Scholar] [CrossRef] [PubMed]
- Wiewiora, M.; Monika, Ł.; Justyna, B.; Mateusz, M.; Tomasz, N. Diatomaceous earth in the prevention of worm infestation in purebred pigeons. Anim. Sci. 2015, 54, 161–166. [Google Scholar]
- Korunic, Z. Diatomaceous earths, a group of natural insecticides. J. Stored Prod. Res. 1998, 34, 87–97. [Google Scholar] [CrossRef]
- Eldernawi, A.M.; Jamel Rious, M.; Al-Samarrai, K.I. Chemical, Physical and Mineralogical, Characterization of nAl-Hishal Diatomite at Subkhah Ghuzayil Area, Libya. Int. J. Res. Appl. Nat. Soc. Sci. 2014, 2, 165–174. [Google Scholar]
- Hussain, H.U.; Usmani, R.H. Livestock of Pakistan, 1st ed.; Livestock Foundation: Islamabad, Pakistan, 2006. [Google Scholar]
- Miller, P.J.; Afonso, C.L.; Attrache, J.E.; Dorsey, K.M.; Courtney, S.C.; Guo, Z.J.; Kapczynski, D. Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Dev. Comp. Immunol. 2013, 41, 505–507. [Google Scholar] [CrossRef] [PubMed]
- Bernard, G.; Worku, M.; Ahmedna, M. The Effects of Diatomaceous Earth on Parasite Infected Goats. Bull. Georgian Natl. Acad. Sci. 2009, 3, 129–135. [Google Scholar]
- Al-Ghouti, M.; Khraisheh, M.A.M.; Ahmad, M.N.M.; Allen, S. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A kinetic study. J. Colloid Interface Sci. 2005, 287, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Akin, S.; Schembre, J.M.; Bhat, S.K.; Kovscek, A.R. Spontaneous imbibition characteristics of diatomite. J. Pet. Sci. Eng. 2000, 25, 149–165. [Google Scholar] [CrossRef]
- Yuan, P.; Liu, D.; Fan, M.; Yang, D.; Zhu, R.; Ge, F.; Zhu, J.X.; He, H. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J. Hazard. Mater. 2010, 173, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Jiang, P.; An, F.; Zhao, S.; Ge, Z. Studies on the surface modification of diatomite with polyethyleneimine and trapping effect of the modified diatomite for phenol. Appl. Surf. Sci. 2005, 250, 273–279. [Google Scholar] [CrossRef]
- Pookmanee, P.; Jansanthea, P.; Phanichphant, S. Adsorption of heavy metals onto natural and modified diatomite KMITL. Sci. J. 2008, 8, 1–8. [Google Scholar]
- Angela, F.D.; El-Gamouz, A.; Sofia, F.; Vanina, M.; Liliana, V.; Oliver, A.W. Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water. J. Hazard. Mater. 2012, 14, 241–242. [Google Scholar]
- Kilpinen, O.; Steenberg, T. Inert dusts and their effects on the poultry red mite. Exp. Appl. Acarol. 2009, 48, 51–62. [Google Scholar] [CrossRef]
- Pirsaraei, A.; Reza, S.; Hasan, A.M.; Ahmad, J.J.; Zohreh, F.; Jafar, T. The Effect of Acid and Thermal Treatment on a Natural Diatomite. Chem. J. 2015, 1, 144–150. [Google Scholar]
- Adebiyi, O.A.; Sokunbi, O.A.; Ewuola, E.O. Performance Evaluation and Bone Characteristics of Growing Cockerel Fed Diets Containing Different Levels of Diatomaceous Earth. Middle-East J. Sci. Res. 2009, 4, 36–39. [Google Scholar]
- Safa, M.; Larouci, M.; Meddah, B.; Valemens, P. The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on raw diatomite from Algeria. Water Sci. Technol. 2012, 65, 1729. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.; Yang, S.; Sheng, J.; Hu, J.; Tan, X.; Wang, X. Macroscopic and microscopic investigation of Ni (II) sequestration on diatomite by batch, XPS and EXAFS techniques. Environ. Sci. Technol. 2011, 45, 7718. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, M. Color removal from aqueous solution of tar-chromium green 3G dye using natural diatomite. Physicochem. Probl. Miner. Process. 2012, 48, 485. [Google Scholar]
- Caliskan, N.; Kul, A.R.; Alkan, S.; Sogut, E.G.; Alacabey, I. Adsorption of Zinc (II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study. J. Hazard. Mater. 2011, 193, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Goren, R.; Baykara, T.; Marsoglu, M. A study on the purification of diatomite in HCl. Scand. J. Metall. 2002, 31, 115–119. [Google Scholar] [CrossRef]
- Bello, O.S.; Adegoke, K.A.; Oyewole, R.O. Insights into the Adsorption of Heavy Metals from Wastewater using Diatomaceous Earth. Sep. Sci. Technol. 2014, 49, 1787–1806. [Google Scholar] [CrossRef]
- Pookmanee, P.; Thippraphan, P.; Phanichphant, S. Adsorption of copper ion (II) by manganese chloride modified diatomite via hydrother-mal method. In Proceedings of the 36th Congress on Science and Technology, Bangkok, Thailand, October 2010; pp. 26–28. [Google Scholar]
- Crangle, R.J. Diatomite: United State Geological Survey 2007 Mineral Yearbook. Available online: https://minerals.usgs.gov/minerals/pubs/commodity/diatomite/index.html (accessed on 15 December 2018).
