Characterization of Staphylococcus Species Isolated from Bovine Quarter Milk Samples
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Laboratory Examination and Bacterial Isolates
2.3. Determination of Colony Forming Units and Somatic Cell Count
2.4. Antimicrobial Resistance Testing
2.5. Categorization and Definitions
2.6. Questionnaire
2.7. Statistical Analysis
3. Results
3.1. Phenotype, AMR and IMI Characteristics of S. aureus
3.2. Phenotype, AMR and IMI Characteristics of CNS
3.3. Comparative Evaluation of S. aureus and CNS
3.4. Survey
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lago, A.; Godden, S.M.; Bey, R.; Ruegg, P.L.; Leslie, K. The selective treatment of clinical mastitis based on on-farm culture results: I. Effects on antibiotic use, milk withholding time, and short-term clinical and bacteriological outcomes. J. Dairy Sci. 2011, 94, 4441–4456. [Google Scholar] [CrossRef] [PubMed]
- Firth, C.L.; Käsbohrer, A.; Schleicher, C.; Fuchs, K.; Egger-Danner, C.; Mayerhofer, M.; Schobesberger, H.; Köfer, J.; Obritzhauser, W. Antimicrobial consumption on Austrian dairy farms: An observational study of udder disease treatments based on veterinary medication records. PeerJ 2017, 5, e4072. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Imran, M. Diagnosis of bovine mastitis: From laboratory to farm. Trop. Anim. Health Prod. 2018, 50, 1193–1202. [Google Scholar] [CrossRef]
- Duarte, C.M.; Freitas, P.P.; Bexiga, R. Technological advances in bovine mastitis diagnosis: An overview. J. Vet. Diagn. Investig. 2015, 27, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.J.G.M.; Olde Riekerink, R.; Sampimon, O.; Smith, H. Mastitis diagnostics and performance monitoring: A practical approach. Ir. Vet. J. 2009, 62, S34–S39. [Google Scholar] [CrossRef]
- Adkins, P.R.F.; Middleton, J.R. Methods for diagnosing mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Taponen, S.; Pyörälä, S. Coagulase-negative staphylococci as cause of bovine mastitis—Not so different from Staphylococcus aureus? Vet. Microbiol. 2009, 134, 29–36. [Google Scholar] [CrossRef]
- Mørk, T.; Jørgensen, H.J.; Sunde, M.; Kvitle, B.; Sviland, S.; Waage, S.; Tollersrud, T. Persistence of staphylococcal species and genotypes in the bovine udder. Vet. Microbiol. 2012, 159, 171–180. [Google Scholar] [CrossRef]
- Condas, L.A.Z.; De Buck, J.; Nobrega, D.B.; Carson, D.A.; Naushad, S.; De Vliegher, S.; Zadoks, R.N.; Middleton, J.R.; Dufour, S.; Kastelic, J.P.; et al. Prevalence of non-aureus staphylococci species causing intramammary infections in Canadian dairy herds. J. Dairy Sci. 2017, 100, 5592–5612. [Google Scholar] [CrossRef] [PubMed]
- Nobrega, D.B.; Naushad, S.; Naqvi, S.A.; Condas, L.A.Z.; Saini, V.; Kastelic, J.P.; Luby, C.; De Buck, J.; Barkema, H.W. Prevalence and genetic basis of antimicrobial resistance in non-aureus staphylococci isolated from Canadian Dairy Herds. Front. Microbiol. 2018, 9, 256. [Google Scholar] [CrossRef] [PubMed]
