Digestibility of Insect Meals for Nile Tilapia Fingerlings
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Diets, and Feeding Trial
2.3. Chemical Composition and Digestibility Analysis
- (1)
- ADC is the apparent digestibility coefficient;Id is chromic oxide’s concentration in the diet (%);If is chromic oxide’s concentration in the feces (%);Nd is the nutrient’s concentration in the diet (%);Nf is the nutrient’s concentration in the feces (%);
- (2)
- ADCi is the nutrient’s apparent digestibility coefficient in the test ingredient;ADCdt is the nutrient’s apparent digestibility coefficient in the test diet;ADCref is the nutrient’s apparent digestibility coefficient in the reference diet;r is the reference diet’s proportion in the test diet (0.6994);i is the test ingredient’s proportion in the test diet (0.3);Nref is the nutrient’s concentration in the reference diet (% as fed);Ni is the nutrient’s concentration in the ingredient (% as fed).
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.S.; Krogdahl, A.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Heikkinen, J.; Vielma, J.; Kemilainen, O.; Tiirola, M.; Eskelinen, P.; Kiuru, T.; Navia-Paldanius, D.; Von Wright, A. Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 2006, 261, 259–268. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Hasan, M.R.; Allan, G.; El-Sayed, A.F.; Jackson, A.; Kaushik, S.J.; Ng, W.K.; Suresh, V.; Viana, M.T. Aquaculture feeds: Addressing the long-term sustainability of the sector. In Proceedings of the Global Conference on Aquaculture, Phuket, Thailand, 22–25 September 2010; pp. 193–231. [Google Scholar]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Tech. 2015, 203, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Howe, E.R.; Simenstad, C.A.; Toft, J.D.; Cordell, J.R.; Bollens, S.M. Macroinvertebrate prey availability and fish diet selectivity in relation to environmental variables in natural and restoring north San Francisco bay tidal marsh channels. San Franc. Estuary Watershed Sci. 2014, 12, 1–46. [Google Scholar] [CrossRef]
- Whitley, S.N.; Bollens, S.M. Fish assemblages across a vegetation gradient in a restoring tidal freshwater wetland: Diets and potential for resource competition. Environ. Biol. Fishes. 2014, 97, 659–674. [Google Scholar] [CrossRef]
- Njiru, M.; Okeyo-Owuor, J.B.; Muchiri, M.; Cowx, I.G. Shifts in the food of Nile tilapia, Oreochromis niloticus (L.) in Lake Victoria, Kenya. Afr. J. Ecol. 2004, 42, 163–170. [Google Scholar] [CrossRef]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Alegbeleye, W.O.; Obasa, S.O.; Olude, O.O.; Otubu, K.; Jimoh, W. Preliminary evaluation of the nutritive value of the variegated grasshopper (Zonocerus variegates L.) for African catfish Clarias gariepinus (Burchell. 1822) fingerlings. Aquac. Res. 2012, 43, 412–420. [Google Scholar] [CrossRef]
- Balogun, B.I. Growth Performance and Feed Utilization of Clarias gariepinus (Teugels) Fed Different Dietary Levels of Soaked Bauhinia monandra (Linn.) Seed Meal and Sun-Dried Locust Meal (Schistocerca gregaria). Ph.D. Thesis, Universidade Ahmadu Bello, Zaria, Nigeria, 2011. [Google Scholar]
- Belforti, M.; Gai, F.; Lussiana, C.; Renna, M.; Malfatto, V.; Rotolo, L.; De Marco, M.; Dabbou, S.; Schiavone, A.; Zoccarato, I.; et al. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: Effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital. J. Anim. Sci. 2016, 14, 4170. [Google Scholar] [CrossRef]
- Chen, H.; Tian, J.; Wang, Y.; Yang, K.; Ji, H.; Li, J. Effects of Dietary Soybean Oil Replacement by Silkworm, Bombyx mori L., Chrysalis Oil on Growth Performance, Tissue Fatty Acid Composition, and Health Status of Juvenile Jian Carp, Cyprinus carpio var. Jian. J. World Aquac. Soc. 2016, 48, 453–466. [Google Scholar] [CrossRef]
- Su, J.; Gong, Y.; Cao, S.; Lu, F.; Han, D.; Liu, H.; Jin, J.; Yang, Y.; Zhu, X.; Xie, S.; Jin, J.; Yang, Y.; Zhu, X.; Xie, S. Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish. Shellf. Immunol. 2017, 69, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Jabir, M.D.A.R.; Razak, S.A.; Vikineswary, S. Chemical Composition and Nutrient Digestibility of Super Worm Meal in Red Tilapia Juvenile. Pak. Vet. J. 2012, 32, 489–493. [Google Scholar]
- Freccia, A.; Meurer, E.S.; Filho, J.C.; Jerônimo, G.T. e Emerenciano, M.G.C. Insect meal in tilapia fingerlings diets. Arch. Zootec. 2016, 65, 547. [Google Scholar]
- FAO—Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Pesquisa Pecuária Municipal. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=784 (accessed on 27 January 2019).