- USA, Department of Environment. Mineral Commodity Summaries 2016; U.S. Geological Survey: Reston, VA, USA, 2016.
- Stathers, T.E.; Riwa, W.; Mvumi, B.M.; Mosha, R.; Kitandu, L.; Mngara, K.; Kaoneka, B.; Morris, M. Do diatomaceous earths have potential as grain protectants for small-holder farmers in sub-Saharan Africa? The case of Tanzania. Crop Prot. 2008, 27, 44–70. [Google Scholar] [CrossRef]
- Mvumi, B.; Stathers, T.; Riwa, W.; Morris, M.; Kitandu, L. Diatomaceous Earth Dusts for Grain Protection by Small-Scale Farmers in Tanzania and Zimbabwe; Department of Entomolgy, Kansas State University: Manhattan, KS, USA, 2004. [Google Scholar]
- Badii, B.K.; Adarkwah, C.; Obeng-ofori, D.; Ulrichs, C. Efficacy of diatomaceous earth formulations against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in Kersting’s groundnut (Macrotyloma geocarpumHarms): Influence of dosage rate and relative humidity. J. Pest Sci. 2014, 87, 285–294. [Google Scholar] [CrossRef]
- Van, P. An Award-wining Merino sheep enterprise with the use of diatomaceous earth. Farmer’s Weekly, 30 July 2015. [Google Scholar]
- Osweiler, G.D.; Carson, T.L. Evaluation of Diatomaceous Earth as an Adjunct to Sheep Parasite Control in Organic Farming; Leopold Center Completed Grant Reports; Iowa State University: Ames, IA, USA, 1997. [Google Scholar]
- Nwosu, C.O.; Madu, P.P.; Richards, W.S. Prevalence and seasonal changes in the population of gastrointestinal nematodes of small ruminants in the semi-arid zone of north-eastern Nigeria. Vet. Parasitol. 2007, 144, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Shahnawaz, M.; Shahardar, R.A.; Wani, Z.A. Seasonal prevalence of platyhelminthosis of sheep in gandarbal area of Kashmir Vally. Vet. Parasitol. 2011, 25, 59–62. [Google Scholar]
- Bhat, S.A.; Manzoor, R.M.; Qadri, S.; Allaie, I.; Khan, H.M. comparative resistance of Sheep Breeds to Strongyle spp. In pasture infection in Jammu and Kashmir. Int. J. Vet. Sci. Technol. 2011, 10, 2157–7579. [Google Scholar]
- Ijaz, M.; Khan, M.S.; Avais, K.; Ashraf, M.; Ali, M. Infection rate and chemotherapy of various helminths in diarrhoeic sheep in and around Lahore. J. Anim. Sci. 2009, 19, 13–16. [Google Scholar]
- Odoi, A.; Gathuma, J.M.; Gachuiri, C.K.; Omore, A. Risk factors of gastrointestinal nematode parasite infections in small ruminants kept in smallholder mixed farms in Kenya. BMC Vet. Res. 2007, 3, 1–11. [Google Scholar] [CrossRef]
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; Van Wyk, J. The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Adv. Parasitol. 2016, 93, 95–143. [Google Scholar]
- Jackson, F.; Bartley, D.; Bartley, Y.; Kenyon, F. Worm control in sheep in the future. Small Rumin. Res. 2009, 86, 40–45. [Google Scholar] [CrossRef]
- Woodgate, R.G.; Besier, R.B. Sustainable use of anthelmintics in an Integrated Parasite Management Program for sheep nematodes. Anim. Prod. Sci. 2010, 50, 440–443. [Google Scholar] [CrossRef]
- Deutschlander, D. Evaluating Diatomaceous Earth as a Wormer for Sheep and Cattle; Leopold Center Completed Grant Reports; Energy and Sustainable Agriculture Program—Minnesota Department of Agriculture: Saint Paul, MN, USA, 1993. [Google Scholar]
- McLean, B.; Frost, D.; Evans, E.; Clarke, A.; Griffiths, B. The inclusion of diatomaceous earth in the diets of grazing ruminants and its effect on gastrointestinal parasite burdens. In Proceedings of the International Scientific Conference on Organic Agriculture, Adelaide, Australia; International Scientific Conference of Organic Agriculture Research, Bonn, Germany, 2005. [Google Scholar]