- Persson Waller, K.; Aspán, A.; Nyman, A.; Persson, Y.; Grönlund Andersson, U. CNS species and antimicrobial resistance in clinical and subclinical bovine mastitis. Vet. Microbiol. 2011, 152, 112–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zadoks, R.N.; Watts, J.L. Species identification of coagulase-negative staphylococci: Genotyping is superior to phenotyping. Vet. Microbiol. 2009, 134, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Nyman, A.-K.; Fasth, C.; Waller, K.P. Intramammary infections with different non-aureus staphylococci in dairy cows. J. Dairy Sci. 2018, 101, 1403–1418. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Casas, E.; Miranda-Morales, R.E. Bovine mastitis pathogens: Prevalence and effects on somatic cell count. In Milk Production—An Up-to-Date Overview of Animal Nutrition, Management and Health; Chaiyabutr, N., Ed.; InTechOpen: London, UK, 2012. [Google Scholar]
- Svennesen, L.; Nielsen, S.S.; Mahmmod, Y.S.; Krömker, V.; Pedersen, K.; Klaas, I.C. Association between teat skin colonization and intramammary infection with Staphylococcus aureus and Streptococcus agalactiae in herds with automatic milking systems. J. Dairy Sci. 2018, 102, 629–639. [Google Scholar] [CrossRef]
- Isaac, P.; Bohl, L.P.; Breser, M.L.; Orellano, M.S.; Conesa, A.; Ferrero, M.A.; Porporatto, C. Commensal coagulase-negative Staphylococcus from the udder of healthy cows inhibits biofilm formation of mastitis-related pathogens. Vet. Microbiol. 2017, 207, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Rall, V.L.M.; Miranda, E.S.; Castilho, I.G.; Camargo, C.H.; Langoni, H.; Guimarães, F.F.; Araújo Júnior, J.P.; Fernandes Júnior, A. Diversity of Staphylococcus species and prevalence of enterotoxin genes isolated from milk of healthy cows and cows with subclinical mastitis. J. Dairy Sci. 2014, 97, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Morin, D.E. Mammary Gland Health and Disorders. In Large Animal Internal Medicine, 4th ed.; Smith, B.F., Ed.; Mosby Elsevier: St. Louis, MO, USA, 2008; pp. 1112–1128. [Google Scholar]
- Petersson-Wolfe, C.S.; Mullarky, I.K.; Jones, G.M. Staphylococcus Aureus Mastitis: Cause, Detection, and Control; VirginiaTech: Blacksburg, VA, USA, 2010. [Google Scholar]
- National Mastitis Council. Staphylococci. In Laboratory Handbook on Bovine Mastitis, 3rd ed.; National Mastitis Council: Verona, WI, USA, 2017; pp. 43–52. [Google Scholar]
- Schukken, Y.H.; González, R.N.; Tikofsky, L.L.; Schulte, H.F.; Santisteban, C.G.; Welcome, F.L.; Bennett, G.J.; Zurakowski, M.J.; Zadoks, R.N. CNS mastitis: Nothing to worry about? Vet. Microbiol. 2009, 134, 9–14. [Google Scholar] [CrossRef]
- National Mastitis Council. Staphylococci. In Laboratory Handbook on Bovine Mastitis, 2nd ed.; National Mastitis Council: Verona, WI, USA, 1999; pp. 64–83. [Google Scholar]
