Evaluation of the Dietary Supplementation of a Formulation Containing Ascorbic Acid and a Solid Dispersion of Curcumin with Boric Acid against Salmonella Enteritidis and Necrotic Enteritis in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Treatments and Diets
2.2. Salmonella Strain and Culture Conditions
2.3. Experiment 1
2.4. Experiment 2
2.5. Salmonella Recovery
2.6. Experiment 3
2.7. NE Model: Challenge or Ganisms
2.8. Liver Bacterial Translocation (BT)
2.9. Serum Determination of FITC-d Leakage
2.10. Total Intestinal Immunoglobulin A (Iga) Levels
2.11. Data and Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, T.C.; Nguyen, T.A.; Adams, J.K.; Garrett, N.M.; Bopp, C.A.; Baker, J.B.; McNeil, C.; Torres, P.; Ettestad, P.J.; Erdman, M.M.; et al. Multistate outbreak of human Salmonella Typhimurium infections linked to live poultry from agricultural feed stores and mail-order hatcheries. One Health 2016, 2, 144–149. [Google Scholar] [CrossRef]
- Attia, Y.; Ellakany, H.; El-Hamid, A.A.; Bovera, F.; Ghazaly, S. Control of Salmonella Enteritidis infection in male layer chickens by acetic acid and/or prebiotics, probiotics and antibiotics. Arch. Geflügelk. 2012, 76, 239–245. [Google Scholar]
- Cervantes, H.M. Antibiotic-free poultry production: Is it sustainable? J. Appl. Poult. Res. 2015, 24, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Okuneye, O.J.; Adeoye, A.T.; Oloso, N.O.; Adekunle, O.F.; Fasanmi, O.G. Performance and physiological responses of Salmonella enteritidis challenged broilers fed diets containing antibiotic, probiotic and aromabiotic. J. Dairy Vet. Anim. Res. 2016, 3, 1–6. [Google Scholar] [CrossRef]
- Hossain, M.B.; Shovon, C.; Abdullah, A.N. Prevalence of infectious and non-infectious diseases in different age groups of commercial layer chicken in Feni district, Bangladesh. Van Vet. J. 2015, 26, 35–38. [Google Scholar]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M.; Studies, I.C. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef]
- Bertelloni, F.; Tosi, G.; Massi, P.; Fiorentini, L.; Parigi, M.; Cerri, D.; Ebani, V.V. Some pathogenic characters of paratyphoid Salmonella enterica strains isolated from poultry. Asian Pac. J. Trop. Med. 2017, 10, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Biloni, A.; Quintana, C.F.; Menconi, A.; Kallapura, G.; Latorre, J.; Pixley, C.; Layton, S.; Dalmagro, M.; Hernandez-Velasco, X.; Wolfenden, A. Evaluation of effects of EarlyBird associated with FloraMax-B11 on Salmonella Enteritidis, intestinal morphology, and performance of broiler chickens. Poult. Sci. 2013, 92, 2337–2346. [Google Scholar] [CrossRef] [Green Version]
- Kaldhusdal, M.; Løvland, A. The economical impact of Clostridium perfringens is greater than anticipated. World Poult. 2000, 16, 50–51. [Google Scholar]
- Lee, K.W.; Lillehoj, H.S.; Jeong, W.; Jeoung, H.Y.; An, D.J. Avian necrotic enteritis: Experimental models, host immunity, pathogenesis, risk factors, and vaccine development. Poult. Sci. 2011, 90, 1381–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDevitt, R.M.; Brooker, J.D.; Acamovic, T.; Sparks, N.H.C. Necrotic enteritis; a continuing challenge for the poultry industry. Worlds. Poult. Sci. J. 2006, 62, 221–247. [Google Scholar] [CrossRef]