- Ahmed, M.A.; Laing, M.D.; Nsahlai, I.V. Studies on the ability of two isolates of Bacillus thuringiensis, an isolate of Clonostachys rosea f. rosea and a diatomaceous earth product to control gastrointestinal nematodes of sheep. Biocontrol. Sci. Technol. 2013, 23, 1067–1082. [Google Scholar] [CrossRef]
- Baltran, M.A.; Martins, R. Original article diatomaceous earth inhibited the. Philipp. J. Vet. Anim. Sci. 2015, 41, 135–140. [Google Scholar]
- Fernandez, M.I.; Woodward, B.W.; Stromberg, B.E. Effect of diatomaceous earth as an anthelmintic treatment on internal parasites and feedlot performance of beef steers. Anim. Sci. 1998, 66, 635–641. [Google Scholar] [CrossRef]
- Dawson, R.D. Efficacy of Diatomaceous Earth at Reducing Populations of Nest-Dwelling Ectoparasites in Tree Swallows/Eficacia de diatomáceas terrestres en reducir las poblaciones de ectoparásitos en nidos en Tachycineta bicolor. J. Field Ornithol. 2010, 75, 232–238. [Google Scholar] [CrossRef]
- Martin, C.D.; Mullens, B.A. Housing and dustbathing effects on northern fowl mites (Ornithonyssus sylviarum) and chicken body lice (Menacanthus stramineus) on hens. Med. Vet. Entomol. 2012, 26, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Amy, C.M. Studies of Northern Fowl Mite Host-Parasite Interactions and Evaluation of Novel Control Strategies in Poultry. Thesis Submitted to Department of Entomology, University of California, CA, USA. 2016. Available online: https:escholarship.org/uc/item/1nh087m0 (accessed on 15 December 2018).
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, M.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O. Current situation of mycotoxin contamination and co-occurrence in animal feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [PubMed]
- Agag, B.I. Mycotoxins in foods and feeds: 1-Aflatoxin. Ass. Uni. Bull. Environ. Res. 2004, 7, 173–206. [Google Scholar]
- Jones, F.T.; Genter, M.B.; Hagler, W.M.; Hansen, J.A.; Mowrey, B.A.; Poore, M.H.; Whitlow, L.W. Understanding and Coping with Effects of Mycotoxins in Livestock Feed and Forage; NC, USA. In North Carolina Cooperative Extension Service: Raleigh; International Information System for the Agricultural Science and Technology: NC, USA, 2007. [Google Scholar]
- Richard, J.L. Some major mycotoxins and their mycotoxicoses—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Meissonnier, G.M.; Pinton, P.; Laffitte, J.; Cossalter, A.; Gong, Y.Y.; Wild, C.P.; Bertin, G.; Altier, P.; Oswald, I. Immunotoxicity of aflatoxin B1: Impa1irment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol. Appl. Pharmacol. 2008, 231, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Chaytor, A.C.; See, M.T.; Hansen, J.A.; de Souza, A.L.P.; Middleton, T.F.; Kim, S.W. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. J. Anim. Sci. 2011, 89, 124–135. [Google Scholar] [CrossRef]
- Dafalla, R.; Yagi, A.; Adam, S.E. Experimental aflatoxicosis in hybro-type chicks; sequential changes in growth and serum constituents and histopathological changes. Vet. Hum. Toxicol. 1987, 29, 222–226. [Google Scholar] [PubMed]
- Ledoux, D.R.; Rottinghaus, G.E.; Bermudez, A.J.; Alonso-Debolt, M. Efficacy of hydrated sodium calcium aluminosilicate to ameliorate the toxic effects of aflatoxin in broiler chicks. Poult. Sci. 1999, 78, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Bintvihok, A.; Banlunara, W.; Kaewamatawong, T. Aflatoxin detoxification by esterified glucomannan in ducklings. Thai J. Heal. Res. 2002, 16, 135–148. [Google Scholar]
