Effects of the Dietary Inclusion of Partially Defatted Black Soldier Fly (Hermetia illucens) Meal on the Blood Chemistry and Tissue (Spleen, Liver, Thymus, and Bursa of Fabricius) Histology of Muscovy Ducks (Cairina moschata domestica)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and Experimental Design
2.2. Chemical Analysis of the BSF Meal and Experimental Diets
2.3. Growth Performance
2.4. Slaughtering Procedures and Sampling
2.5. Blood Analysis
2.6. Histological Investigations
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Blood Traits
3.3. Histological Investigations
4. Discussion
4.1. Growth Performance
4.2. Blood Traits
4.3. Histological Investigations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schiavone, A.; Dabbou, S.; De Marco, M.; Cullere, M.; Biasato, I.; Biasibetti, E.; Capucchio, M.T.; Bergagna, S.; Dezzutto, D.; Meneguz, M.; et al. Black soldier fly larva fat inclusion in finisher broiler chicken diet as analternative fat source. Animal 2018, 12, 2032–2039. [Google Scholar] [CrossRef] [PubMed]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The Potential role of insects as feed: A Multi-Perspective Review. Animals 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals fed insect-based diets: state-of-the-art on digestibility, performance and product quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef]
- Dossey, A.T.; Morales-Ramos, J.A.; Rojas, M.G. Insects as Sustainable Food Ingredients: Production, Processing and Food Applications; Academic Press: London, UK, 2016. [Google Scholar]
- Van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Biasato, I.; De Marco, M.; Rotolo, L.; Renna, M.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.; Costa, P.; Gai, F.; et al. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1104–1112. [Google Scholar] [CrossRef]
- Loponte, R.; Nizza, S.; Bovera, F.; De Riu, N.; Fliegerova, K.; Lombardi, P.; Vassalotti, G.; Mastellone, V.; Nizza, A.; Moniello, G. Growth performance, blood profiles and carcass traits of Barbary partridge (Alectoris barbara) fed two different insect larva meals (Tenebrio molitor and Hermetia illucens). Res. Vet. Sci. 2017, 115, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, R.; De Smet, S.; Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Gariglio, M.; Dabbou, S.; Biasato, I.; Capucchio, M.T.; Colombino, E.; Hernandez, F.; Madrid Sanchez, J.; Martinez, S.; Gai, F.; Caimi, C.; et al. Nutritional effects of the dietary inclusion of partially defatted Hermetia illucens larva meal in Muscovy duck. J. Anim. Sci. Biotechnol. 2019, 10, 37. [Google Scholar] [CrossRef]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—a review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Hahn, T.; Roth, A.; Febel, E.; Fijalowska, M.; Schmitt, E.; Arsiwalla, T.; Zibek, S. New methods for high accuracy insect chitin measurement. J. Sci. Food Agric. 2018, 98, 5069–5073. [Google Scholar] [CrossRef]