- Spataru, P. Food and feeding habits of Tilapia zillii (Gervais) (Cichlidae) in Lake Kinneret (Israel). Aquaculture 1978, 14, 327–338. [Google Scholar] [CrossRef]
- Rotta, M.A. Aspectos Gerais da Fisiologia e Estrutura do Sistema Digestivo dos Peixes Relacionados à Piscicultura; Embrapa Pantanal: Corumbá, Brazil, 2003. (In Portuguese) [Google Scholar]
- Seixas Filho, J.T. Revisão Sobre as Enzimas Digestivas nos Peixes Teleostei e seus Métodos de Determinação; Augustus: Rio de Janeiro, Brazil, 2003; Volume 8. [Google Scholar]
- Stech, M.R.; Carneiro, D.J.; Pizauro Junior, M. Fatores que afetam a produção de enzimas digestivas em peixes e o uso de enzimas exógenas como ferramentas em nutrição de peixes. Ensaios e Ciência Ciências Biológicas Agrárias e da Saúde 2009, 13, 181. (In Portuguese) [Google Scholar]
- Molinari, L.M.; Pedroso, R.B.; de Oliveira Scoaris, D.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P. Identification and partial characterisation of a chitinase from Nile tilapia, Oreochromis niloticus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 146, 81–87. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 19th ed.; Latimer George, W., Jr., Ed.; AOAC International Gaithersburg: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Janssen, R.H.; Vincken, J.P.; Van Den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Souto, C.N. Farinha de Camarão em Dietas para o Tambaqui (Colossoma macropomum). Master’s Thesis, Universidade Federal de Goiás, Goiânia, Brazil, 2015. (In Portuguese). [Google Scholar]
- Bremer Neto, H.; Fessel Graner, C.A.; Pezzato, L.E.; Padovani, C.R. The spectrophotometric method on the routine of 1,5-diphenylcarbazide was adjusted on chromium determination in feces, after its utilization as a biological marker as chromium (III) oxide. Cienc. Rural. 2005, 35, 691–697. [Google Scholar] [CrossRef]
- Bureau, D.P.; Hua, K. Letter to the Editor of Aquaculture. Aquaculture 2006, 252, 103–105. [Google Scholar] [CrossRef]
- Piccolo, G.; Iaconisi, V.; Marono, S.; Loponte, R.; Gasco, L.; Nizza, S.; Bovera, F.; Parisi, G. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim. Feed Sci. Tech. 2017, 226, 12–20. [Google Scholar] [CrossRef]
- Iaconisi, V.; Marono, S.; Parisi, G.; Gasco, L.; Genovese, L.; Maricchiolo, G.; Bovera, F.; Piccolo, G. Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Anim. Feed Sci. Technol. 2017, 476, 49–58. [Google Scholar] [CrossRef]
- Shiau, S.Y.; Yu, Y.P. Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus x O. aureus. Aquaculture 1999, 179, 439–446. [Google Scholar] [CrossRef]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef]
- Köprücü, K.; Özdemir, Y. Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus). Aquaculture 2005, 250, 308–316. [Google Scholar] [CrossRef]
- Fines, B.C.; Holt, G.J. Chitinase and apparent digestibility of chitin in the digestive tract of juvenile cobia, Rachycentron canadum. Aquaculture 2010, 303, 34–39. [Google Scholar] [CrossRef]
- Rust, M.B. Nutritional Physiology. In Fish Nutrition; Halver, J.H., Ed.; Academic Press: San Diego, CA, USA, 2002; pp. 367–452. [Google Scholar]
- Jeuniaux, C. Chitinolytic systems in the digestive tract of vertebrates: A review. Chitin Enzymol. 1993, 1, 233–244. [Google Scholar]
- Krogdahl, Å.; Hemre, G.I.; Mommsen, T.P. Carbohydrates in fish nutrition: Digestion and absorption in postlarval stages. Aquac. Nutr. 2005, 11, 103–122. [Google Scholar] [CrossRef]
- Ikeda, M.; Miyauchi, K.; Matsumiya, M. Purification and characterization of a 56 kDa chitinase isozyme (PaChiB) from the stomach of silver croaker Pennahia argentatus. Biosci. Biotechnol. Biochem. 2012, 76, 971–979. [Google Scholar] [CrossRef]