- Carraro, M.; Gregorio, D.; De Neeff, D.V.; Jager, A.V.; Corassin, C.H.; Cara, D.P.; Augusto, C.; Oliveira, F. Mineral adsorbents for prevention of mycotoxins in animal feeds Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Parlat, S.S.; Yildiz, A.O.; Oguz, H. Effect of clinoptilolite on performance of Japanese quail (Coturnix coturnix japonica) during experimental aflatoxicosis. Br. Poult. Sci. 1999, 40, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Shivashaankar, B.P.; Narayanashwamy, H.D.; Satanarayana, M.L.; Rao, S.; Rathnamma, D.; Maniyellappa, H.K.; Sridhar, N. Effect of Diatomaceous Earth on Performance, Internal Organs and Biochemical Alterations in T-2 Toxicosis of Broiler Chickens. J. Cell Tissue Res. 2015, 15, 4983–4988. [Google Scholar]
- Lakkawar, A.W.; Sathyanarayana, M.L.; Narayanaswamy, H.D.; Sugunarao, O.; Yathiraj, S. Efficacy of diatomacious earth in amelioration of aflatoxin induced toxicity in broiler chicken. Indian J. Anim. Res. 2016, 50, 529–536. [Google Scholar] [CrossRef]
- Bocarov-Stancic, A.; Adamovic, M.; Salma, N.; Bodroza-Solarov, M.; Vuckovic, J.; Pantic, V. In vitro efficacy of mycotoxins adsorption by natural mineral adsorbents. Biotechnol. Anim. Husb. 2011, 27, 1241–1251. [Google Scholar] [CrossRef]
- Manafi, M.; Narayanaswamy, H.D.; Pirany, N. In vitro binding ability of mycotoxic binder in commercial broiler feed. Afr. J. Agric. Res. 2009, 4, 141–143. [Google Scholar]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A.J. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, X.L.; Li, W.; Lu, X.F.; Liu, B.; Wang, J. The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environ. Monit. Assess. 2013, 185, 2211–2220. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Tawab, M.M.; Youssef, I.M.I.; Bakr, H.A.; Fthenakis, G.C.; Giadinis, N.D. Role of probiotics in nutrition and health of small ruminants. Pol. J. Vet. Sci. 2016, 19, 893–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarijit, J.; Steve, S.; Micheal, E.; Rodney, D. Animal Feed Compositions Including Spent Filter Media Containing Diatomaceous Earth. US Appl. US20160295884A1, 13 October 2016. [Google Scholar]
- Schingoethe, D.J.; Kalscheur, K.F.; Hippen, A.R.; Garcia, A.D. Invited review: The use of distillers products in dairy cattle diets. J. Dairy Sci. 2009, 92, 5802–5813. [Google Scholar] [CrossRef] [PubMed]
- Ewuola, E.O.; Sokunbi, O.A.; Adebiyi, A.O.; Lawal, T.T.; Akangbe, O. Physiological response of growing cockerels to dietary fossil shell flour. In Proceedings of the 14th Annual Conference of Animal Science Association of Nigeria, University of Ibadan, Ibadan, Nigeria, 14–17 September 2009; pp. 246–249. [Google Scholar]
- Modirsanei, M.; Mansoori, B.; Khosravi, A.R.; Kiaei, M.M.; Khazraeinia, P.; Farkhoy, M.; Masoumi, Z. Effect of diatomaceous earth on the performance and blood variables of broiler chicks during experimental aflatoxicosis. Sci. Food Agric. 2008, 632, 626–632. [Google Scholar] [CrossRef]
- Martel-Kennes, Y.; Lévesque, J.; Decaux, C. Effect of crystalline silicon dioxide in piglet feed on growth performance with different levels of growth promoters. J. Anim. Sci. 2016, 94, 488. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requeriments of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; NRC: Washington, DC, USA, 2007.
- Garcia, G.; De Araújo, L.; Voltolini, T.V.; Chizzotti, M.L.; Turco, H.N.; Fernando, F.; Carvalho, R. De Revista Brasileira de Zootecnia Water and small ruminant production. R. Bras. Zootec. 2010, 39, 326–336. [Google Scholar]
- Schlink, A.C.; Nguyen, M.; Viljoen, G.J. Water requirements for livestock production: Water requirements for livestock. Rev. Sci. Tech. Off. Int. Epiz. 2010, 29, 603–619. [Google Scholar] [CrossRef]
- Pick, T. Assessing Water Quality for Human Consumption, Agriculture, and Aquatic Life Uses; Environment Technical Note. No MT-1(Rev.2); United states Department of Agriculture Natural Resources Conservation Service: Washington, DC, USA, 2011; Volume 1, p. 31.