- Elbehiry, A.; Al-Dubaib, M.; Marzouk, E.; Osman, S.; Edrees, H. Performance of MALDI biotyper compared with VitekTM 2 compact system for fast identification and discrimination of Staphylococcus species isolated from bovine mastitis. MicrobiologyOpen 2016, 5, 1061–1070. [Google Scholar] [CrossRef]
- Cameron, M.; Barkema, H.W.; De Buck, J.; De Vliegher, S.; Chaffer, M.; Lewis, J.; Keefe, G.P. Identification of bovine-associated coagulase-negative staphylococci by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a direct transfer protocol. J. Dairy Sci. 2017, 100, 2137–2147. [Google Scholar] [CrossRef]
- Brakstad, O.G.; Aasbakk, K.; Maeland, J.A. Detection of Staphylococcus aureus by Polymerase Chain Reaction Amplification of the nuc Gene. J. Clin. Microbiol. 1992, 30, 1654–1660. [Google Scholar]
- Miles, A.A.; Misra, S.S.; Irwin, J.O. The estimation of the bactericidal power of the blood. Epidemiol. Infect. 1938, 38, 732–749. [Google Scholar] [CrossRef]
- Pillar, C.M.; Goby, L.; Draghi, D.; Grover, P.; Thornsberry, C. Evaluating the in vitro susceptibility of bovine mastitis pathogens to a combination of kanamycin and cefalexin: Recommendations for a disk diffusion test. J. Dairy Sci. 2009, 92, 6217–6227. [Google Scholar] [CrossRef]
- Feßler, A.T.; Kaspar, H.; Lindeman, C.J.; Stegemann, M.R.; Peters, T.; Mankertz, J.; Watts, J.L.; Schwarz, S. A proposal of interpretive criteria for cefoperazone applicable to bovine mastitis pathogens. Vet. Microbiol. 2012, 157, 226–231. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. CLSI Supplement VET08, 4th ed.; Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2018; ISBN 978-1-68440-008-9. [Google Scholar]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; Van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Vet. Microbiol. 2010, 65, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Royster, E.; Wagner, S. Treatment of mastitis in cattle. Vet. Clin. N. Am. Food Anim. Pract. 2015, 31, 17–46. [Google Scholar] [CrossRef]
- Gurjar, A.; Gioia, G.; Schukken, Y.; Welcome, F.; Zadoks, R.; Moroni, P. Molecular diagnostics applied to mastitis problems on dairy farms. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 565–576. [Google Scholar] [CrossRef]
- Hogeveen, H.; Huijps, K.; Lam, T.J.G.M. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011, 59, 16–23. [Google Scholar] [CrossRef]
- Heikkilä, A.-M.; Liski, E.; Pyörälä, S.; Taponen, S. Pathogen-specific production losses in bovine mastitis. J. Dairy Sci. 2018, 101, 9493–9504. [Google Scholar] [CrossRef] [PubMed]
- National Mastitis Council. Interpreting Milk Culture Reports: Coagulase-Negative Staphylococcus. August 2000. Available online: https://wenku.baidu.com/view/59c8df75e87101f69f319505.html (accessed on 26 April 2019).
- Soman, R. Colonization versus Infection. In Medicine Update; Bichile, S.K., Ed.; Lupin Limited: Mumbai, India, 2008; pp. 330–333. [Google Scholar]