- Skinner, J.T.; Bauer, S.; Young, V.; Pauling, G.; Wilson, J. An economic analysis of the impact of subclinical (mild) necrotic enteritis in broiler chickens. Avian Dis. 2010, 54, 1237–1240. [Google Scholar] [CrossRef] [PubMed]
- Van Immerseel, F.; Rood, J.I.; Moore, R.J.; Titball, R.W. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol. 2009, 17, 32–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, B.; Keyburn, A. The true cost of necrotic enteritis. World Poult. 2015, 31, 16–17. [Google Scholar]
- Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [Google Scholar] [CrossRef]
- Caly, D.L.; D’Inca, R.; Auclair, E.; Drider, D. Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: A microbiologist’s perspective. Front. Microbiol. 2015, 6, 1336. [Google Scholar] [CrossRef]
- Dahiya, J.P.; Wilkie, D.C.; Van Kessel, A.G.; Drew, M.D. Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol. 2006, 129, 60–88. [Google Scholar] [CrossRef]
- Hernandez-Patlan, D.; Solis-Cruz, B.; Méndez-Albores, A.; Latorre, J.D.; Hernandez-Velasco, X.; Tellez, G.; López-Arellano, R. Comparison of PrestoBlue® and plating method to evaluate antimicrobial activity of ascorbic acid, boric acid and curcumin in an in vitro gastrointestinal model. J. Appl. Microbiol. 2018, 124, 423–430. [Google Scholar] [CrossRef]
- Hernandez-Patlan, D.; Solis-Cruz, B.; Pontin, K.P.; Latorre, J.D.; Baxter, M.F.A.; Hernandez-Velasco, X.; Merino-Guzman, R.; Méndez-Albores, A.; Hargis, B.M.; Lopez-Arellano, R.; et al. Evaluation of a solid dispersion of curcumin with polyvinylpyrrolidone and boric acid against Salmonella Enteritidis infection and intestinal permeability in broiler chickens: A pilot study. Front. Microbiol. 2018, 9, 1289. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; Committee on Animal Nutrition, Ed.; National Academy Press: Washington, DC, USA, 1994; pp. 19–34.
- Cobb-Vantress. Cobb 500 Broiler Performance and Nutrition Supplement. 2015. Available online: http://cobb-vantress.com/docs/default-source/cobb-500-guides/Cobb500_Broiler_Performance_And_Nutrition_Supplement.pdf (accessed on 20 January 2019).
- Lin, J.; Lee, I.S.; Frey, J.; Slonczewski, J.L.; Foster, J.W. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J. Bacteriol. 1995, 177, 4097–4104. [Google Scholar] [CrossRef] [PubMed]
- Hofacre, C.L.; Froyman, R.; George, B.; Goodwin, M.A.; Brown, J. Use of Aviguard, virginiamycin, or bacitracin MD against Clostridium perfringens-associated necrotizing enteritis. J. Appl. Poult. Res. 1998, 7, 412–418. [Google Scholar] [CrossRef]
- Shivaramaiah, S.; Wolfenden, R.E.; Barta, J.R.; Morgan, M.J.; Wolfenden, A.D.; Hargis, B.M.; Téllez, G. The role of an early Salmonella typhimurium infection as a predisposing factor for necrotic enteritis in a laboratory challenge model. Avian Dis. 2011, 55, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Latorre, J.D.; Adhikari, B.; Park, S.H.; Teague, K.D.; Graham, L.E.; Mahaffey, B.D.; Baxter, M.F.A.; Hernandez-Velasco, X.; Kwon, Y.M.; Ricke, S.C.; et al. Evaluation of the epithelial barrier function and ileal microbiome in an established necrotic enteritis challenge model in broiler chickens. Front. Vet. Sci. 2018, 5, 199. [Google Scholar] [CrossRef] [PubMed]