- Diener, S.; Zurbrügg, C.; Tockner, K. Conversion of organic material by black soldier fly larva: Establishing optimal feeding rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Cutrignelli, M.I.; Messina, M.; Tulli, F.; Randazzo, B.; Olivotto, I.; Gasco, L.; Loponte, R.; Bovera, F. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Res. Vet. Sci. 2018, 117, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D.H.; Kim, S.K. Two Antioxidant effects of chitin, chitosan, and their derivatives. In Advances in Food and Nutrition Research; Kim, S.K., Ed.; Academic Press: Waltham, MA, USA, 2014; Volume 73, pp. 15–31. [Google Scholar]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.E.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S.; et al. Productive performance and blood profiles of laying hens fed Hermetia illucens larva meal as total replacement of soybean meal from 24 to 45 week of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Gasco, L.; Finke, M.; van Huis, A. Can diets containing insects promote animal health? J. Insects Food Feed 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Biasato, I.; Ferrocino, I.; Biasibetti, E.; Grego, E.; Dabbou, S.; Sereno, A.; Gai, F.; Gasco, L.; Schiavone, A.; Cocolin, L.; et al. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet. Res. 2018, 14, 383. [Google Scholar] [CrossRef]
- Schiavone, A.; Chiarini, R.; Marzoni, M.; Castillo, A.; Tassone, S.; Romboli, I. Breast meat traits of Muscovy ducks fed on a microalga (Crypthecodinium cohnii) meal supplemented diet. Br. Poult. Sci. 2007, 48, 573–579. [Google Scholar] [CrossRef]
- Schiavone, A.; Nery, J.; Choque-López, J.A.; Baucells, M.D.; Barroeta, A.C. Dietary lipid oxidation and vitamin E supplementation influence in vivo erythrocyte traits and postmortem leg muscle lipid oxidation in broiler chickens. Can. J. Anim. Sci. 2010, 90, 197–202. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Pero, M.E.; Cutrignelli, M.I.; Calabrò, S.; Musco, N.; Vassalotti, G.; Panettieri, V.; Lombardi, P.; Piccolo, G. Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larva. Res. Vet. Sci. 2018, 120, 86–93. [Google Scholar] [CrossRef]
- Hossain, S.M.; Blair, R. Chitin utilisation by broilers and its effect on body composition and blood metabolites. Brit. Poult. Sci. 2007, 48, 33–38. [Google Scholar] [CrossRef]
- Prajapati, B.G.; Patel, R.P. Nutrition, dietary supplements and herbal medicines: A safest approach for obesity. Res. Int. J. Pharm. Pharm. Sci. 2010, 1, 39–45. [Google Scholar]
- Celi, P.; Cowieson, A.J.; Fru-Nji, F.; Steinert, R.E.; Kluenter, A.M.; Verlhac, V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim. Feed Sci. Tech. 2017, 234, 88–100. [Google Scholar] [CrossRef]
- Kovitvadhi, A.; Chundang, P.; Thongprajukaew, K.; Tirawattanawanich, C.; Srikachar, S.; Chotimanothum, B. Potential of insect meals as protein sources for meat-type ducks based on in vitro digestibility. Animals 2019, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F. Nutritional value of a partially defatted and a highly defatted black soldier fly larva(Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizableenergy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 897–905. [Google Scholar] [CrossRef]
- Pingel, H.; Guy, G.; Baéza, E. Production de canards, 1st ed.; Éditions Quæ: Versailles, France, 2012; pp. 1–251. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; Gaithersburg, Association of Official Analytical Chemists: Rockville, MD, USA, 2002. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; 2nd rev.; Gaithersburg, Association of Official Analytical Chemists: Rockville, MD, USA, 2003. [Google Scholar]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef]
- Natt, M.P.; Herrick, C.A. A new blood diluent for counting the erythrocytes and leukocytes of the chicken. Poult Sci. 1952, 31, 735–738. [Google Scholar] [CrossRef]
