Effects of Grazing on the Behaviour, Oxidative and Immune Status, and Production of Organic Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Feeding Systems, and Management
2.2. Measurement, Sampling, and Analytical Methods
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Behaviour
4.2. Oxidative Status, and Immune Response
4.3. Milk Production and FA Composition
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vaarst, M.; Roderick, S.; Lund, V.; Lockerets, W. Animal Health and Welfare in Organic Agriculture; CABI Publishing: Wallingford, UK, 2004. [Google Scholar]
- Van den Pol–van Dasselaar, A.; Vellinga, T.V.; Johansen, A.; Kennedy, E. To graze or not to graze, that’s the question. In Biodiversity and Animal Feed Future Challenges for Grassland Production. Proceedings of the 22nd General Meeting of the European Grassland Federation, Uppsala, Sweden, 9–12 June 2008; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2008; pp. 706–716. [Google Scholar]
- Napolitano, F.; Grasso, F.; Bordi, A.; Tripaldi, C.; Saltalamacchia, F.; Pacelli, C.; De Rosa, G. On-farm welfare assessment in dairy cattle and buffaloes: Evaluation of some animal-based parameters. Ital. J. Anim. Sci. 2005, 4, 223–231. [Google Scholar] [CrossRef]
- Legrand, A.L.; Von Keyserlingk, M.; Weary, D. Preference and usage of pasture versus free-stall housing by lactating dairy cattle. J. Dairy Sci. 2009, 92, 3651–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braghieri, A.; Pacelli, C.; De Rosa, G.; Girolami, A.; De Palo, P.; Napolitano, F. Podolian beef production on pasture and in confinement. Animal 2011, 5, 927–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Keyserlingk, M.A.G.; Rushen, J.; De Passillé, A.M.; Weary, D.M. Invited review: The welfare of dairy cattle–key concepts and the role of science. J. Dairy Sci. 2009, 92, 4101–4111. [Google Scholar] [CrossRef] [PubMed]
- Celi, P. Oxidative stress in ruminants. In Studies on Veterinary Medicine, Oxidative Stress in Applied Basic Research and Clinical Practice; Mandelker, L., Vajdovich, P., Eds.; Springer Science+Business Media: New York, NY, USA, 2011; pp. 191–231. [Google Scholar]
- Bonanno, A.; Tornambè, G.; Bellina, V.; De Pasquale, C.; Mazza, F.; Maniaci, G.; Di Grigoli, A. Effect of farming system and cheesemaking technology on the physicochemical characteristics, fatty acid profile, and sensory properties of caciocavallo palermitano cheese. J. Dairy Sci. 2013, 96, 710–724. [Google Scholar] [CrossRef] [PubMed]
- Hulshof, P.J.M.; Van Roekel-Jansen, T.; Van de Bovenkamp, P.; West, C.E. Variation in retinol and carotenoid content of milk and milk products in the Netherlands. J. Food Comp. Anal. 2006, 19, 67–75. [Google Scholar] [CrossRef]
- Charlton, G.L.; Rutter, S.M. The behaviour of housed dairy cattle with and without pasture access: A review. Appl. Anim. Behav. Sci. 2017, 192, 2–9. [Google Scholar] [CrossRef]
- Meul, M.; Van Passel, S.; Fremaut, D.; Haesaert, G. Higher sustainability performance of intensive grazing versus zero–grazing dairy systems. Agron. Sustain. Dev. 2012, 32, 629–638. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Tweed, J.K.S. Isomerisation of cis-9 trans-11 conjugated linoleic acid (CLA) to trans–9 trans–11 CLA during acidic methylation can be avoided by a rapid base catalysed methylation of milk fat. J. Dairy Res. 2008, 75, 354–356. [Google Scholar] [CrossRef]