- Long, P.L.; Millard, B.J.; Joyner, L.P.; Norton, C.C. A guide to laboratory techniques used in the study and diagnosis of avian coccidiosis. Folia Vet. Lat. 1976, 6, 201–217. [Google Scholar] [PubMed]
- Martin, A.G.; Danforth, H.D.; Barta, J.R.; Fernando, M.A. Analysis of immunological cross-protection and sensitivities to anticoccidial drugs among five geographical and temporal strains of Eimeria maxima. Int. J. Parasitol. 1997, 27, 527–533. [Google Scholar] [CrossRef]
- McReynolds, J.L.; Byrd, J.A.; Anderson, R.C.; Moore, R.W.; Edrington, T.S.; Genovese, K.J.; Poole, T.L.; Kubena, L.F.; Nisbet, D.J. Evaluation of immunosuppressants and dietary mechanisms in an experimental disease model for necrotic enteritis. Poult. Sci. 2004, 83, 1948–1952. [Google Scholar] [CrossRef] [Green Version]
- Vicuña, E.A.; Kuttappan, V.A.; Galarza-Seeber, R.; Latorre, J.D.; Faulkner, O.B.; Hargis, B.M.; Tellez, G.; Bielke, L.R. Effect of dexamethasone in feed on intestinal permeability, differential white blood cell counts, and immune organs in broiler chicks. Poult. Sci. 2015, 94, 2075–2080. [Google Scholar] [CrossRef] [Green Version]
- Vicuña, E.A.; Kuttappan, V.A.; Tellez, G.; Hernandez-Velasco, X.; Seeber-Galarza, R.; Latorre, J.D.; Faulkner, O.B.; Wolfenden, A.D.; Hargis, B.M.; Bielke, L.R. Dose titration of FITC-D for optimal measurement of enteric inflammation in broiler chicks. Poult. Sci. 2015, 94, 1353–1359. [Google Scholar] [CrossRef] [Green Version]
- Baxter, M.F.A.; Merino-Guzman, R.; Latorre, J.D.; Mahaffey, B.D.; Yang, Y.; Teague, K.D.; Graham, L.E.; Wolfenden, A.D.; Hernandez-Velasco, X.; Bielke, L.R. Optimizing fluorescein isothiocyanate dextran measurement as a biomarker in a 24-h feed restriction model to induce gut permeability in broiler chickens. Front. Vet. Sci. 2017, 4, 56. [Google Scholar] [CrossRef]
- Merino-Guzmán, R.; Latorre, J.D.; Delgado, R.; Hernandez-Velasco, X.; Wolfenden, A.D.; Teague, K.D.; Graham, L.E.; Mahaffey, B.D.; Baxter, M.F.A.; Hargis, B.M. Comparison of total immunoglobulin A levels in different samples in Leghorn and broiler chickens. Asian Pac. J. Trop. Biomed. 2017, 7, 116–120. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/Share: 9.4 User’s Guide, 2nd ed.; SAS Documentation: Cary, NC, USA, 2002. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 2nd ed.; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 1984; p. 718. [Google Scholar]
- La Ragione, R.M.; Woodward, M.J. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Vet. Microbiol. 2003, 94, 245–256. [Google Scholar] [CrossRef]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunal, M.; Yayli, G.; Kaya, O.; Karahan, N.; Sulak, O. The effects of antibiotic growth promoter, probiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. Int. J. Poult. Sci. 2006, 5, 149–155. [Google Scholar]
- Brown, D.R.; Southern, L.L. Effect of citric and ascorbic acids on performance and intestinal pH of chicks. Poult. Sci. 1985, 64, 1399–1401. [Google Scholar] [CrossRef] [PubMed]
- Wechtersbach, L.; Cigić, B. Reduction of dehydroascorbic acid at low pH. J. Biochem. Biophys. Methods 2007, 70, 767–772. [Google Scholar] [CrossRef]
- Priyadarsini, I.K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014, 19, 20091–20112. [Google Scholar] [CrossRef]