- Campbell, T.W. Avian Hematology and Cytology, 2nd ed.; Iowa State University Press: Ames, IA, USA, 1995; p. 104. [Google Scholar]
- Salamano, G.; Mellia, E.; Tarantola, M.; Gennero, M.S.; Doglione, L.; Schiavone, A. Acute phase proteins and heterophil: Lymphocyte ratio in laying hens in different housing systems. Vet. Rec. 2010, 167, 749–751. [Google Scholar] [CrossRef]
- Maxie, M.G.; Miller, M.A. Introduction to the diagnostic process. In Jubb, Kennedy and Palmer’s Pathology of Domestic Animal, 6th ed.; Grant, M.G., Ed.; Elsevier Academic Press: St. Louis, MO, USA, 2016; pp. 8–9. [Google Scholar]
- Pozzo, L.; Salamano, G.; Mellia, E.; Gennero, M.S.; Doglione, L.; Cavallarin, L.; Tarantola, M.; Forneris, G.; Schiavone, A. Feeding a diet contaminated with ochratoxin A for chickens at the maximum level recommended by the EU for poultry feeds (0.1 mg/kg). 1. Effects on growth and slaughter performance, haematological and serum traits. J. Anim. Physiol. Anim. Nutr. 2013, 97, 13–22. [Google Scholar] [CrossRef]
- El-Gobary, G.I.A.; El-Zoghby, A.F.M.; El-Sheikh, N.I.; Hamdy, A.S. Effect of chitooligosaccharide as feed additives on egg production and performance of laying hens. Egypt. J. Chem. Environ. Health 2016, 2, 183–194. [Google Scholar]
- Jing, S.; Li, L.; Ji, D.; Takiguchiand, Y.; Yamaguchi, T. Effect of chitosan on renal function in patients with chronic renal failure. J. Pharm. Pharmacol. 1997, 49, 721–723. [Google Scholar] [CrossRef]
- Davis, W.; Lamson, M.S.; Jonathan, V.; Wright, M.D. A case of early renal functional impairment resolved with nutrients and botanicals. Altern. Med. Rev. 2003, 8, 55–58. [Google Scholar]
- Ahmed, F.A.; Abdel-Lattife, M.S.; Abd–El Azeem, A.S.; Hegazy, A.M.; Hassoun, H.Z.; Algalaly, M.A. The role of chitosan and wheat germ as antidiabetic substances in diabetic rats. Res. J. Pharmac. Biol. Chem. Sci. 2014, 5, 457–469. [Google Scholar]
- Valle, E.; Zanatta, R.; Odetti, P.; Traverson, N.; Furfaro, A.; Bergero, D.; Badino, P.; Girardi, G.; Miniscalco, B.; Bergagna, S.; et al. Effects of competition on acute phase proteins and lymphocyte subpopulations—oxidative stress markers in eventing horses. J. Anim. Physiol. Anim. Nutr.(Berl). 2015, 99, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Radi, R. Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc. Chem. Res. 2013, 46, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Ischiropoulos, H. Biological tyrosine nitration: A pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 1998, 356, 1–11. [Google Scholar] [CrossRef]
- Giannopoulou, E.; Katsoris, P.; Polytarchou, C.; Papadimitriou, E. Nitration of cytoskeletal proteins in the chicken embryo chorioallantoic membrane. Arch. Biochem. Biophys. 2002, 400, 188–198. [Google Scholar] [CrossRef]
- Peluffo, G.; Radi, R. Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc. Res. 2007, 75, 291–302. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, M.; Wang, T.; Li, D.; Liu, Y.; Zhang, J.; Sun, B. Cysteamine alleviates early brain injury via reducing oxidative stress and apoptosis in a rat experimental subarachnoid hemorrhage model. Cell. Mol. Neurobiol. 2015, 35, 543–553. [Google Scholar] [CrossRef]
- Karaman, M.; Ozen, H.; Tuzcu, M.; Cigremis, Y.; Onder, F.; Ozcan, K. Pathological, biochemical and haematological investigations on the protective effect of alpha-lipoic acid in experimental aflatoxin toxicosis in chicks. Br. Poult. Sci. 2010, 51, 132–141. [Google Scholar] [CrossRef]
