Growing Trial of Gilthead Sea Bream (Sparus aurata) Juveniles Fed on Chironomid Meal as a Partial Substitution for Fish Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chironomid Sampling, Meal Processing, Feed Preparation, and Chemical Analyses
2.2. Fish and Growth Trial
2.3. Morpho-Biometric Parameters and Indices
2.4. Water Quality
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agricultural Organization. Insects to Feed the World, held in Europe. In Proceedings of the first International Conference, Wageningen (Ede), The Netherlands, 14–17 May 2014. [Google Scholar]
- Makkar, H.; Tran, G.; Henze, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Tran, G.; Heuzè, V.; Makkar, P.S. Insects in fish diets. Anim. Front. 2015, 5, 37–44. [Google Scholar]
- Thorat, L.J.; Bimalendu, B.N. Chironomid midges: A forgotten model of developmental biology research. Acta Zool. 2013, 94, 249–253. [Google Scholar] [CrossRef]
- Ingram, B.; De Silva, S.S. Diet composition and preference of juvenile Murray cod, trout cod and Macquarie perch (Percichthyidae) reared in fertilised earthen ponds. Aquaculture 2007, 271, 260–270. [Google Scholar] [CrossRef]
- Failla, A.; Vasquez, A.A.; Fujimoto, M.; Ram, J.L. The ecological, economic and public health impacts of nuisance chironomids and their potential as aquatic invaders. Aquat. Invasions 2015, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Melotti, P.; Giordani, G.; Meluzzi, A.; Vitali, A. Impiego di larve di mosca carnaria (Calliphora vomitoria) nell’alimentazione della trota iridea (Salmo gairdneri Rich.). Riv. Ital. Piscic. Ittiopatologia 1987, XXII, 151–154. (In Italian) [Google Scholar]
- Kamler, E.; Wolnicki, J.; Kamiński, R.; Sikorska, J. Fatty acid composition, growth and morphological deformities in juvenile cyprinid, Scardinius erythrophthalmus fed formulated diet supplemented with natural food. Aquaculture 2008, 278, 69–76. [Google Scholar] [CrossRef]
- Fontaneto, D.; Tommaseo-Ponzetta, M.; Galli, C.; Risé, P.; Glew, R.H.; Paoletti, M.G. Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecol. Food Nutr. 2011, 50, 351–367. [Google Scholar] [CrossRef]
- Pallottini, M.; Goretti, E. Monitoring of the Littoral Chironomid Populations of Lake Trasimeno (2005–2013). In Proceedings of the 75th National Conference of the Unione Zoologica Italiana, Università degli Studi di Perugia, Perugia, Italy, 22–25 September 2014. [Google Scholar]
- Meligrana, M.C.; Nalli, C.; Melotti, P.; Roncarati, A. Proximate Composition and Fatty Acid Profile of Chironomidae (Diptera) Larvae Collected in Ponds. Available online: https://insecta-conference.com/retrospet/insecta-2016/ (accessed on 3 April 2019).