- Ruegg, P.L. The quest for the perfect test: Phenotypic versus genotypic identification of coagulase-negative staphylococci associated with bovine mastitis. Vet. Microbiol. 2009, 134, 15–19. [Google Scholar] [CrossRef]
- Oliveira, L.; Langoni, H.; Hulland, C.; Ruegg, P.L. Minimum inhibitory concentrations of Staphylococcus aureus recovered from clinical and subclinical cases of bovine mastitis. J. Dairy Sci. 2012, 95, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Barkema, H.W.; Schukken, Y.H.; Zadoks, R.N. The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J. Dairy Sci. 2006, 89, 1877–1895. [Google Scholar] [CrossRef]
- McDougall, S.; Hussein, H.; Petrovski, K. Antimicrobial resistance in Staphylococcus aureus, Streptococcus uberis and Streptococcus dysgalactiae from dairy cows with mastitis. N. Z. Vet. J. 2014, 62, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Schabauer, A.; Pinior, B.; Gruber, C.M.; Firth, C.L.; Käsbohrer, A.; Wagner, M.; Rychli, K.; Obritzhauser, W. The relationship between clinical signs, and microbiological species, spa-genotype, and antimicrobial resistance in bovine mastitis cases in Austria. Vet. Microbiol. 2018, 227, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Scherpenzeel, C.G.M.; den Uijl, I.E.M.; van Schaik, G.; Olde Riekerink, R.G.M.; Keurentjes, J.M.; Lam, T.J.G.M. Evaluation of the use of dry cow antibiotics in low somatic cell count cows. J. Dairy Sci. 2014, 97, 3606–3614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supré, K.; Haesebrouck, F.; Zadoks, R.N.; Vaneechoutte, M.; Piepers, S.; De Vliegher, S. Some coagulase-negative Staphylococcus species affect udder health more than others. J. Dairy Sci. 2011, 94, 2329–2340. [Google Scholar] [CrossRef] [PubMed]
- Vanderhaeghen, W.; Piepers, S.; Leroy, F.; Van Coillie, E.; Haesebrouck, F.; De Vliegher, S. Identification, typing, ecology and epidemiology of coagulase negative staphylococci associated with ruminants. Vet. J. 2015, 203, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Sartori, C.; Perreten, V.; Ivanovic, I.; Härdi-Landerer, M.; Graber, H.U. Lack of intramammary niche recolonization during a sanitation program for the contagious mastitis pathogen Staphylococcus aureus genotype B. J. Dairy Sci. 2018, 101, 8296–8300. [Google Scholar] [CrossRef]
- De Visscher, A.; Supré, K.; Haesebrouck, F.; Zadoks, R.N.; Piessens, V.; Van Coillie, E.; Piepers, S.; De Vliegher, S. Further evidence for the existence of environmental and host-associated species of coagulase-negative staphylococci in dairy cattle. Vet. Microbiol. 2014, 172, 466–474. [Google Scholar] [CrossRef]
- Vanderhaeghen, W.; Piepers, S.; Leroy, F.; Van Coillie, E.; Haesebrouck, F.; De Vliegher, S. Invited review: Effect, persistence, and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health. J. Dairy Sci. 2014, 97, 5275–5293. [Google Scholar] [CrossRef] [PubMed]