- Ognik, K.; Kozłowski, K.; Stępniowska, A.; Szlązak, R.; Tutaj, K.; Zduńczyk, Z.; Jankowski, J. The effect of manganese nanoparticles on performance, redox reactions and epigenetic changes in turkey tissues. Animal 2018. [Google Scholar] [CrossRef]
- Schiavone, A.; Romboli, I.; Chiarini, R.; Marzoni, M. Influence of dietary lipid source and strain on fatty acid composition of Muscovy duck meat. J. Anim. Physiol. Anim. Nutr. 2004, 88, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; Marzoni, M.; Castillo, A.; Nery, J.; Romboli, I. Dietary lipid sources and vitamin E affect fatty acid composition or lipid stability of breast meat from Muscovy duck. Can. J. Anim. Sci. 2010, 90, 371–378. [Google Scholar] [CrossRef]
- Marzoni, M.; Chiarini, R.; Castillo, A.; Romboli, I.; De Marco, M.; Schiavone, A. Effects of dietary natural antioxidant supplementation on broiler chicken and Muscovy duck meat quality. Anim. Sci. Pap. Rep. 2014, 32, 359–368. [Google Scholar]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.; Bianchi, C.; et al. Effects of yellow mealworm larva (Tenebrio molitor) inclusion in diets for female broiler chickens: Implications for animal health and gut histology. Anim. Feed Sci. Technol. 2017, 234, 253–263. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Sereno, A.; Gai, F.; Gasco, L.; Schiavone, A.; et al. Yellow mealworm larva (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poult. Sci. 2018, 97, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Davail, S.; Rideau, N.; Guy, G.; André, J.M.; Hermier, D.; Hoo-Paris, R. Hormonal and metabolic responses to overfeeding in three genotypes of ducks. Comp. Biochem. Physiol. A.Biochem. Mol. Biol. 2003, 134, 707–715. [Google Scholar] [CrossRef]
- Hermier, D.; Guy, G.; Guillaumin, S.; Davail, S.; André, J.M.; Hoo-Paris, R. Differential channelling of liver lipids in relation to susceptibility to hepatic steatosis in two species of ducks. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2003, 135, 663–675. [Google Scholar] [CrossRef]
- Chartrin, P.; Bernadet, M.D.; Sannier, M.; Baéza, E. Is ability to hepatic steatosis influenced by age at the beginning of the overfeeding period in Muscovy and Pekin ducks? Animal 2013, 7, 682–687. [Google Scholar] [CrossRef]
- Hérault, F.; Duby, C.; Baéza, E.; Diot, C. Adipogenic genes expression in relation to hepatic steatosis in the liver of two ducks species. Animal 2018, 3, 1–7. [Google Scholar] [CrossRef]
- Klasing, K.C. Comparative Avian Nutrition; CAB International: Wallingford, UK, 2000. [Google Scholar]
Ingredients | Starter period (3 to 17 d) 1 | Grower period (18 to 38 d) 1 | Finisher period (39 to 50 d) 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BSF-0 | BSF-3 | BSF-6 | BSF-9 | BSF-0 | BSF-3 | BSF-6 | BSF-9 | BSF-0 | BSF-3 | BSF-6 | BSF-9 | |
Corn meal | 600.0 | 600.0 | 600.0 | 600.0 | 638.0 | 638.0 | 638.0 | 638.0 | 670.0 | 670.0 | 670.0 | 670.0 |
Soybean meal | 212.0 | 212.0 | 212.0 | 212.0 | 160.0 | 160.0 | 160.0 | 160.0 | 100.0 | 100.0 | 100.0 | 100.0 |
BSF larva meal | 0.0 | 30.0 | 60.0 | 90.0 | 0.0 | 30.0 | 60.0 | 90.0 | 0.0 | 30.0 | 60.0 | 90.0 |
Bran | 42.5 | 42.5 | 42.5 | 42.5 | 36.3 | 36.3 | 36.3 | 36.3 | 66.2 | 66.2 | 66.2 | 66.2 |
Corn gluten meal | 90.0 | 60.0 | 30.0 | 0.0 | 90.0 | 60.0 | 30.0 | 0.0 | 90.0 | 60.0 | 30.0 | 0.0 |