- A.O.A.C. Meat and meat products. In Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990; Volume 2, pp. 931–948. [Google Scholar]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biolog. Chem. 1957, 60, 497–509. [Google Scholar]
- Christopherson, S.W.; Glass, R.L. Preparation of milk methyl esters by alcoholysis in an essentially non-alcoholic solution. J. Dairy Sci. 1969, 52, 1289–1290. [Google Scholar] [CrossRef]
- American Water Works Association and Water Pollution Control Federation of American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 17th ed.; APHA: Washington, DC, USA, 1989. [Google Scholar]
- SAS Institute SAS®/STAT. Guide for Personal Computers; Version 6.03 Edition; SAS Institute Inc.: Cary, NC, USA, 1988. [Google Scholar]
- Bernabè, G. Rearing bass and gilthead bream. In Aquaculture; Barnabè, G., Ed.; Ellis Horwood Limited: London, UK, 1990; Volume 2, pp. 647–686. [Google Scholar]
- Hertrampf, J.W.; Piedad-Pascual, F. Handbook on Ingredients for Aquaculture Feeds; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Sogbesan, A.O.; Ugwumba, A.A.A. Evaluation of Termite (Macrotermes subhyalinus) Meal as Animal Protein Supplements in the Diets of Heterobranchus longifilis (Valenciennes, 1840) Fingerlings. Turk. J. Fish. Aquat. Sci. 2008, 8, 149–157. [Google Scholar]
- Kader, A.; Koshio, S. Effect of composite mixture of seafood by-products and soybean proteins in replacement of fishmeal on the performance of red sea bream. Pagr. Major. Aquac. 2012, 368, 95–102. [Google Scholar] [CrossRef]
- Abarraa, S.T.; Velasqueza, S.F.; Guzmana, K.D.D.C.; Felipea, J.L.F.; Tayamenb, M.M.; Ragazaa, J.A. Replacement of fishmeal with processed meal from knife fish Chitalaornata in diets of juvenile Nile tilapia Oreochromis niloticus. Aquac. Rep. 2017, 5, 76–83. [Google Scholar] [CrossRef]
- Li, L.; Ji, H.; Zhang, B.; Tian, J.; Zhou, J.; Yu, H. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 2016, 465, 43–52. [Google Scholar] [CrossRef]
- Gasco, L.; Henry, M.; Piccolo, G.; Marono, S.; Gai, F.; Renna, M.; Lussiana, C.; Antonopouloue, E.; Molaf, P.; Chatzifotis, S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Technol. 2016, 220, 34–45. [Google Scholar] [CrossRef]
- Piccolo, G.; Iaconisi, V.; Marono, S.; Gasco, L.; Loponte, R.; Nizza, S.; Bovera, F.; Parisi, G. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim. Feed Sci. Technol. 2016, 226, 12–20. [Google Scholar] [CrossRef]
- Habib, M.A.B.; Yusoff, F.M.; Phang, S.M.; Ang, K.J.; Mohamed, S. Nutritional values of chironomid larvae grown in palm oil mill effluent and algal culture. Aquaculture 1997, 158, 95–105. [Google Scholar] [CrossRef]
- Sanchez-Muros, M.-J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.-J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422, 193–201. [Google Scholar] [CrossRef]
- Magalhães, R.; Díaz-Rosales, P.; Diógenes, A.F.; Enes, P.; Oliva-Teles, A.; Peres, H. Improved digestibility of plant ingredient-based diets for European seabass (Dicentrarchus labrax) with exogenous enzyme supplementation. Agric. Nutr. 2017, 24, 1287–1295. [Google Scholar] [CrossRef]