- Kramer, J.K.; Cruz-Hernandez, C.; Deng, Z.; Zhou, J.; Jahreis, G.; Dugan, M.E. Analysis of conjugated linoleic acid and trans 18: 1 isomers in synthetic and animal products. Am. J. Clin. Nutr. 2004, 79, 1137S–1145S. [Google Scholar] [CrossRef] [PubMed]
- Luna, P.; De la Fuente, M.A.; Juárez, M. Conjugated linoleic acid in processed cheeses during the manufacturing stages. J. Agric. Food Chem. 2005, 53, 2690–2695. [Google Scholar] [CrossRef] [PubMed]
- Roca–Fernandez, A.I.; Ferris, C.P.; Gonzalez–Rodriguez, A. Behavioural activities of two dairy cow genotypes (Holstein-Friesian vs. Jersey x Holstein-Friesian) in two milk production systems (grazing vs confinement). Span. J. Agric. Res. 2013, 11, 120–126. [Google Scholar] [CrossRef]
- Charlton, G.L.; Rutter, S.M.; East, M.; Sinclair, L.A. Preference of dairy cows: Indoor cubicle housing with access to a total mixed ration vs. access to pasture. Appl. Anim. Behav. Sci. 2011, 130, 1–9. [Google Scholar] [CrossRef]
- Oshita, T.; Sudo, K.; Nonaka, K.; Kume, S.; Ochiai, K. The effect of feed regimen on chewing time, digesta passage rate and particle size distribution in Holstein non-lactating cows fed pasture ad libitum. Livest. Sci. 2008, 113, 243–250. [Google Scholar] [CrossRef]
- Chaplin, S.J.; Tierney, G.; Stockwell, C.; Logue, D.N.; Kelly, M. An evaluation of mattresses and mats in two dairy units. Appl. Anim. Behav. Sci. 2000, 66, 263–272. [Google Scholar] [CrossRef]
- Dohme–Meier, F.; Kaufmann, L.D.; Görs, S.; Junghans, P.; Metges, C.C.; Van Dorland, H.A.; Bruckmaier, R.M.; Münger, A. Comparison of energy expenditure, eating pattern and physical activity of grazing and zero-grazing dairy cows at different time points during lactation. Livest. Sci. 2014, 162, 86–96. [Google Scholar] [CrossRef]
- Boissy, A.; Manteuffel, G.; Jensen, M.B.; Moe, R.O.; Spruijt, B.; Keeling, L.J.; Winckler, C.; Forkman, B.; Dimitrov, I.; Langbein, J.; et al. Assessment of positive emotions in animals to improve their welfare. Physiol. Behav. 2007, 92, 375–397. [Google Scholar] [CrossRef]
- Sato, S.; Tarumizu, S.; Hatae, K. The influence of social factors on allogrooming in cows. Appl. Anim. Behav. Sci. 1993, 38, 235–244. [Google Scholar] [CrossRef]
- DeVries, T.J.; Vankova, M.; Veira, D.M.; Von Keyserlingk, M.A.G. Short communication: Usage of mechanical brushes by lactating dairy cows. J. Dairy Sci. 2007, 90, 2241–2245. [Google Scholar] [CrossRef]
- Miller, J.K.; Brzezinska–Slebodzinska, E.; Madsen, F.C. Oxidative stress, antioxidants, and animal function. J. Dairy Sci. 1993, 76, 2812–2823. [Google Scholar] [CrossRef]
- Pedernera, M.; Celi, P.; García, S.C.; Salvin, H.E.; Barchia, I.; Fulkerson, W.J. Effect of diet, energy balance and milk production on oxidative stress in early-lactating dairy cows grazing pasture. Vet. J. 2010, 186, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Hernandez, J.; Alves-Nores, V.; Benedito, J.L.; Castillo, C. Association of serum concentration of different trace elements with biomarkers of systemic oxidant status in dairy cattle. Biol. Trace Elem. Res. 2016, 174, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.L. Antioxidants and oxidative stress in exercise. Proc. Soc. Exp. Biol. Med. 1999, 222, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jew, S.S.; Chang, P.S.; Hong, I.J.; Hwang, E.S.; Kim, K.S.; Kim, K.T.; Sung, H.L. Free radical scavenging effect and antioxidant activities of barley leaves. Food Sci. Biotechnol. 2003, 12, 268–273. [Google Scholar]