- Gilani, S.; Howarth, G.S.; Kitessa, S.M.; Forder, R.E.A.; Tran, C.D.; Hughes, R.J. New biomarkers for intestinal permeability induced by lipopolysaccharide in chickens. Anim. Prod. Sci. 2016, 56, 1984–1997. [Google Scholar] [CrossRef]
- Gutzeit, C.; Magri, G.; Cerutti, A. Intestinal IgA production and its role in host-microbe interaction. Immunol. Rev. 2014, 260, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Mon, K.K.Z.; Saelao, P.; Halstead, M.M.; Chanthavixay, G.; Chang, H.-C.; Garas, L.; Maga, E.A.; Zhou, H. Salmonella enterica serovars Enteritidis infection alters the indigenous microbiota diversity in young layer chicks. Front. Vet. Sci. 2015, 2, 61. [Google Scholar] [CrossRef]
- Oz, H.S. Nutrients, Infectious and Inflammatory Diseases. Nutrients 2017, 9, 1085. [Google Scholar] [CrossRef] [PubMed]
- Tellez, G.; Latorre, J.D.; Kuttappan, V.A.; Kogut, M.H.; Wolfenden, A.; Hernandez-Velasco, X.; Hargis, B.M.; Bottje, W.G.; Bielke, L.R.; Faulkner, O.B. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Front. Genet. 2014, 5, 339. [Google Scholar] [CrossRef]
- Neutra, M.R.; Kozlowski, P.A. Mucosal vaccines: The promise and the challenge. Nat. Rev. Immunol. 2006, 6, 148–158. [Google Scholar] [CrossRef]
- Matulova, M.; Varmuzova, K.; Sisak, F.; Havlickova, H.; Babak, V.; Stejskal, K.; Zdrahal, Z.; Rychlik, I. Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis. Vet. Res. 2013, 44, 37. [Google Scholar] [CrossRef]
- Penha Filho, R.A.C.; Moura, B.S.; de Almeida, A.M.; Montassier, H.J.; Barrow, P.A.; Junior, A.B. Humoral and cellular immune response generated by different vaccine programs before and after Salmonella Enteritidis challenge in chickens. Vaccine 2012, 30, 7637–7643. [Google Scholar] [CrossRef] [PubMed]
- Collier, C.T.; Hofacre, C.L.; Payne, A.M.; Anderson, D.B.; Kaiser, P.; Mackie, R.I.; Gaskins, H.R. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Vet. Immunol. Immunopathol. 2008, 122, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.J. Necrotic enteritis predisposing factors in broiler chickens. Avian Pathol. 2016, 45, 275–281. [Google Scholar] [CrossRef]
- Van Waeyenberghe, L.; De Gussem, M.; Verbeke, J.; Dewaele, I.; De Gussem, J. Timing of predisposing factors is important in necrotic enteritis models. Avian Pathol. 2016, 45, 370–375. [Google Scholar] [CrossRef]
- Abbas, R.Z.; Iqbal, Z.; Khan, M.N.; Zafar, M.A.; Zia, M.A. Anticoccidial activity of Curcuma longa L. in broilers. Brazilian Arch. Biol. Technol. 2010, 53, 63–67. [Google Scholar] [CrossRef]
- Allen, P.C.; Danforth, H.D.; Augustine, P.C. Dietary modulation of avian coccidiosis. Int. J. Parasitol. 1998, 28, 1131–1140. [Google Scholar] [CrossRef]
- Galli, G.M.; Da Silva, A.S.; Biazus, A.H.; Reis, J.H.; Boiago, M.M.; Topazio, J.P.; Migliorini, M.J.; Guarda, N.S.; Moresco, R.N.; Ourique, A.F. Feed addition of curcumin to laying hens showed anticoccidial effect, and improved egg quality and animal health. Res. Vet. Sci. 2018, 118, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Lillehoj, H.S.; Lee, S.H.; Jang, S.I.; Lillehoj, E.P.; Bravo, D. Dietary Curcuma longa enhances resistance against Eimeria maxima and Eimeria tenella infections in chickens. Poult. Sci. 2013, 92, 2635–2643. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.Z.; Colwell, D.D.; Gilleard, J. Botanicals: An alternative approach for the control of avian coccidiosis. World’s Poult. Sci. J. 2012, 68, 203–215. [Google Scholar] [CrossRef]