- Al-Degs, Y.S.; Tutunju, M.F.; Shawabkeh, R.A. The feasibility of using diatomite and Mn-diatomite for remediation of Pb2+, Cu2+, and Cd2+ from water. Sep. Sci. Technol. 2000, 35, 2299–2310. [Google Scholar] [CrossRef]
- Moleshi, P.; Nahid, P. Heavy metal removal from water and wastewater using raw and modified diatomite. Int. J. Eng. Trans. B Appl. 2015, 20, 141–146. [Google Scholar]
- Walker, G.M.; Weatherley, L.R. Kinetic of acid dye adsorption on GAC. Water Res. 1999, 33, 1895. [Google Scholar] [CrossRef]
- Oana, C.; Tănaselia, C.; Miclean, M.; Levei, E.; Senilă, M.; Senilă, L. Analysis of minor and trace element in Cow, Goat and Sheep milk in NW part of Romania. Pro-Environment 2016, 9, 87–90. [Google Scholar]
- Alisson-Silva, F.; Kawanishi, K.; Varki, A. Molecular Aspects of Medicine Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol. Asp. Med. 2016, 51, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar] [CrossRef]
- Galyean, M.L.; Perino, L.J.; Duff, G.C. Interaction of cattle health/immunity and nutrition. J. Anim. Sci. 1999, 77, 1120–1134. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, E.G.W.; Mitchell, G.B.B.; MacPherson, A. Cobalt deficiency and Osterfagia circumcincra infection in lambs. Vet. Rec. 1989, 124, 20. [Google Scholar] [CrossRef] [PubMed]
- McClure, S.J. Mineral nutrition and its effects on gastrointestinal immune function of sheep. Aust. J. Exp. Agric. 2003, 43, 1455–1461. [Google Scholar] [CrossRef]
- Qudoos, A.; Khan, M.N.; Sajid, M.S.; Muhammad, G. Correlation of trace mineral profiles with gastrointestinal worm burden in rangeland sheep of Chakwal District, Punjab, Pakistan. Int. J. Agric. Biol. 2017, 19, 140–144. [Google Scholar] [CrossRef]
- Adeyemo, G.O. Growth performance of broiler chicken fed Fossil shell flour growth promoter. Food Nutr. Sci. 2013, 4, 26622. [Google Scholar]
- Carlisle, E.M. In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. J. Nutr. 1976, 106, 478–484. [Google Scholar] [CrossRef]
- Seaborn, C.D.; Nielsen, F.H. Boron and silicon: Effects on growth, plasma lipids, urinary cyclic amp and bone and brain mineral composition of male rats. Environ. Toxicol. Chem. 1994, 13, 941–947. [Google Scholar] [CrossRef]
- Mertz, W. Trace Elements in Human and Animal Nutrition. In Trace Elements in Human and Animal Nutrition; Academic Press Inc.; Hacourt Brace Jovanovich Publishers: Orlando, FL, USA, 2012; Volume 2, pp. 133–154. [Google Scholar]
- Martin, K.R. Silicon: The health benefits of a metalloid. Met. Ions Life Sci. 2013, 13, 451–471. [Google Scholar] [PubMed]
- Martin, K.R. Chemistry of silica and its potential health benefits. J. Nutr. Health Aging 2007, 11, 94–97. [Google Scholar]
- Singh, C.B.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. J. Stored Prod. Res. 2009, 45, 151–158. [Google Scholar] [CrossRef]
- Arthur, F.H. Grain protectants: Current status and prospects for the future. J. Stored. Prod. Res. 1999, 32, 293–302. [Google Scholar] [CrossRef]
- Ebeling, W. Sorptive dust for pest control. Ann. Rev. Entomol. 1971, 16, 123–158. [Google Scholar] [CrossRef] [PubMed]
- Sabbour, M.M.; Abd-el-aziz, S.E.; Sherief, M.A. Efficacy of Three Entomopathogenic Fungi Alone or in Combination With Diatomaceous Earth Modifications For the Control of Three Pyralid Moths in Stored Grains. J. Plant Prot. Res. 2012, 52, 360–362. [Google Scholar] [CrossRef]