- Braghieri, A.; Pacelli, C.; Verdone, M.; Girolami, A.; Napolitano, F. Effect of grazing and homeopathy on milk production and immunity of Merino derived ewes. Small Rumin. Res. 2007, 69, 95–102. [Google Scholar] [CrossRef]
- De Rosa, G.; Napolitano, F.; Saltalamacchia, F.; Bilancione, A.; Sabia, E.; Grasso, F.; Bordi, A. The effect of rearing system on behavioural and immune responses of buffalo heifers. Ital. J. Anim. Sci. 2007, 6–2, 1260–1263. [Google Scholar] [CrossRef]
- Sabia, E.; Napolitano, F.; De Rosa, G.; Terzano, G.M.; Barile, V.L.; Braghieri, A.; Pacelli, C. Efficiency to reach age of puberty and behaviour of buffalo heifers (Bubalus bubalis) kept on pasture or in confinement. Animal 2014, 11, 1907–1916. [Google Scholar] [CrossRef]
- Chapinal, N.; Goldhawk, C.; de Passillé, A.M.; Von Keyserlingk, M.A.G.; Weary, D.M.; Rushen, J. Overnight access to pasture does not reduce milk production or feed intake in dairy cattle. Livest. Sci. 2010, 129, 104–110. [Google Scholar] [CrossRef]
- Kennedy, E.; O’Donovan, M.; Murphy, J.P.; Delaby, L.; O’Mara, F. Effects of grass pasture and concentrate–based feeding systems for spring-calving dairy cows in early spring on performance during lactation. Grass Forage Sci. 2005, 60, 310–318. [Google Scholar] [CrossRef]
- Fontaneli, R.S.; Sollenberger, L.E.; Littell, R.C.; Staples, C.R. Performance of lactating dairy cows managed on pasture-based or in free stall barn-feeding systems. J. Dairy Sci. 2005, 88, 1264–1276. [Google Scholar] [CrossRef]
- Gulati, A.; Galvin, N.; Lewis, E.; Hennessy, D.; O’Donovan, M.; McManus, J.J.; Fenelon, M.A.; Guinee, T.P. Outdoor grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on gross composition and mineral content of milk during lactation. J. Dairy Sci. 2018, 101, 2710–2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Ross, R.P.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef] [PubMed]
- Croissant, A.E.; Washburn, S.P.; Dean, L.L.; Drake, M.A. Chemical properties and consumer perception of fluid milk from conventional and pasture-based production systems. J. Dairy Sci. 2007, 90, 4942–4953. [Google Scholar] [CrossRef] [PubMed]
- Nousiainen, J.; Shingfield, K.J.; Huhtanen, P. Evaluation of milk urea nitrogen as a diagnostic of protein feeding. J. Dairy Sci. 2004, 87, 386–398. [Google Scholar] [CrossRef]
- Ellis, K.A.; Innocent, G.T.; Mihm, M.; Cripps, P.; McLean, W.G.; Howard, C.V.; Grove-White, D. Dairy cow cleanliness and milk quality on organic and conventional farms in the UK. J. Dairy Res. 2007, 74, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Vance, E.R.; Ferris, C.P.; Elliott, C.T.; Mcgettrick, S.A.; Kilpatrick, D.J. Food intake, milk production, and tissue changes of Holstein–Friesian and Jersey × Holstein–Friesian dairy cows within a medium-input grazing system and a high-input total confinement system. J. Dairy Sci. 2012, 95, 1527–1544. [Google Scholar] [CrossRef] [PubMed]