- Wanninger, S.; Lorenz, V.; Subhan, A.; Edelmann, F.T. Metal complexes of curcumin–synthetic strategies, structures and medicinal applications. Chem. Soc. Rev. 2015, 44, 4986–5002. [Google Scholar] [CrossRef] [PubMed]
- Sui, Z.; Salto, R.; Li, J.; Craik, C.; de Montellano, P.R.O. Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorg. Med. Chem. 1993, 1, 415–422. [Google Scholar] [CrossRef]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar]
- Hermans, D.; Pasmans, F.; Heyndrickx, M.; Van Immerseel, F.; Martel, A.; Van Deun, K.; Haesebrouck, F. A tolerogenic mucosal immune response leads to persistent Campylobacter jejuni colonization in the chicken gut. Crit. Rev. Microbiol. 2012, 38, 17–29. [Google Scholar] [CrossRef]
- Staley, M.; Conners, M.G.; Hall, K.; Miller, L.J. Linking stress and immunity: Immunoglobulin A as a non-invasive physiological biomarker in animal welfare studies. Horm. Behav. 2018, 102, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Patchva, S.; Koh, W.; Aggarwal, B.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 2012, 39, 283–299. [Google Scholar] [CrossRef]
- Jonker, M.A.; Sano, Y.; Hermsen, J.L.; Lan, J.; Kudsk, K.A. Pro-inflammatory cytokine surge after injury stimulates an airway immunoglobulin A increase. J. Trauma 2010, 69, 843. [Google Scholar] [CrossRef]
- Naghii, M.R.; Mofid, M.; Asgari, A.R.; Hedayati, M.; Daneshpour, M.S. Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines. J. Trace Elem. Med. Biol. 2011, 25, 54–58. [Google Scholar] [CrossRef]
Item | Starter Diet |
---|---|
Ingredients (g/kg) | |
Corn | 574.5 |
Soybean meal | 346.6 |
Poultry fat 1 | 34.5 |
Dicalcium phosphate | 18.6 |
Calcium carbonate | 9.9 |
Salt | 3.8 |
DL-Methionine | 3.3 |
L-Lysine HCL | 3.1 |
Threonine | 1.2 |
Choline chloride 60% | 2.0 |
Vitamin premix 2 | 1.0 |
Mineral premix 3 | 1.0 |
Antioxidant 4 | 0.5 |
Calculated analysis | |
Metabolizable energy (MJ/kg) | 12.7 |
Crude protein (g/kg) | 221.5 |
Treatments | Crop S. Enteritidis Log cfu/g | Crop S. Enteritidis Incidence | CT S. Enteritidis Log cfu/g | CT S. Enteritidis Incidence |
---|---|---|---|---|
Positive control AA-CUR/PVP-BA | Trial 1 | |||
2.68 ± 0.47 a | 9/12 (75%) | 4.01 ± 0.29 a | 12/12 (100 %) | |
2.60 ± 0.45 a | 10/12 (83%) | 2.32 ± 0.50 b | 8/12 (67 %) * | |
Positive control AA-CUR/PVP-BA | Trial 2 | |||
2.69 ± 0.48 a | 9/12 (75%) | 3.94 ± 0.22 a | 12/12 (100 %) | |
2.57 ± 0.55 a | 7/12 (58%) | 2.28 ± 0.59 b | 7/12 (58 %) ** |
Treatments | Crop S. Enteritidis Log cfu/g | Crop S. Enteritidis Incidence | CT S. Enteritidis Log cfu/g | CT S. Enteritidis Incidence |
---|---|---|---|---|
Positive control AA-CUR/PVP-BA | Three days post-S. Enteritidis challenge | |||
3.18 ± 0.46 a | 10/12 (83%) | 6.44 ± 0.15 a | 12/12 (100%) | |
2.21 ± 0.48 a | 8/12 (67%) | 5.33 ± 0.73 a | 10/12 (83%) | |
Positive control AA-CUR/PVP-BA | Ten days post-S. Enteritidis challenge | |||
2.93 ± 0.65 a | 7/12 (58%) | 6.61 ± 0.21 a | 12/12 (100%) | |
0.88 ± 0.46 b | 3/12 (25%) | 3.90 ± 0.86 b | 8/12 (67%) * |
Treatments | FITC-d (μg/mL) | IgA (μg/mL) |
---|---|---|
Positive control | 0.700 ± 0.020 a | 14.34 ± 2.81 a |