Soybean oil | 16.5 | 16.5 | 16.5 | 16.5 | 28.5 | 28.5 | 28.5 | 28.5 | 34.5 | 34.5 | 34.5 | 34.5 |
Dicalcium phosphate | 10.0 | 10.0 | 10.0 | 10.0 | 13.0 | 13.0 | 13.0 | 13.0 | 4.0 | 4.0 | 4.0 | 4.0 |
Calcium carbonate | 8.0 | 8.0 | 8.0 | 8.0 | 14.0 | 14.0 | 14.0 | 14.0 | 17.4 | 17.4 | 17.4 | 17.4 |
Sodium chloride | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Sodium bicarbonate | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
DL-methionine | 2.5 | 2.5 | 2.6 | 2.8 | 1.7 | 1.8 | 1.9 | 2.2 | 0.3 | 0.4 | 0.5 | 0.8 |
L-lysine | 3.9 | 3.9 | 3.8 | 3.6 | 3.9 | 3.8 | 3.7 | 3.4 | 3.0 | 2.9 | 2.8 | 2.5 |
MinVit premix2 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Choline chloride | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Optifos 250 bro3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Avizyme 1500 x4 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Titanium dioxide | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Total | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
AMEn, MJ/kg | 12.12 | 12.10 | 12.08 | 12.07 | 12.53 | 12.51 | 12.49 | 12.47 | 12.77 | 12.75 | 12.74 | 12.72 |
Nutrient composition | ||||||||||||
DM | 89.3 | 89.8 | 90.1 | 89.7 | 88.8 | 89.2 | 89.1 | 89.1 | 88.7 | 89.0 | 89.3 | 88.9 |
CP, % DM | 25.1 | 24.7 | 25.2 | 24.8 | 23.0 | 22.5 | 22.5 | 22.4 | 20.2 | 20.2 | 20.1 | 20.1 |
EE, % DM | 4.7 | 4.8 | 4.9 | 5.1 | 6.2 | 6.2 | 6.4 | 6.6 | 7.3 | 7.4 | 7.6 | 7.7 |
NDF, % DM | 12.7 | 12.3 | 12.7 | 12.4 | 12.9 | 13.1 | 12.6 | 12.7 | 12.7 | 13.1 | 12.7 | 12.9 |
ADF, % DM | 3.4 | 3.5 | 3.7 | 3.3 | 3.5 | 3.5 | 3.7 | 3.5 | 3.4 | 3.5 | 3.5 | 3.4 |
Ash, % DM | 5.6 | 6.0 | 5.6 | 5.8 | 7.8 | 7.5 | 7.5 | 8.0 | 6.5 | 6.4 | 6.9 | 6.7 |
Items | Age | Dietary Treatments 1 | SEM | p-value | ||||
---|---|---|---|---|---|---|---|---|
BSF-0 | BSF-3 | BSF-6 | BSF-9 | Linear | Quadratic | |||
LW, g | 3 d | 70.7 | 70.4 | 72.6 | 71.5 | 0.60 | 0.405 | 0.733 |
LW, g | 50 d | 2540.6 | 2511.1 | 2456.1 | 2554.8 | 20.13 | 0.946 | 0.123 |
ADG, g/d | 3–50 d | 52.5 | 51.9 | 50.7 | 52.8 | 0.43 | 0.926 | 0.125 |
DFI, g/d | 3–50 d | 120.6 | 121.3 | 117.6 | 121.5 | 1.20 | 0.927 | 0.530 |
FCR, g/g | 3–50 d | 2.29 | 2.34 | 2.32 | 2.30 | 0.019 | 0.925 | 0.406 |
Items | Dietary Treatments 1 | SEM | p-value | ||||
---|---|---|---|---|---|---|---|
BSF-0 | BSF-3 | BSF-6 | BSF-9 | Linear | Quadratic | ||
Haematological Traits | |||||||
Erythrocytes, 106, cell/μL | 5.39 | 4.98 | 4.98 | 4.92 | 0.11 | 0.160 | 0.429 |
Leukocytes, 103, cell/μL | 17.58 | 17.52 | 18.08 | 18.03 | 0.34 | 0.547 | 0.991 |
Heterophils, % | 50.83 | 51.75 | 46.18 | 51.16 | 1.31 | 0.697 | 0.443 |
Lymphocytes, % | 47.75 | 46.17 | 50.91 | 46.58 | 1.36 | 0.920 | 0.623 |
Monocytes, % | 0.58 | 1.00 | 1.09 | 0.83 | 0.14 | 0.501 | 0.235 |
Eosinophils, % | 0.33 | 0.75 | 1.18 | 1.17 | 0.19 | 0.092 | 0.576 |
Basophils, % | 0.50 | 0.33 | 0.64 | 0.25 | 0.12 | 0.673 | 0.646 |
H/L | 0.98 | 0.96 | 0.96 | 0.97 | 0.03 | 0.997 | 0.876 |
Serum proteins and lipids | |||||||
Total Protein, g/dl | 4.26 | 4.84 | 4.99 | 4.79 | 0.11 | 0.086 | 0.082 |
Triglycerides, mg/dl | 73.27 | 58.38 | 55.93 | 51.12 | 3.08 | 0.012 | 0.395 |
Cholesterol, mg/dl | 90.79 | 85.25 | 82.71 | 69.13 | 3.13 | 0.016 | 0.507 |
Items | Dietary Treatments1 | SEM | p-value | ||||
---|---|---|---|---|---|---|---|
BSF-0 | BSF-3 | BSF-6 | BSF-9 | Linear | Quadratic | ||
Minerals | |||||||