- Peres, H.; Oliva-Teles, A. The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture 2009, 296, 81–86. [Google Scholar] [CrossRef]
- Raksakantong, P.; Meeso, N.; Kubola, J.; Siriamornpun, S. Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res. Int. 2010, 43, 350–355. [Google Scholar] [CrossRef]
- Happel, A.; Stratton, L.; Pattridge, R.; Rinchard, J.; Czesny, S. Fatty-acid profiles of juvenile lake trout reflect experimental diets consisting of natural prey. Freshw. Biol. 2016, 61, 1466–1476. [Google Scholar] [CrossRef]
- Van Huis, A.; van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible insects: Future prospects for food and feed security. FAO For. Pap. 2013, 171. [Google Scholar]
- Mulligan, B.L.; Morris, J.E.; Clayton, R.D. Chironomid abundance and consumption by juvenile channel catfish in plastic-lined and earthen culture ponds. Aquac. Res. 2010, 2010, e234–e238. [Google Scholar] [CrossRef]
Nutrient Component | CM | FM |
Dry matter | 910.4 | 920.0 |
Crude protein | 585.6 | 710.0 |
Crude lipid | 145.0 | 124.0 |
Ash | 107.9 | 167.0 |
Essential Amino Acid Content | CM | FM |
Arginine (ARG) | 43.0 | 49.5 |
Histidine (HIS) | 19.0 | 21.0 |
Isoleucine (ISO) | 22.0 | 32.0 |
Leucine (LEU) | 58.7 | 62.0 |
Lysine (LYS) | 51.6 | 56.0 |
Methionine (MET) | 22.8 | 27.0 |
Phenylalanine (PHE) | 31.6 | 28.0 |
Threonine (THR) | 37.4 | 32.0 |
Tryptophan (TRP) | 7.9 | 8.3 |
Valine (VAL) | 38.6 | 33.0 |
Fatty Acid | CM | FM |
---|---|---|
14:0 | 1.99 | 10.6 |
15:0 | 0.94 | 0.49 |
16:0 | 19.92 | 26.64 |
17:0 | 1.74 | 0.98 |
18:0 | 8.93 | 4.61 |
20:0 | 0.24 | 0.47 |
21:0 | 0.84 | 0.00 |
24:0 | 0.15 | 0.00 |
Total saturated fatty acids (SFA) | 34.75 | 43.79 |
14:1 | 0.01 | 0.16 |
15:1 | 0.35 | 0.00 |
16:1 | 12.82 | 7.44 |
17:1 | 0.45 | 0.49 |
18:1 | 21.92 | 18.03 |
20:1 | 1.80 | 3.20 |
22:1 | 0.00 | 0.00 |
24:1 | 0.48 | 0.88 |
Total monounsaturated fatty acids (MUFA) | 37.83 | 30.2 |
18:2 ɷ6 | 15.96 | 2.65 |
18:3 ɷ6 | 0.46 | 0.00 |
20:2 ɷ6 | 0.00 | 0.00 |
20:3 ɷ6 | 0.52 | 0.00 |
20:4 ɷ6 | 4.92 | 1.45 |
Total polyunsaturated fatty acids (PUFA) ɷ6 | 21.86 | 4.1 |
18:3 ɷ3 | 2.95 | 0.85 |
18:4 ɷ3 | 0.26 | 0.00 |
20:3 ɷ3 | 0.00 | 0.00 |
20:5 ɷ3 eicosapentaenoic acid (EPA) | 1.76 | 10.08 |
22:5 ɷ3 | 0.05 | 1.97 |
22:6 ɷ3 docosaesaenoic acid (DHA) | 0.54 | 9.01 |
Total PUFA ɷ3 | 5.56 | 21.91 |
PUFA ɷ6/PUFA ɷ3 | 3.93 | 0.19 |
Feed | L1 | L2 | L3 |
---|---|---|---|
Feedstuffs (g/kg) | |||
Fish meal | 180 | 135 | 75 |
Chironomid meal | 0 | 45 | 90 |
Soybean meal | 285 | 300 | 300 |
Wheat meal | 180 | 125 | 125 |
Hemoglobin | 100 | 100 | 100 |
Gluten corn | 150 | 190 | 205 |
Fish oil | 90 | 90 | 90 |
Vitamin and mineral premix | 15 | 15 | 15 |
Chemical composition (%) | |||
Dry matter | 91.19 | 91.25 | 91.08 |
Crude protein | 45.47 | 45.62 | 45.83 |
Crude lipid | 13.50 | 13.60 | 13.94 |
Ash | 5.36 | 5.14 | 4.73 |
Crude fiber | 2.12 | 2.27 | 2.24 |
Gross energy (MJ kg) | 16.58 | 16.61 | 16.73 |