- Washburn, S.P.; White, S.L.; Green, J.T.; Benson, G.A. Reproduction, mastitis, and body condition of seasonally calved Holstein and Jersey cows in confinement or pasture systems. J. Dairy Sci. 2002, 85, 105–111. [Google Scholar] [CrossRef]
- White, S.L.; Benson, G.A.; Washburn, S.P.; Green, J.T. Milk production and economic measures in confinement or pasture systems using seasonally calved Holstein and Jersey cows. J. Dairy Sci. 2002, 85, 95–104. [Google Scholar] [CrossRef]
- Elgersma, A. Grazing increases the unsaturated fatty acid concentration of milk from grass–fed cows: A review of the contributing factors, challenges and future perspectives. Eur. J. Lipid Sci. Technol. 2015, 117, 1345–1369. [Google Scholar] [CrossRef]
- White, S.L.; Bertrandm, J.A.; Wadem, M.R.; Washburnm, S.P.; Green, J.R.; Jenkins, T.C. Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 2001, 84, 2295–2301. [Google Scholar] [CrossRef]
- Kim, D.H.; Amanullah, S.M.; Lee, H.J.; Joo, Y.H.; Yun, H.; Lee, S.S.; Song, Y.M.; Kim, H.Y.; Kim, S.H. Effects of L. plantarum application on chemical composition, fermentation indices and fatty acid profiles of barley silage. J. Agric. Life Sci. 2015, 49, 157–167. [Google Scholar] [CrossRef]
- Coppa, M.; Ferlay, A.; Borreani, G.; Revello–Chiond, E.; Tabacco, E.; Tornambé, G.; Pradel, P.; Martin, B. Effect of phenological stage and proportion of fresh herbage in cow diets on milk fatty acid composition. Anim. Feed Sci. Technol. 2015, 208, 66–78. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999, 70, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Couvreur, S.; Hurtaud, C.; Lopez, C.; Delaby, L.; Peyraud, J.L. The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. J. Dairy Sci. 2006, 89, 1956–1969. [Google Scholar] [CrossRef]
- FAO/WHO. Fats and Oils in Human Nutrition; Report of a Joint FAO (Food and Agriculture Organization of United Nations) and WHO (World Health Organization) Experts Consultation; FAO: Rome, Italy, 1994. [Google Scholar]
Item | Pasture | Total Mixed Ration (TMR) 1 | TMR-Ingredients | ||||
---|---|---|---|---|---|---|---|
Barley Grass | Hay | Soybean Meal | Faba Bean | Maize Grain | Barley Grain | ||
Housing group 2 | 17.0 | 9.0 | 1.0 | 0.5 | 3.5 | 3.0 | |
Grazing group | 5 h/day | 17.0 | |||||
DM, % | 20.19 | 47.19 | 89.98 | 93.90 | 89.95 | 88.43 | 89.58 |
Crude protein | 19.17 | 16.50 | 14.75 | 48.18 | 28.33 | 9.90 | 12.66 |
Ether extract | 3.85 | 2.34 | 1.77 | 11.37 | 0.97 | 3.59 | 2.20 |
Ash | 9.32 | 6.42 | 9.42 | 6.69 | 3.70 | 1.72 | 3.12 |
NDF | 49.45 | 30.28 | 53.55 | 8.92 | 24.04 | 11.55 | 22.03 |
ADF | 27.97 | 20.93 | 38.48 | 9.29 | 13.97 | 3.53 | 10.47 |
ADL | 2.07 | 3.32 | 6.29 | 0.16 | 3.32 | 0.42 | 1.27 |
Item | Posture | Housing | Grazing | SEM 1 | p |
---|---|---|---|---|---|
Outdoors | Lying, % | 34.2 | 10.5 | 1.93 | <0.0001 |
Standing, % | 32.6 | 53.5 | 3.74 | <0.0001 | |
Indoors | Lying, % | 5.52 | 15.9 | 2.06 | 0.0006 |
Standing, % | 27.6 | 20.1 | 2.29 | 0.1074 | |
Grazing (GR), % | -- | 46.8 | |||
Eating indoors (EI), % | 31.9 | 16.0 | |||
Eating (GR + EI), % | 31.9 | 62.8 | 2.28 | <0.0001 | |
Drinking, % | 1.92 | 0.46 | 0.145 | 0.0304 | |