- Sabbour, M.M.; Abd-El-Aziz, S.E. Control of Bruchidius incarnatus and Rhyzopertha Dominica using two entomopathogenic fungi alone or in combination with modified diatomaceous earth. Elixir Entomol. 2014, 68, 22239–22242. [Google Scholar]
- Shah, M.A.; Khan, A.A. Use of diatomaceous earth for the management of stored-product pests. Int. J. Pest Manag. 2014, 60, 100–113. [Google Scholar] [CrossRef]
- Cilek, S.; Breeding, A.; Medicine, V. Determination of Fleece Qualities of Malya Sheep (11/16 Akkaraman X 5/16 Deutsches Merinofleischschaf) and Effect of Age and Sex on These Qualities. Pak. J. Agric. Sci. 2015, 52, 545–552. [Google Scholar]
- Esfandyari, H.; Aslaminejad, A.A.; Rafat, S.A. Wool characteristics in the third generation of Arkharmerino × Ghezel and Arkharmerino × Moghani crossbreed sheep. Trop. Anim. Health Prod. 2011, 43, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Allden, W.G.; Black, J.L.; Reis, P. Feed Intake, Diet Compositions and Wool Growth: Physiological and Environmental Limitations to Wool Growth; The University of New England Publishing Unit: Armidale, Australia, 1979. [Google Scholar]
- Hatcher, S.; Atkins, K.D.; Thornberry, K.J. Age changes in wool traits of Merino sheep in western NSW. Proc. Assoc. Adv. Anim. Breed. Genet 2005, 16, 316–317. [Google Scholar]
- McGregor, B.A.; de Graaf, S.P.; Hatcher, S. On-farm factors affecting physical quality of Merino wool. 1. Nutrition, reproduction, health and management. Small Rumin. Res. 2016, 137, 138–150. [Google Scholar] [CrossRef]
- Huisman, A.E.; Brown, D.J. Genetic parameters for bodyweight wool, and disease resistance and reproduction traits in Merino sheep 2. Genetic relationships between bodyweight traits and other traits. Aust. J. Exp. Agric. 2008, 48, 1186–1193. [Google Scholar] [CrossRef]
- Sumner, R.M.W.; Young, S.R.; Upsdell, M.P. Wool yellowing and pH within Merino and Romney fleeces. Proc. N. Z. Soc. Anim. 2003, 63, 155–159. [Google Scholar]
- Sumner, R.M.W.; Ashby, M.G.; Craven, A.J. Relation between sweating and wool yellowing in Merino and Romney sheep. Proc. N. Z. Soc. Anim. Prod. 2004, 64, 286–292. [Google Scholar]
- Sumner, R.M.W. Relationship of mean fibre diameter and time of shearing with wool yellowing in Merino sheep farmed under North Island conditions. Proc. N. Z. Soc. Anim. 2005, 65, 191–196. [Google Scholar]
- Van Burgel, A.J.; Oldham, C.M.; Behrendt, R.; Curnow, M.; Gordon, D.J.; Thompson, A.N. The merit of condition score and fat score as alternatives to liveweight for managing the nutrition of ewes. Anim. Prod. Sci. 2011, 51, 834–841. [Google Scholar] [CrossRef] [Green Version]
- James, P.J.; Horton, B.J.; Campbell, N.J.; Evans, D.L.; Winkleman, J.; McPhie, R. Population dynamics and production effects of sheep lice (Bovicola ovis Schrank) in extensively grazed flocks. Anim. Prod. Sci. 2011, 51, 753–762. [Google Scholar] [CrossRef]
- Zhang, Q.; Shu, X.; Guo, X.; Mo, D.; Wei, S.; Yang, C. Effect of ions on sorption of tylosin on clay minerals. RSC Adv. 2016, 6, 53175–53181. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, K. Preparation of granulated N-doped TiO2/diatomites and its application of visible light degradation and disinfection. Powder Technol. 2016, 303, 176–191. [Google Scholar] [CrossRef]