Ca, mg/dl | 10.02 | 10.59 | 10.56 | 9.27 | 0.37 | 0.469 | 0.840 |
P, mg/dl | 3.87 | 4.35 | 3.99 | 3.93 | 0.16 | 0.900 | 0.407 |
Mg, mg/dl | 1.48 | 1.43 | 1.32 | 1.25 | 0.03 | 0.002 | 0.858 |
Fe, mg/l | 310.22 | 327.33 | 371.18 | 406.39 | 13.80 | 0.007 | 0.731 |
Liver function | |||||||
AST, U/l | 27.14 | 27.32 | 27.08 | 28.58 | 0.89 | 0.622 | 0.717 |
ALT, U/l | 27.54 | 30.49 | 29.48 | 25.41 | 1.30 | 0.530 | 0.187 |
GGT, U/l | 4.83 | 4.23 | 4.82 | 4.92 | 0.23 | 0.685 | 0.452 |
ALP, U/l | 2003.6 | 1889.8 | 1876.4 | 1831.1 | 22.59 | 0.008 | 0.426 |
Renal function | |||||||
Uric acid, mg/dl | 3.98 | 3.88 | 3.69 | 3.31 | 0.17 | 0.152 | 0.679 |
Creatinine, mg/dl | 0.30 | 0.29 | 0.29 | 0.25 | 0.01 | 0.022 | 0.526 |
Items | Dietary treatments 1 | SEM | p-value | ||||
---|---|---|---|---|---|---|---|
BSF-0 | BSF-3 | BSF-6 | BSF-9 | Linear | Quadratic | ||
GPx, U/g Hb | 216.54 | 240.27 | 229.74 | 246.39 | 7.51 | 0.250 | 0.816 |
TAS, mmol/l | 1.48 | 1.47 | 1.46 | 1.43 | 0.03 | 0.618 | 0.870 |
MG, μg/ml | 0.49 | 0.50 | 0.47 | 0.46 | 0.01 | 0.307 | 0.747 |
MDA, pmol/ml | 161.99 | 169.97 | 148.73 | 147.10 | 2.10 | 0.000 | 0.152 |
Nitrotyrosine, nM | 193.10 | 133.42 | 122.66 | 78.67 | 11.01 | 0.000 | 0.677 |
Items | Dietary Treatments1 | SEM | p-value | |||
---|---|---|---|---|---|---|
BSF-0 | BSF-3 | BSF-6 | BSF-9 | |||
Spleen | 0.42 | 0.29 | 0.27 | 0.20 | 0.07 | 0.740 |
Liver | 1.38 | 1.88 | 0.77 | 1.38 | 0.15 | 0.096 |
Thymus | 0.10 | 0.18 | 0.09 | 0.00 | 0.06 | 0.549 |
Bursa of Fabricius | 0.33 | 0.25 | 0.00 | 0.36 | 0.07 | 0.224 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gariglio, M.; Dabbou, S.; Crispo, M.; Biasato, I.; Gai, F.; Gasco, L.; Piacente, F.; Odetti, P.; Bergagna, S.; Plachà, I.; et al. Effects of the Dietary Inclusion of Partially Defatted Black Soldier Fly (Hermetia illucens) Meal on the Blood Chemistry and Tissue (Spleen, Liver, Thymus, and Bursa of Fabricius) Histology of Muscovy Ducks (Cairina moschata domestica). Animals 2019, 9, 307. https://doi.org/10.3390/ani9060307
Gariglio M, Dabbou S, Crispo M, Biasato I, Gai F, Gasco L, Piacente F, Odetti P, Bergagna S, Plachà I, et al. Effects of the Dietary Inclusion of Partially Defatted Black Soldier Fly (Hermetia illucens) Meal on the Blood Chemistry and Tissue (Spleen, Liver, Thymus, and Bursa of Fabricius) Histology of Muscovy Ducks (Cairina moschata domestica). Animals. 2019; 9(6):307. https://doi.org/10.3390/ani9060307
Chicago/Turabian StyleGariglio, Marta, Sihem Dabbou, Manuela Crispo, Ilaria Biasato, Francesco Gai, Laura Gasco, Francesco Piacente, Patrizio Odetti, Stefania Bergagna, Iveta Plachà, and et al. 2019. "Effects of the Dietary Inclusion of Partially Defatted Black Soldier Fly (Hermetia illucens) Meal on the Blood Chemistry and Tissue (Spleen, Liver, Thymus, and Bursa of Fabricius) Histology of Muscovy Ducks (Cairina moschata domestica)" Animals 9, no. 6: 307. https://doi.org/10.3390/ani9060307
APA StyleGariglio, M., Dabbou, S., Crispo, M., Biasato, I., Gai, F., Gasco, L., Piacente, F., Odetti, P., Bergagna, S., Plachà, I., Valle, E., Colombino, E., Capucchio, M. T., & Schiavone, A. (2019). Effects of the Dietary Inclusion of Partially Defatted Black Soldier Fly (Hermetia illucens) Meal on the Blood Chemistry and Tissue (Spleen, Liver, Thymus, and Bursa of Fabricius) Histology of Muscovy Ducks (Cairina moschata domestica). Animals, 9(6), 307. https://doi.org/10.3390/ani9060307