- de Jong, A.; Garch, F.E.; Simjee, S.; Moyaert, H.; Rose, M.; Youala, M.; Siegwart, E. Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: VetPath results. Vet. Microbiol. 2018, 213, 73–81. [Google Scholar] [CrossRef]
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. MHK-Häufigkeitsverteilung sowie Verhältnisse de empfindlichen zu den resistenten Stämmen in der Studie 2015. In Berichte zu den Resistenzmonitoringstudien 2014 und 2015—Resistenzsituation bei Klinisch Wichtigen Tierpathogenen Bakterien; BVL: Berlin, Germany, 2017; pp. 140–152, 192, 202. [Google Scholar]
- Schmidt, T.; Kock, M.M.; Ehlers, M.M. Diversity and antimicrobial susceptibility profiling of staphylococci isolated from bovine mastitis cases and close human contacts. J. Dairy Sci. 2015, 98, 6256–6269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobrega, D.B.; De Buck, J.; Barkema, H.W. Antimicrobial resistance in non-aureus staphylococci isolated from milk is associated with systemic but not intramammary administration of antimicrobials in dairy cattle. J. Dairy Sci. 2018, 101, 7425–7436. [Google Scholar] [CrossRef] [PubMed]
- Andremont, A. Commensal flora may play key role in spreading antibiotic resistance. ASM News 2003, 69, 601–607. [Google Scholar]
- Hodges, R.T.; Jones, Y.S.; Holland, J.T.S. Characterisation of staphylococci associated with clinical and subclinical bovine mastitis. N. Z. Vet. J. 1984, 32, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Dohoo, I.R.; Smith, J.; Andersen, S.; Kelton, D.F.; Godden, S. Mastitis Research Workers’ Conference Diagnosing intramammary infections: Evaluation of definitions based on a single milk sample. J. Dairy Sci. 2011, 94, 250–261. [Google Scholar] [CrossRef] [PubMed]
Isolates | Manifestation | n | Median cfu Group 1 | Median SCC Class 2 | Mean SCC 2 | SCC SD 2 |
---|---|---|---|---|---|---|
Staphylococcus aureus (n = 100) | Clinical IMI | 18 | 105–106 | >1 million | 2.18 million | 1,582,000 |
Subclinical IMI | 70 | 103–104 | 200,000–500,000 | 1.00 million | 1,213,000 | |
Colonizer | 12 | 103–104 | ≤100,000 | 45,000 | 33,000 | |
Coagulase-negative staphylococci (n = 100) | Clinical IMI | 18 | 103–104 | >1 million | 1.90 million | 1,524,000 |
Subclinical IMI | 50 | 103–104 | 500,000–1 million | 0.87 million | 1,045,000 | |
Colonizer | 32 | 103–104 | ≤100,000 | 65,000 | 50,000 |
Antimicrobials | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MIC (µg/mL) | Penicillin G | Ampicillin | Cefazolin | Cefoperazone | Cefquinome | Oxacillin | Pirlimycin | Erythromycin | Amoxicillin/Clavulanic Acid 2:1 | Kanamycin/Cephalexin 10:1 | Marbofloxacin |
0.125 | 90 | NA | NA | NA | NA | NA | NA | 0 | NA | NA | NA |
0.25 | 2 | NA | NA | NA | NA | NA | NA | 5 | NA | NA | 56 |
0.5 | 1 | NA | NA | NA | NA | NA | NA | 54 | NA | NA | 38 |
1 | 1 | NA | NA | NA | 93 | 95 | 31 | 25 | NA | NA | 4 |
2 | 1 | NA | NA | 90 | 4 | 3 | 28 | 5 | NA | NA | 1 |
4 | 3 | 95 | 96 | 6 | 3 | 0 | 14 | 7 | 100 | 87 | NA |