AA-BA-CUR/PVP | 0.489 ± 0.026 b | 7.38 ± 1.08 b |
Item | Negative Control | Positive Control | AA-CUR/PVP-BA |
---|---|---|---|
BW, g/broiler | |||
d 0 | 46.88 ± 0.64 a | 46.54 ± 0.64 a | 47.24 ± 0.66 a |
d 7 | 127.14 ± 2.90 a | 115.58 ± 3.27 b | 115.69 ± 3.15 b |
d 14 | 273.80 ± 11.02 a | 295.78 ± 12.10 a | 264.60 ± 10.91 a |
d 18 | 457.79 ± 18.97 a | 456.32 ± 19.39 a | 436.14 ± 16.41 a |
d 21 | 603.81 ± 24.32 a | 445.16 ± 18.50 b | 438.91 ± 17.79 b |
BWG, g/broiler | |||
d 0–7 | 80.39 ± 3.06 a | 67.74 ± 3.24 b | 68.46 ± 3.18 b |
d 7–14 | 147.01 ± 9.51 b | 182.60 ± 9.48 a | 149.89 ± 8.83 b |
d 14–18 | 183.99 ± 9.85 a | 160.55 ± 9.02 a | 165.25 ± 6.72 a |
d 14–21 | 325.78 ± 15.58 a | 152.13 ± 9.67 b | 169.11 ± 9.78 b |
d 0–21 | 552.72 ± 24.35 a | 399.42 ± 19.79 b | 395.12 ± 17.46 b |
FI, g/broiler | |||
d 0–21 | 808.21 ± 29.86 a | 772.34 ± 10.66 a | 685.05 ± 25.21 b |
FCR | |||
d 0–21 | 1.46 ± 0.04 b | 1.93 ± 0.10 a | 1.73 ± 0.15 a |
Treatments | ILS 2 | BT Log10 cfu/g 3 | FITC-d (μg/mL) 4 | IgA (μg/mL) 5 |
---|---|---|---|---|
Negative Control | 0.33 ± 0.12 b | 1.52 ± 0.46 b | 0.312 ± 0.048 b | 36.14 ± 3.79 b |
Positive Control | 2.04 ± 0.18 a | 3.34 ± 0.46 a | 0.692 ± 0.050 a | 50.85 ± 4.48 a |
AA-CUR/PVP-BA | 1.92 ± 0.13 a | 3.09 ± 0.54 a | 0.553 ± 0.056 a | 35.35 ± 2.07 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Patlan, D.; Solís-Cruz, B.; Patrin Pontin, K.; Latorre, J.D.; Baxter, M.F.A.; Hernandez-Velasco, X.; Merino-Guzman, R.; Méndez-Albores, A.; Hargis, B.M.; Lopez-Arellano, R.; et al. Evaluation of the Dietary Supplementation of a Formulation Containing Ascorbic Acid and a Solid Dispersion of Curcumin with Boric Acid against Salmonella Enteritidis and Necrotic Enteritis in Broiler Chickens. Animals 2019, 9, 184. https://doi.org/10.3390/ani9040184
Hernandez-Patlan D, Solís-Cruz B, Patrin Pontin K, Latorre JD, Baxter MFA, Hernandez-Velasco X, Merino-Guzman R, Méndez-Albores A, Hargis BM, Lopez-Arellano R, et al. Evaluation of the Dietary Supplementation of a Formulation Containing Ascorbic Acid and a Solid Dispersion of Curcumin with Boric Acid against Salmonella Enteritidis and Necrotic Enteritis in Broiler Chickens. Animals. 2019; 9(4):184. https://doi.org/10.3390/ani9040184
Chicago/Turabian StyleHernandez-Patlan, Daniel, Bruno Solís-Cruz, Karine Patrin Pontin, Juan D. Latorre, Mikayla F. A. Baxter, Xochitl Hernandez-Velasco, Ruben Merino-Guzman, Abraham Méndez-Albores, Billy M. Hargis, Raquel Lopez-Arellano, and et al. 2019. "Evaluation of the Dietary Supplementation of a Formulation Containing Ascorbic Acid and a Solid Dispersion of Curcumin with Boric Acid against Salmonella Enteritidis and Necrotic Enteritis in Broiler Chickens" Animals 9, no. 4: 184. https://doi.org/10.3390/ani9040184
APA StyleHernandez-Patlan, D., Solís-Cruz, B., Patrin Pontin, K., Latorre, J. D., Baxter, M. F. A., Hernandez-Velasco, X., Merino-Guzman, R., Méndez-Albores, A., Hargis, B. M., Lopez-Arellano, R., & Tellez-Isaias, G. (2019). Evaluation of the Dietary Supplementation of a Formulation Containing Ascorbic Acid and a Solid Dispersion of Curcumin with Boric Acid against Salmonella Enteritidis and Necrotic Enteritis in Broiler Chickens. Animals, 9(4), 184. https://doi.org/10.3390/ani9040184