Essential amino acids (g/kg dry matter) | |||
Arginine (ARG) | 23.5 | 21.0 | 19.7 |
Histidine (HIS) | 11.5 | 10.0 | 9.5 |
Isoleucine (ISO) | 24.3 | 22.3 | 21.5 |
Leucine (LEU) | 34.0 | 33.0 | 30.2 |
Lysine (LYS) | 28.5 | 27.0 | 26.5 |
Methionine (MET) | 13.0 | 11.6 | 10.2 |
Phenylalanine (PHE) | 19.0 | 24.0 | 27.5 |
Threonine (THR) | 19.7 | 24.0 | 27.3 |
Tryptophan (TRP) | 4.0 | 4.2 | 4.6 |
Valine (VAL) | 23.0 | 26.2 | 31.4 |
Fatty Acid | L1 | L2 | L3 |
---|---|---|---|
14:0 | 9.89 | 7.24 | 5.16 |
15:0 | 0.47 | 0.61 | 0.53 |
16:0 | 24.23 | 26.72 | 27.25 |
17:0 | 0.54 | 0.58 | 0.64 |
18:0 | 5.58 | 5.73 | 6.28 |
20:0 | 0.25 | 0.13 | 0.16 |
Total SFA | 40.96 | 41.01 | 40.02 |
14:1 | 0.11 | 0.10 | 0.12 |
16:1 | 8.05 | 10.24 | 12.12 |
17:1 | 0.48 | 0.45 | 0.46 |
18:1 | 14.23 | 14.72 | 14.23 |
20:1 | 0.47 | 0.29 | 0.26 |
24:1 | 0.82 | 0.80 | 0.68 |
Total MUFA | 24.16 | 26.60 | 27.87 |
18:2 ɷ6 | 5.92 | 10.04 | 13.02 |
20:4 ɷ6 | 1.12 | 1.37 | 1.40 |
Total PUFA ɷ6 | 7.04 | 11.41 | 14.42 |
18:3 ɷ3 | 0.59 | 0.68 | 0.69 |
18:4 ɷ3 | 2.14 | 2.17 | 2.45 |
20:5 ɷ3 | 10.16 | 7.04 | 6.26 |
22:5 ɷ3 | 1.35 | 1.31 | 1.22 |
22:6 ɷ3 | 9.75 | 5.86 | 3.10 |
Total PUFA ɷ3 | 23.99 | 17.06 | 13.72 |
ɷ6/ɷ3 | 0.29 | 0.67 | 1.05 |
Others | 3.85 | 3.92 | 3.97 |
Zootechinical Parameters | L1 | L2 | L3 |
Initial mean body weight (g) | 75 ± 1.1 | 75 ± 1.1 | 75 ± 1.1 |
Final mean body weight (g) | 174.52 ± 16 | 170.29 ± 19 | 171.86 ± 20 |
Final total mean length (cm) | 21.60 ± 1.1 | 20.04 ± 0.9 | 21.30 ± 1 |
Specific growth rate (%) | 0.94 ± 0.01 | 0.91 ± 0.02 | 0.92 ± 0.03 |
Survival rate (%) | 94.31 ± 2.3 | 94.13 ± 2.5 | 93.62 ± 2.2 |
Feed conversion rate | 1.18 ± 0.01 | 1.21 ± 0.04 | 1.22 ± 0.04 |
Palatability | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 |
Morpho-Biometric Parameters and Somatic Indices | L1 | L2 | L3 |
Condition index (KI) | 1.76 ± 0.01 | 1.83 ± 0.02 | 1.83 ± 0.01 |
Viscerosomatic index (VSI) | 6.42 ± 0.03 | 6.45 ± 0.05 | 6.36 ± 0.03 |
Perivisceral fat index (PFI) | 1.03 ± 0.14 | 1.05 ± 0.12 | 1.03 ± 0.11 |
Hepatosomatic index (HSI) | 1.42 ± 0.11 | 1.36 ± 0.14 | 1.43 ± 0.12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roncarati, A.; Cappuccinelli, R.; Meligrana, M.C.T.; Anedda, R.; Uzzau, S.; Melotti, P. Growing Trial of Gilthead Sea Bream (Sparus aurata) Juveniles Fed on Chironomid Meal as a Partial Substitution for Fish Meal. Animals 2019, 9, 144. https://doi.org/10.3390/ani9040144
Roncarati A, Cappuccinelli R, Meligrana MCT, Anedda R, Uzzau S, Melotti P. Growing Trial of Gilthead Sea Bream (Sparus aurata) Juveniles Fed on Chironomid Meal as a Partial Substitution for Fish Meal. Animals. 2019; 9(4):144. https://doi.org/10.3390/ani9040144
Chicago/Turabian StyleRoncarati, Alessandra, Roberto Cappuccinelli, Marina C.T. Meligrana, Roberto Anedda, Sergio Uzzau, and Paolo Melotti. 2019. "Growing Trial of Gilthead Sea Bream (Sparus aurata) Juveniles Fed on Chironomid Meal as a Partial Substitution for Fish Meal" Animals 9, no. 4: 144. https://doi.org/10.3390/ani9040144