8 | 1 | 3 | 3 | 2 | 0 | NA | NA | NA | 0 | 13 | NA |
16 | NA | 2 | 1 | 2 | NA | NA | NA | NA | 0 | 0 | NA |
32 | NA | NA | 0 | NA | NA | NA | NA | NA | 0 | 0 | NA |
>(growth at highest concentration) | 1 | 0 | 0 | 0 | 0 | 2 | 27 | 4 | 0 | 0 | 1 |
S. aureus ATCC 25923 | ≤0.125 | ≤4 | ≤4 | ≤2 | ≤1 | ≤1 | ≤1 | 0.5 | ≤4/2 | ≤4/0.4 | ≤0.25 |
S. aureus ATCC 29213 | 1 | ≤4 | ≤4 | ≤2 | ≤1 | ≤1 | ≤1 | 0.5 | ≤4/2 | ≤4/0.4 | ≤0.25 |
S. aureus ATCC 35556 | ≤0.125 | ≤4 | ≤4 | ≤2 | ≤1 | ≤1 | 2 | 0.25 | ≤4/2 | ≤4/0.4 | ≤0.25 |
S. aureus ATCC BAA-39 | >8 | >16 | ≤4 | 16 | 2 | >4 | >4 | >4 | ≤4/2 | >32/3.2 | >2 |
MIC50 | ≤0.125 | ≤4 | ≤4 | ≤2 | ≤1 | ≤1 | 2 | 0.5 | ≤4/2 | ≤4/0.4 | ≤0.25 |
MIC90 | ≤0.125 | ≤4 | ≤4 | ≤2 | ≤1 | ≤1 | >4 | 4 | ≤4/2 | 8/0.8 | 0.5 |
S (%) | 90.00 * | NA | NA | 90.00 | NA | 98.00 | 59.00 | 59.00 | NA | 100.00 | NA |
Breakpoints | S ≤ 0.12; R ≥ 0.25 a | NA | NA | S ≤ 2; I = 4; R ≥ 8 b | NA | S ≤ 2; R ≥ 4 a | S ≤ 2; R ≥ 4 a | S ≤ 0.5; I = 1–4; R ≥ 8 a | NA | S ≤ 8; I = 16; R ≥ 32 c | NA |
Target pathogens | Human Staphylococcus spp. | Cattle Staphylococcus spp. | Human S. aureus | Cattle S. aureus | Human Staphylococcus spp. | Cattle S. aureus |
Species | Clinical IMI (n) | Subclinical IMI (n) | Colonizer (n) | Total (n) |
---|---|---|---|---|
S. xylosus | 4 | 20 | 16 | 40 |
S. chromogenes | 7 | 11 | 8 | 26 |
S. haemolyticus | 1 | 3 | 3 | 7 |
S. sciuri | 0 | 4 | 1 | 5 |
S. saprophyticus | 0 | 1 | 2 | 3 |
S. simulans | 1 | 1 | 1 | 3 |
S. succinus | 1 | 2 | 0 | 3 |
S. epidermidis | 0 | 1 | 0 | 1 |
S. equorum | 0 | 1 | 0 | 1 |
S. hyicus | 1 | 0 | 0 | 1 |
S. intermedius | 1 | 0 | 0 | 1 |
Staphylococcus spp. | 2 | 6 | 1 | 9 |
MIC (µg/mL) | Antimicrobials | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Penicillin G | Ampicillin | Cefazolin | Cefoperazone | Cefquinome | Oxacillin | Pirlimycin | Erythromycin | Amoxicillin/ClavulanicAcid 2:1 | Kanamycin/Cephalexin 10:1 | Marbofloxacin | |
0.125 | 83 | NA | NA | NA | NA | NA | NA | 0 | NA | NA | NA |
0.25 | 5 | NA | NA | NA | NA | NA | NA | 12 | NA | NA | 35 |
0.5 | 4 | NA | NA | NA | NA | NA | NA | 46 | NA | NA | 47 |
1 | 3 | NA | NA | NA | 94 | 91 | 80 | 30 | NA | NA | 16 |
2 | 0 | NA | NA | 78 | 5 | 4 | 5 | 3 | NA | NA | 2 |
4 | 1 | 93 | 100 | 18 | 0 | 1 | 4 | 2 | 100 | 98 | NA |
8 | 0 | 4 | 0 | 3 | 0 | NA | NA | NA | 0 | 1 | NA |
16 | NA | 0 | 0 | 1 | NA | NA | NA | NA | 0 | 0 | NA |
32 | NA | NA | 0 | NA | NA | NA | NA | NA | 0 | 1 | NA |
>(growth at highest concentration) | 4 | 3 | 0 | 0 | 1 | 4 | 11 | 7 | 0 | 0 | 0 |
S. epidermidis ATCC 12228 | >8 | 8 | ≤4 | ≤2 | ≤1 | ≤1 | ≤1 | 0.5 | ≤4/2 | ≤4/0.4 | ≤0.25 |
S. intermedius ATCC 29663 | ≤0.125 | ≤4 | ≤4 | ≤2 | ≤1 | ≤1 | ≤1 | 0.5 | ≤4/2 | ≤4/0.4 | ≤0.25 |
S. sciuri ATCC 29060 | 0.25 | ≤4 | ≤4 | 4 | ≤1 | 2 | 2 | 0.5 | ≤4/2 | ≤4/0.4 | 1 |
S. xylosus ATCC 29971 | ≤0.125 | ≤4 | ≤4 | 4 | ≤1 | 2 | ≤1 | 0.5 | ≤4/2 | ≤4/0.4 | 1 |
S. chromogenes MIC90 (n = 26) | 0.5 | 8 | ≤4 | ≤2 | ≤1 | ≤1 | >4 | 4 | ≤4/2 | ≤4/0.4 | 0.5 |