- Schijns, V.E.J.C.; Lavelle, E.C. Trends in vaccine adjuvants. Expert Rev. Vaccines 2011, 10, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.B.; Haensler, J. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert Rev. Vaccines 2013, 12, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Mount, A.; Koernig, S.; Silva, A.; Drane, D.; Maraskovsky, E.; Morelli, A.B. Combination of adjuvants: The future of vaccine design. Expert Rev. Vaccines 2013, 12, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Waksman, B.H. Adjuvants and immune regulation by lymphoid cells. In Springer Seminar Immunopathology; Springer: Berlin, Germany, 1979; Volume 2, pp. 5–33. [Google Scholar]
- Hunter, R.L. Overview of vaccine adjuvants: Present and future. Vaccine 2002, 20, 7–12. [Google Scholar] [CrossRef]
- Singh, M.; O’Hagan, D.T. Recent advances in veterinary vaccine adjuvants. Int. J. Parasitol. 2003, 33, 469–478. [Google Scholar] [CrossRef]
- Schat, K.A. Vaccines and vaccination practices: Key to sustainable animal production. In Encyclopedia of Agriculture and Food Systems; Elsevier Inc.: San Diego, CA, USA, 2014; Volume 5. [Google Scholar]
- Meeusen, E.N.T.; Walker, J.; Peters, A.; Pastoret, P.P.; Jungersen, G. Current status of veterinary vaccines. Clin. Microbiol. Rev. 2007, 20, 489–510. [Google Scholar] [CrossRef]
- Nazmi, A.; Hauck, R.; Davis, A.; Hildebrand, M.; Corbeil, L.B.; Gallardo, R.A. Immunology, health, and disease: Diatoms and diatomaceous earth as novel poultry vaccine adjuvants. Poult. Sci. 2017, 96, 288–294. [Google Scholar] [CrossRef]
- Wildwood Enterprises. Customer service Dealer Information Bullettin Board -Link; Crystal City Manitoba Adrax Advertising: Crystal City, MB, Canada, 2003; p. 2. [Google Scholar]
- Nazmi, A.; Hauck, R.; Corbeil, L.B.; Gallardo, R.A. The effect of diatomaceous earth in live, attenuated infectious bronchitis vaccine, immune responses, and protection against challenge. Poult. Sci. 2017, 96, 1–7. [Google Scholar] [CrossRef]
- Sommer, R.S.; Nadachowski, A. Glacial refugia of mammals in Europe: Evidence from fossil records. Mamm. Rev. 2006, 36, 251–265. [Google Scholar] [CrossRef]
- Cyrs, W.D.; Le, M.H.; Hollins, D.M.; Henshaw, D.M. Settling the Dust. Heal. Hazards Peer-Rev. 2014, 38, 38–44. [Google Scholar]
- Möhner, M.; Pohrt, A.; Gellissen, J. Occupational exposure to respirable crystalline silica and chronic non—Malignant renal disease: Systematic review and meta—Analysis. Int. Arch. Occup. Environ. Health 2017, 90, 555–574. [Google Scholar] [CrossRef] [PubMed]
- Pery, A.; Hoet, P.; Nemmar, A. Development of a physiologically based kinetic model for 99m-Technetium-labelled carbon nanoparticles inhaled by humans. Inhal. Toxicol. 2009, 21, 1099–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemmar, A.; Yuvaraju, P.; Beegam, S.; Yasin, J.; Dhaheri, R.A.; Fahim, M.A.; Ali, B.H. In vitro platelet aggregation and oxidative stress caused by amorphous silica nanoparticles. Int. J. Physiol. Pathophysiol. Pharmacol. 2015, 7, 27–33. [Google Scholar] [PubMed]
Chemical Content (% Weight) | Natural Diatomite |
---|---|
SiO2 | 82.16 |
Al2O2 | 4.89 |
FeO2 | 1.46 |
CaO | 1.23 |
MgO | 0.89 |
MnO2 | 0.52 |
KiO | 0.54 |
NaO | 0.43 |
TiO2 | 0.19 |
P2O5 | 0.12 |
Loss of Ignition | 7.55 |
Country/Sample | SiO2 | Al2O3 | Fe2O3 | TiO2 | Na2O | KO2 | CaO | MgO | L. Others |
---|---|---|---|---|---|---|---|---|---|
China | 82.95 | 5.75 | 1.41 | 0.69 | 0.06 | 0.06 | 0.24 | 0.21 | 7.95 |