Ruminating, % | 29.2 | 26.6 | 2.13 | 0.4996 | |
Walking, % | 5.58 | 2.15 | 0.492 | 0.0052 | |
Idling, % | 30.4 | 8.37 | 1.70 | <0.0001 | |
Affiliative interactions, n | 1.43 | 3.18 | 0.344 | 0.0007 | |
Aggressive interactions, n | 0.25 | 0.56 | 0.121 | 0.1186 | |
Self-grooming, n | 2.98 | 1.75 | 0.322 | 0.0096 |
Item | Measure Unit | Housing | Grazing | SEM 1 | p |
---|---|---|---|---|---|
Oxidative status | |||||
ROMs | U. Carr. | 61.7 | 87.3 | 8.10 | 0.0426 |
BAP | Log microEq/L | 3.46 | 3.41 | 0.016 | 0.1082 |
Immune parameters | |||||
Antibody titre | OD 450 nm | 1.22 | 1.19 | 0.021 | 0.323 |
Skin fold thickness (mm) 2 | day 1 | 4.17 a | 4.10 ab | 0.455 | 0.1269 |
day 62 | 3.00 b | 4.50 a |
Parameter | Measure Unit | Housing | Grazing | SEM 1 | p |
---|---|---|---|---|---|
Milk | kg/day | 25.6 | 25.5 | 1.47 | 0.9615 |
Fat | % | 3.94 | 4.15 | 0.141 | 0.0419 |
Protein | % | 3.59 | 3.49 | 0.127 | 0.5724 |
Casein | % | 2.79 | 2.73 | 0.101 | 0.7059 |
Urea | mg/dL | 36.1 | 29.5 | 0.706 | 0.0153 |
Lactose | % | 4.96 | 4.97 | 0.069 | 0.9076 |
Somatic cells | log10 n/mL | 5.13 | 4.89 | 0.127 | 0.0424 |
Total bacterial count | log10 n/mL | 6.24 | 5.95 | 0.140 | 0.0335 |
Fatty Acids | Housing | Grazing | SEM 1 | p |
---|---|---|---|---|
C10 | 134.63 | 149.68 | 5.65 | 0.0645 |
C12 | 155.51 | 176.17 | 6.76 | 0.0346 |
C14 | 408.95 | 479.24 | 13.55 | 0.0005 |
C16 | 1043.06 | 1223.11 | 34.59 | 0.0005 |
C16:c1 | 38.11 | 45.48 | 2.14 | 0.0182 |
C18 | 257.15 | 256.65 | 10.55 | 0.9739 |
C18:1 t11, VA 2 | 11.18 | 12.27 | 0.36 | 0.0348 |
C18:1 c9, OA 3 | 526.56 | 554.09 | 20.44 | 0.3449 |
C18:2 n-6 c9 c12, LA 4 | 92.13 | 93.53 | 3.17 | 0.7572 |
C18:3 n-6 c6 c9 c12, GLA 5 | 4.46 | 5.08 | 0.23 | 0.0612 |
C18:3 n-3 c9 c12 c15, ALA 6 | 14.72 | 16.19 | 0.53 | 0.0441 |
CLA 7 C18:2 c9 t11, RA 8 | 5.96 | 7.04 | 0.28 | 0.0090 |
C20:5 n-3, EPA 9 | 2.94 | 3.16 | 0.14 | 0.2671 |
C22:5 n-3, DPA 10 | 1.34 | 3.05 | 0.81 | 0.1397 |
C22:6 n-3, DHA 11 | 3.22 | 3.34 | 0.13 | 0.5369 |
∑ saturated FA (SFA) | 2377.55 | 2695.03 | 72.82 | 0.0031 |
∑ monounsaturated FA (MUFA) | 695.55 | 735.96 | 24.85 | 0.2549 |
∑ polyunsaturated FA (PUFA) | 163.14 | 166.30 | 4.75 | 0.6395 |
Σ unsaturated FA (UFA) | 858.69 | 902.26 | 28.21 | 0.2792 |
SFA/UFA | 2.79 | 3.05 | 0.0802 | 0.0217 |
∑ omega-6 FA 12 | 122.08 | 122.19 | 3.64 | 0.9838 |
∑ omega-3 FA 13 | 23.56 | 26.68 | 1.21 | 0.0730 |
omega-6/omega-3 | 5.26 | 4.78 | 0.15 | 0.0252 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Grigoli, A.; Di Trana, A.; Alabiso, M.; Maniaci, G.; Giorgio, D.; Bonanno, A. Effects of Grazing on the Behaviour, Oxidative and Immune Status, and Production of Organic Dairy Cows. Animals 2019, 9, 371. https://doi.org/10.3390/ani9060371
Di Grigoli A, Di Trana A, Alabiso M, Maniaci G, Giorgio D, Bonanno A. Effects of Grazing on the Behaviour, Oxidative and Immune Status, and Production of Organic Dairy Cows. Animals. 2019; 9(6):371. https://doi.org/10.3390/ani9060371
Chicago/Turabian StyleDi Grigoli, Antonino, Adriana Di Trana, Marco Alabiso, Giuseppe Maniaci, Daniela Giorgio, and Adriana Bonanno. 2019. "Effects of Grazing on the Behaviour, Oxidative and Immune Status, and Production of Organic Dairy Cows" Animals 9, no. 6: 371. https://doi.org/10.3390/ani9060371