S (%) | 84.62 | NA | NA | 100.00 | NA | NA | NA | 38.46 | NA | 100.00 | NA |
S. xylosus MIC90 (n = 40) | 0.5 | ≤4 | ≤4 | 4 | ≤1 | 2 | 4 | 1 | ≤4/2 | ≤4/0.4 | 1 |
S (%) | 82.50 | NA | NA | 72.50 | NA | NA | NA | 65.00 | NA | 100.00 | NA |
Remaining CNS MIC90 (n = 34) | 0.25 | ≤4 | ≤4 | 4 | 2 | 2 | >4 | 2 | ≤4/2 | ≤4/0.4 | 1 |
S (%) | 82.35 | NA | NA | 67.65 | NA | NA | NA | 64.70 | NA | 97.06 | NA |
Total MIC50 (n = 100) | ≤0.125 | ≤4 | ≤4 | ≤2 | ≤1 | ≤1 | ≤1 | 0.5 | ≤4/2 | ≤4/0.4 | 0.5 |
Total MIC90 (n = 100) | 0.5 | ≤4 | ≤4 | 4 | ≤1 | ≤1 | >4 | 2 | ≤4/2 | ≤4/0.4 | 1 |
S (%) | 83.00 | NA | NA | 78.00 | NA | NA | NA | 58.00 | NA | 98.00 | NA |
Breakpoints | S ≤ 0.12; R ≥ 0.25 a,* | NA | NA | S ≤ 2; I = 4; R ≥ 8 b | NA | S ≤ 0.25; R ≥ 0.5 a,** | NA | S ≤ 0.5; I = 1–4; R ≥ 8 a | NA | S ≤ 8; I = 16; R ≥ 32 c | NA |
Target pathogens | Human Staphylococcus spp. | Cattle Staphylococcus spp. | Human CNS except S. lugdunesis | Human Staphylococcus spp. | Cattle Staphylococcus spp. |
Subclinical Mastitis and Control Examinations (Except Controls Prior to Drying-off) | CNS | S. aureus |
Intramammary administration of antimicrobials according to susceptibility testing | 44.1% | 22.1% |
Also, parenteral administration of antimicrobials and a combination of parenteral and intramammary | 28.7% | 37.5% |
SCC check and treatment in case of elevation | 42.6% | 26.5% |
Generally, no antimicrobial treatment during lactation in case of subclinical mastitis | 18.4% | 39.7% |
Other treatment except antimicrobials | 9.6% | 17.6% |
Responding veterinarians (n) | 136 | 136 |
Control Prior to Drying-off | CNS | S. aureus |
Intramammary and parenteral administration of antimicrobials according susceptibility testing | 19.1% | 36.3% |
Antimicrobial dry cow therapy | 86.0% | 81.5% |
SCC check and treatment in case of elevation | 17.6% | 5.2% |
Other treatment except antimicrobials | 2.9% | 13.3% |
Responding veterinarians (n) | 136 | 135 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wald, R.; Hess, C.; Urbantke, V.; Wittek, T.; Baumgartner, M. Characterization of Staphylococcus Species Isolated from Bovine Quarter Milk Samples. Animals 2019, 9, 200. https://doi.org/10.3390/ani9050200
Wald R, Hess C, Urbantke V, Wittek T, Baumgartner M. Characterization of Staphylococcus Species Isolated from Bovine Quarter Milk Samples. Animals. 2019; 9(5):200. https://doi.org/10.3390/ani9050200
Chicago/Turabian StyleWald, Regina, Claudia Hess, Verena Urbantke, Thomas Wittek, and Martina Baumgartner. 2019. "Characterization of Staphylococcus Species Isolated from Bovine Quarter Milk Samples" Animals 9, no. 5: 200. https://doi.org/10.3390/ani9050200
APA StyleWald, R., Hess, C., Urbantke, V., Wittek, T., & Baumgartner, M. (2019). Characterization of Staphylococcus Species Isolated from Bovine Quarter Milk Samples. Animals, 9(5), 200. https://doi.org/10.3390/ani9050200