Turkey | 76.5 | 7.25 | 3.85 | 0.5 | 0.45 | 0.85 | - | - | 0.43 |
Egypt | 83.6 | 2.24 | 1.07 | 0.17- | - | 0.53_ | 6.17 | _ | 4.86 |
Algeria | 72.1 | 5.3 | 3.8 | 0.37 | 0.65 | 0.54 | 7.2 | 2.6 | 7.44 |
Jordan | 7.25 | 11.42 | 5.81 | _ | 7.21 | 0.69 | 1.48 | 0.25 | 0.66 |
Mexico | 70.38 | 13.52 | 3.37 | _ | 0.17 | 0.3 | 0.66 | 0.42 | 11.18 |
Guangdong Chin | 90.1 | _ | 0.3 | 0.4 | _ | _ | 0.5 | 0.2 | 8.5 |
Shengzhon, China | 65 | 17.50 | 4.8 | _ | 0.5 | _ | 1.1 | _ | 11.1 |
Morocco | 62.8 | 9.7 | 11.4 | _ | 7.3 | _ | _ | _ | 8.8 |
China | 72 | 7.3 | 4.3 | _ | 1.8 | 1.2 | 10 | 1 | 2.4 |
Suizhon, China | 71.35 | 13.26 | 5.5 | 0.08 | 6.7 | 0.11 | 1.94 | 0.15 | 0.91 |
Caldiran, Lake Van Basin, Turkey | 69.7 | 11.5 | 0.65 | 0.65 | 0.08 | 1.4 | _ | _ | 15.3 |
United States | 79.55 | 8.18 | 2.62 | 0.70 | 0.25 | 1.30 | 1.31 | _ | 3.8 |
Kenya | 84.5 | 3.06 | 1.86 | 0.17 | 1.80 | 0.39 | 1.19 | 0.91 | 6.08 |
Spain | 88.60 | 0.62 | 0.20 | 0.05 | 3.0 | 0.81 | 0.50 | 0.39 | 5.20 |
Russia | 79.92 | 6.58 | 3.56 | 0.48 | 1.43 | 0.98 | 0.65 | 0.72 | 4.91 |
Canada | 89.7 | 3.7 | 1.09 | 0.10 | 0.30 | 0.55 | 0.31 | 0.41 | 3.70 |
Japan | 86.0 | 5.8 | 1.6 | 0.22 | 0.07 | 0.29 | 0.48 | 0.53 | 4.4 |
Nevada | 86.0 | 5.27 | 2.12 | 0.21 | 0.34 | 0.39 | 0.24 | 0.29 | 4.90 |
Shengzhou, China | 89.6 | 2.5 | 1.8 | _ | 1.5 | _ | 1 | _ | 4.5 |
Compound | Natural Diatomite | Modified Diatomite |
---|---|---|
SiO | 63.31 | 56.79 |
Al2O3 | 13.42 | 12.15 |
Fe2O3 | 12.58 | 10.11 |
Na2O | 0.74 | 2.37 |
CaO | 0.49 | 0.08 |
Cl | <0.019 | 9.12 |
Loss on Ignition | 6.54 | 6.73 |
Country | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|
USA | 901 | 925 | 850 | 700 |
Argentina | 100 | 55 | 200 | 200 |
China | 420 | 420 | 420 | 420 |
Czech Republic | 49 | 50 | 450 | 450 |
Denmark | 95 | 95 | 440 | 440 |
France | 75 | 75 | 75 | 75 |
Japan | 90 | 100 | 100 | 100 |
Mexico | 88 | 80 | 80 | 90 |
Peru | 125 | 125 | 150 | 120 |
Russia | 70 | 70 | 70 | 70 |
Spain | 36 | 36 | 50 | 50 |
Turkey | 85 | 90 | 60 | 60 |
Other countries | 122 | 170 | 120 | 120 |
Element | Quantity |
---|---|
Calcium (Ca) | 0.40 |
Sodium (Na) | 0.26 |
Manganese (Mn) | 0.0052 |
Iron (Fe) | 0.72 |
Copper (Cu) | 0.0019 |
Vanadium (V) | ppm 43.8 |
Sulfate Sulfur (S) | 0.062 |
Phosphorus (as P205) | 0.037 |
Potassium (K) | 0.16 |
Chloride | 0.074% or 740 ppm |
Zinc (Zn) | 0.0022 |
Titanium (Ti) | ppm 420 |
MgO (calculated from % Mg) | 0.34 |
Strontium (Sr) | ppm 59.9 |
Boron (B) | 0.0023 |
Magnesium (Mg) | 0.21 |
% CaO (calculated from % Ca) | 0.55 |
Aluminum (Al) % | 0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikusika, O.O.; Mpendulo, C.T.; Zindove, T.J.; Okoh, A.I. Fossil Shell Flour in Livestock Production: A Review. Animals 2019, 9, 70. https://doi.org/10.3390/ani9030070
Ikusika OO, Mpendulo CT, Zindove TJ, Okoh AI. Fossil Shell Flour in Livestock Production: A Review. Animals. 2019; 9(3):70. https://doi.org/10.3390/ani9030070
Chicago/Turabian StyleIkusika, Olusegun O., Conference T. Mpendulo, Titus J. Zindove, and Anthony I. Okoh. 2019. "Fossil Shell Flour in Livestock Production: A Review" Animals 9, no. 3: 70. https://doi.org/10.3390/ani9030070
APA StyleIkusika, O. O., Mpendulo, C. T., Zindove, T. J., & Okoh, A. I. (2019). Fossil Shell Flour in Livestock Production: A Review. Animals, 9(3), 70. https://doi.org/10.3390/ani9030070