- Ikeda, M.; Shirase, D.; Sato, T.; Ueda, M.; Hirabayashi, S.; Matsumiya, M. Primary structure and enzymatic properties of chitinase isozymes purified from the stomach of the marbled rockfish Sebastiscus marmoratus. J. Chitin Chitosan Sci. 2014, 2, 106–116. [Google Scholar] [CrossRef]
- Cottrell, M.T.; Moore, J.A.; Kirchman, D.L. Chitinases from Uncultured Marine Microorganisms. Appl. Environ. Microbiol. 1999, 65, 2553–2557. [Google Scholar] [PubMed]
- Tanaka, Y.; Tanioka, S.; Tanaka, M.; Tanigawa, T.; Kitamura, Y.; Minami, S.; Okamoto, Y.; Mmiyashita, M.; Nanno, M. Effects of chitin and chitosan particles on BALB/c 818 mice by oral and parenteral administration. Biomaterials 1997, 18, 591–595. [Google Scholar] [CrossRef]
- Nandeesha, M.; Gangadhara, B.; Manissery, J. Silkworm pupa oil and sardine oil as an additional energy source in the diet of common carp, Cyprinus carpio. Asian Fish. Sci. 1999, 12, 207–215. [Google Scholar]
- Olsen, R.E.; Ringø, E. Lipid digestibility in fish: A review. Rec. Res. Dev. Lipid Res. 1997, 1, 199–264. [Google Scholar]
Nutrients | N. cinerea | Z. morio | G. portentosa | G. assimilis | T. molitor |
---|---|---|---|---|---|
Dry matter (%) | 93.69 | 94.56 | 94.60 | 92.41 | 95.95 |
Protein (%) | 64.78 | 49.91 | 69.94 | 62.09 | 47.82 |
Corrected Protein * (%) | 39.04 | 30.11 | 37.45 | 39.75 | 28.85 |
Energy (MJ Kg-1) | 30.7 | 26.8 | 21.2 | 24.0 | 26.6 |
Lipids (%) | 22.68 | 33.05 | 12.97 | 18.14 | 31.69 |
Ash (%) | 3.83 | 2.77 | 4.03 | 4.48 | 2.61 |
Chitin (%) | 24.36 | 22.48 | 28.94 | 22.34 | 12.01 |
Nutrients | N. cinerea | Z. morio | G. portentosa | G. assimilis | T. molitor | Control |
---|---|---|---|---|---|---|
Dry matter (%) | 90.99 | 94.08 | 94.42 | 95.14 | 94.77 | 94.43 |
Protein (%) | 36.29 | 34.95 | 32.02 | 33.55 | 31.30 | 34.29 |
Corrected Protein * (%) | 27.50 | 29.91 | 24.99 | 27.32 | 24.60 | 34.29 |
Energy (MJ·Kg-1) | 19.1 | 18.6 | 19.2 | 19.0 | 18.1 | 19.3 |
Lipids (%) | 8.86 | 9.17 | 7.13 | 8.69 | 9.40 | 4.79 |
Ash (%) | 11.02 | 10.79 | 10.23 | 10.95 | 10.27 | 11.87 |
Chitin (%) | 5.37 | 4.47 | 7.69 | 5.02 | 3.87 | - |
Nutrients | N. cinerea | Z. morio | G. portentosa | G. assimilis | T. molitor | SEM | p-Value |
---|---|---|---|---|---|---|---|
Dry matter | 61.7 b | 83.2 c | 48.2 a | 42.6 a | 95.8 d | 6.0 | <0.0001 |
Protein | 69.6 c | 70.0 c | 61.6 b | 39.7 a | 85.4 d | 4.2 | <0.0001 |
Corrected Protein * | 67.7 c | 74.3 c | 58.3 b | 38.9 a | 92.4 d | 5.2 | <0.0001 |
Energy | 58.4 a | 80.1 b | 47.4 a | 47.0 a | 82.1 b | 4.7 | <0.0001 |
Lipids | 91.6 ab | 93.5 b | 98.8 c | 87.9 a | 90.6 ab | 1.1 | <0.0001 |
Chitin | 59.8 a | 73.6 bc | 69.6 b | 76.2 c | 81.3 d | 2.1 | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontes, T.V.; de Oliveira, K.R.B.; Gomes Almeida, I.L.; Maria Orlando, T.; Rodrigues, P.B.; Costa, D.V.d.; Rosa, P.V.e. Digestibility of Insect Meals for Nile Tilapia Fingerlings. Animals 2019, 9, 181. https://doi.org/10.3390/ani9040181
Fontes TV, de Oliveira KRB, Gomes Almeida IL, Maria Orlando T, Rodrigues PB, Costa DVd, Rosa PVe. Digestibility of Insect Meals for Nile Tilapia Fingerlings. Animals. 2019; 9(4):181. https://doi.org/10.3390/ani9040181
Chicago/Turabian StyleFontes, Táfanie Valácio, Kátia Rodrigues Batista de Oliveira, Izabella Luiza Gomes Almeida, Tamira Maria Orlando, Paulo Borges Rodrigues, Diego Vicente da Costa, and Priscila Vieira e Rosa. 2019. "Digestibility of Insect Meals for Nile Tilapia Fingerlings" Animals 9, no. 4: 181. https://doi.org/10.3390/ani9040181
APA StyleFontes, T. V., de Oliveira, K. R. B., Gomes Almeida, I. L., Maria Orlando, T., Rodrigues, P. B., Costa, D. V. d., & Rosa, P. V. e. (2019). Digestibility of Insect Meals for Nile Tilapia Fingerlings. Animals, 9(4), 181. https://doi.org/10.3390/ani9040181